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Abstract Tuberculosis (TB) is a global epidemic caused by Mycobacterium tuberculosis.

In this article, we study the dynamics of the TB transmission model with reinfection issues.
It is demonstrated that the basic reproduction number R0 defines the TB transmission

dynamics. If R0 < 1, only TB free equilibrium exists which is globally asymptotically
stable, and when R0 > 1, thus, there occurs endemic equilibrium, and the TB takes

over. A bifurcation analysis was conducted by employing the bifurcation techniques of
center manifold theory, both analytical and numerical solutions guarantee the occurrence

of transcritical bifurcation at R0 = 1. We also discussed the global stability of endemic
equilibrium employing the approach of Lyapunov function. Numerical investigations il-

lustrated that increase in reinfection value results in a huge force of infection. However,
reinfection among treated individuals play an important role in the control of TB infection.
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1 Introduction

Tuberculosis (TB) is a starring health menace across the globe. The TB outbreak is generally
caused by Mycobacterium tuberculosis (Mtb) [1], and it is highly infectious with significant
mortality. However, TB is both preventable and curable. Isoniazid is utilized to keep people
who are latently infected with Mtb from acquiring the disease, and multiple-drug regimens are
very effective at treating active TB cases [2]. Mtb typically affects the lungs, but it can also
affect other organs in the human body. In 2021, an estimated 10 million people became ill
with TB, and 1.5 million died from the disease worldwide. TB is transmitted from person to
person through the air. When people with lung tuberculosis cough, sneeze, or spit, they release
TB germs into the air. In order to become infected, a person only needs to inhale a few of
these germs. Approximately one-quarter of the world’s population is infected with tuberculosis
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(TB), which means they have been infected by TB bacteria but are not (yet) ill with disease
and cannot transmit it [1]. The longer duration of latency in MTB infection adds uncertainty
to the onset of active disease and complicates understanding disease development [3–5].

Reinfection is a situation where by individuals who haveing previously treated can be rein-
fected as a result of low immunity [2–4,6]. A reinfection event can be attributed to a TB episode
in a significant number of cases. More cases of TB due to reinfection could be anticipated in
high incidence regions compared to low incidence regions because reinfection is more likely in
high incidence regions than low incidence regions, demonstrating that higher prevalence of Mtb
is the main risk for TB reinfection [6]. Olaniyi [7] presented optimal control analysis of a TB
model with exogenous re-infection and incomplete treatment Athithan and Ghosh [8] designed
a mathematical modeling of TB infection with exogenous re-infection by assessing the impacts
of case detection and treatment. Yang et al studied global stability analysis of two models with
incomplete treatment for TB in the absence of exogenous re-infection employing Lyapunov
functions. Okuonghae and Aihie [9] investigated the synergetic effects of case detection and
direct observation therapy strategy (DOTS) on TB transmission in Nigeria by incorporating
exogenous re-infection and endogenous reactivation of latent TB cases. Individuals who have
had TB before and have it again have a substantially higher risk of having TB disease than
those who have never had the infection. More research is needed, but scientists believe that
certain people may be more susceptible to TB than others for unknown reasons [10].

Mathematical biology is an exciting and fast growing field. Most of the current topics
of mathematical biology consist of the formulation and analysis of various mathematical mod-
els,often in the forms of difference equations or differential equations. One of the most important
ways for capturing mathematics in structure, which is an essential subject to apply in real life,
is modeling [21]. In recent years, mathematical models are developed and applied in the area of
mathematical biology are found in many references, for example, epidemic models [11–14], eco-
epidemiological models [15, 16, 18], preypredator models [16, 19], and also used to understand
epidemiological phenomena.

The basic reproduction number is a crucial quantity in epidemic models because it deter-
mines whether a disease may be controlled in the community. When the basic reproduction
number is greater than one, each infectious individual will produce more than one new case;
when it is less than one, the illness will become extinct in the community [22]. In reality, in most
epidemic models, the bifurcation at R0 = 1 is transcritical (forward), implying that R0 < 1
has no endemic equilibrium. Furthermore, in recent years, several scholars (see [3, 4, 23]) have
discovered another form of bifurcation at R0 = 1, known as backward bifurcation, in several
epidemic models, and this form of bifurcation verifies the existence of multiple endemic equilib-
ria of the given system when R0 < 1. Khajanchi et al. [4] studied the dynamical model of TB
infection with exogenous reinfections and endogenous reactivation. They demonstrated that
their model displays two various types of bifurcation: one is backward bifurcation and another
is transcritical. Kar and Mondal [3] discovered that their model undergoes the phenomenon
of backward bifurcation and can have a multiple endemic equilibria if R0 < 1 given that the
probability of reinfection exceeds a critical value.

Uys et al. [6] have investigated a mathematical model on TB reinfection. They accepted that
the rate of reinfection is a multiple of the rate of first-time infection. Yang and Raimundo [24]
used a deterministic model to assess the effect of multiple infections and prolonged latency on
the transmission of recurrent TB. Their findings indicate that reinfection of treated people is
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trifling, disputing that such a pathway increases non-linearity and makes the model mathe-
matically difficult. The models of Kar and Mondal [3] and Feng et al. [25] were all based on
the assumption that individuals went through a long latency period before TB reactivated to
clinically active TB.

The dynamical behaviour of a deterministic model of TB with vaccination and contact rate
has been formulated and analysed by [26]. Their result suggested that vaccination coverage is
insufficient to control TB and that the effective contact rate significantly impacts TB spread.
The authors in [27] studied the dynamical behavior of compartmental models of TB with
vaccination and saturated incidence rate. Their findings revealed that the first effective strategy
to combat TB spread is to limit contact between TB-infected and vulnerable people. The second
significant finding is improving access to treatment for latently infected individuals. Finally,
they demonstrated that the BCG vaccination has a significant role in TB prevention and that
children’s immunization should be continued. A dynamical model of TB with health education
and early therapy influence has been examined in [28]. The theoretical analysis of their models
revealed that the disease free equilibrium is globally asymptotically stable if R0 < 1, while
the endemic equilibrium is globally asymptotically stable when R0 > 1. Mathematical results
revealed that both health education and early therapy have a strong influence on TB burden
reduction.

The main objective of this article is to study the effect of the reinfection among treated
people as well as theoretical and numerical solutions. For this reason, we employed the well-
known Sι, Eι, Iι, Rι model. The present article is categorized into six sections. The description
of the dynamical model of TB with reinfection model is presented in section 2. In section 3,
some theoretical aspects and a stability analysis of a nonlinear model for the basis of equilibrium
points are given. In the section 4, we study the existence and uniqueness of the solutions for
the dynamics Sι, Eι, Iι, Rι model. In section 5, numerical solutions are held some simulations
are given to validate the results. In the end, our conclusions and findings was given in section 6.

2 Model Description

In this article, the TB model with reinfection among the people who have been treated is
considered. The model is modification from TB transmission models developed by [3, 29–31].
The modification model extends the [31] by including a latently infected class and the re-
infection so that the model will be in the form of the SιEιIιRιEι model. The latently infected
class has been considered because there is a long incubation period in TB disease and also
re-infection because of low immunity. This model is also the same as developed by [3] but
with standard incidence function instead of bilinear incidence and incorporation of death due
to TB, has been considered. We ignored exogenous re-infection which is left open to be the
future study. Immigration of infectives was removed from the model o [29, 30] because Eι and
Iι compartments became most individual that is sick and can not travel while the recovered
class has been included because individuals who are infected with Mtb can be recovered due
to treatment and move to recovered compartment Rι at the rate γ (although some of the live
bacilli are still with them).

In this section, a four compartmental TB model with reinfection is introduced. This model
can describe the relationship between the population of susceptible individual, exposed indi-
vidual, infected individual and recovered individual. The dynamics of the population of the
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susceptible individual Sι, exposed individual Eι, infected individual Iι, and recovered individual
Rι are as follows;

dSι

dt
= Λ − βSιIι

Nι

− µSι,

dEι

dt
= βSιIι

Nι

+ σβIιRι

Nι

− (κ + µ) Eι,

dIι

dt
= κEι − (µ + δ + γ) Iι,

dRι

dt
= γIι −

σβIιRι

Nι

− µRι.

(1)

with
Nι = Sι + Eι + Iι + Rι,

where

λ =
βIι

Nι

, (2)

of which equation (2) is represented by force of infection so that the model system (1) can be
rewritten as

dSι

dt
= Λ − λSι − µSι,

dEι

dt
= λSι + σλRι − (κ + µ)Eι,

dIι

dt
= κEι − (µ + δ + γ) Iι,

dRι

dt
= γIι − σλRι − µRι.

(3)

with the initial condition
Sι0 ≥ 0, Eι0 ≥ 0, Iι0 ≥ 0, Rι0 ≥ 0. (4)

In the system (3) above, the susceptible compartment is increased by recruiting individuals,
either by immigration or birth, into the population at the constant rate Λ. The term µ is
taken to be natural death rate. The susceptible individuals become infected at a rate βIι

Nι

,
represented by λ, known as standard incidence. The exposed compartment becomes infectious
and progresses to active infected at a constant rate κ. Infected individuals are recovered at the
rate γ and diminished due to TB induced death rate at the rate δ. The treated compartment
revert to the exposed compartment as a result of low immunity at the constant rate σ.

2.1 Clinical Assumptions of the TB Model with Reinfection

The biological assumptions of the model are as follows:

• There is a constant recruitment rate to the susceptible population and natural cause
death affects individuals in all compartments, with an extra TB-induced death rate in
the infected class;

• The population which goes from susceptible to infected class is taken to be standard
incidence and it is of the form βIι

Nι

• The recovered individual may be again infected by infectious individual [3].
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Therefore, based on the above description and assumptions, the basic TB Model lead to fol-
lowing system of non-linear differential equations, the schematic diagram Figure 1 below, and
the parameters indicated in the diagram are explained in Table 1.

Figure 1: Schematic Diagram of the TB Model with Reinfection.

Table 1: Description of the State Variables and Parameters of the System (3)

State Variables Explanation

Sι Individuals susceptible to TB
Eι Not yet infected, still in latent period
Iι Actively infected individuals
Rι Recovered from TB infection
Nι Human population size
Parameters

Λ Inflow of recruitment rate into susceptible class
β Effective transmission rate
µ Natural death rate
κ Progression rate from Eι to Iι

γ recovery rate
σ Re-infection among the treated individuals
δ TB induced death rate

3 Basic Properties of the TB Model with Reinfection

The basic properties of the TB Model with reinfection (3) are explored in this section. This
analysis is crucial when examining the dynamical behavior of a disease model since it demon-
strates if the model is epidemiologically relevant and mathematically well-posed, that is, if the
model and its predictions are confirmed [32–34].
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Theorem 1 Let initial data be {(Sι0, Eι0, Iι0, Rι0) ≥ 0} ∈ Φ. Therefore, the set solution of
{Sι(t), Eι(t), Iι(t), Rι(t)} of the TB Model with reinfection (3) is non-negative for all t > 0.

Proof The method described in [16, 17], is applied. We use the first equation to consider the
non-linear system of (3), which clearly shows that

dSι

dt
+ (λ(t) + µ)Sι > 0,

utilizing an integrating factor gives

d

dt

[

Sι exp

(∫ t

0

(λ(ε) + µ

)

dε

]

> 0. (5)

Using the initial conditions (4) and integrating (5) results in

Sι(t) > Sι0exp

[

−

(∫ t

0

(λ(ε) + µ

)

dε

]

> 0, ∀t > 0. 2

Likewise, it is provable that Eι(t) > 0, Iι(t) > 0, Rι(t) > 0 ∀ t > 0.

3.1 Invariant Region

Theorem 2 The region Φ is positively-invariant and all the solution are enclosed in Φ ∈ R4
+.

Proof Summation of model system (3) is given by

dNι

dt
=

dSι

dt
+

dEι

dt
+

dIι

dt
+

dRι

dt
. (6)

We can observe that by applying the standard comparison theorem [35], which yields

dNι

dt
= Λ − µNι − δIι(t). (7)

In the absence of TB infection, there is no death from TB transmission, (that is, δ = 0), hence
the rate of change of the total population size in equation (7) is given as

dNι

dt
≤ Λ − µNι. (8)

From (8) above, we obtain

Nι(t) =
Λ

µ
+

(

Nι0 −
Λ

µ

)

e−µt. (9)

As t −→ ∞, the value of Nι −→
Λ
µ
. This shows that Nι is bounded above by Λ

µ
as the value

of t goes to infinity. But initially, we said that Sι0 ≥ 0, Eι0 ≥ 0, Iι0 ≥ 0, Rι0 ≥ 0. Therefore,
Nι = Sι + Eι + Iι + Rι ≥ 0. That is Nι ≥ 0, which means 0 ≤ Nι. Therefore

0 ≤ Nι ≤
Λ

µ
. (10)
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Hence, in Φ, the TB model with reinfection is well-posed epidemiologically. Thus, it is sufficient
to study the dynamics of the basic TB model in Φ. So, we can conclude that all the solution
set of the system model (3) is bounded in Φ, where

Φ =

{

(Sι, Eι, Iι, Rι) ∈ R
4
+ : 0 ≤ Nι ≤

Λ

µ

}

. 2 (11)

4 Model Analysis

In this section, we shall examine the equilibrium solutions, obtain the basic reproduction num-
ber, conduct the stability analysis of the TB-free equilibrium (TFE), endemic equilibrium
(EE), the local and global stability of both TB-free and endemic equilibrium.

4.1 Existence of TB-Free Equilibrium State,(T 0)

This is achieved if there is no TB infection in the community, means that the number of exposed,
infected and recovered people are zero, that is (Eι, Iι andRι = 0). The TB free equilibrium of
TB model with reinfection (3) is obtained and is given by (12),

T 0 = (Sι, Eι, Iι, Rι) =

(

Λ

µ
, 0, 0, 0

)

. (12)

4.2 Existence of Endemic Equilibrium State,(T ∗)

The endemic equilibrium (EE) is the state at which the disease break-out and is persistent in
a population. The EE for the TB model with reinfection (3) is given by T ∗ = (S∗

ι , E
∗

ι , I
∗

ι , R
∗

ι ):

T ∗= (S∗

ι , E
∗

ι , I
∗

ι , R
∗

ι )=

[

Λ

λ + µ
,
λΛ(σλ + µ)(µ + γ + δ)

(λ + µ)(G0 − G1)
,

κΛ(σλ + µ)λ

(λ + µ)(G0 − G1)
,

κγΛλ

(λ + µ)(G0 − G1)

]

.

(13)
where

G0 = (κ + µ)(µ + δ + γ)(σλ + µ), andG1 = κσλγ.

4.3 Basic Reproduction Number

The basic reproduction number of the TB model with reinfection (3) represented by R0, is the
average number of secondary infections caused by a single index case in a completely susceptible
community [22,36]. It is significant as a threshold parameter in the analysis of epidemic models,
such as TB [38]. The R0 shall be calculated following the next generation approach employed
by [36]. The R0 is ρ(FV −1), where ρ is the spectral radius,

F =

(

0 β
0 0

)

,

V =

(

(κ + µ) 0
−κ (µ + δ + γ)

)

.
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The inverse of V denoted by V −1 is

V −1 =

(

1
(κ+µ)

0
κ

(κ+µ)(µ+δ+γ)
1

(µ+δ+γ)

)

.

Thus, the basic reproduction number for this TB model with reinfection is given by:

R0 =
βκ

(κ + µ)(µ + δ + γ)
. (14)

If R0 < 1, it signifies that the probability of new cases of disease persisting in the community is
insufficient for the TB to occur, whereas, when R0 > 1, the disease will then become widespread,
causing a major decrease in the population of susceptible individuals [37].

4.4 Local Stability of the TB Disease-Free Equilibrium

Theorem 3 The TFE, of the TB model with reinfection (1) given by (3), is locally asymptot-
ically stable (LAS) when R0 < 1 and unstable if R0 > 1.

Proof The Jacobian matrix of the TB model with reinfection (3) at TFE state (T 0) is then
given by

J(T 0) =









−µ 0 −β 0
0 −(κ + µ) β 0
0 κ −(µ + δ + γ) 0
0 0 γ −µ









. (15)

The eigenvalue of (15) are given by
∣

∣J(T 0) − αI
∣

∣ = 0,

where J(T 0) denotes Jacobian matrix at TFE, The Jacobian derived from (15) has the following
characteristics equation:

J(T 0) =

∣

∣

∣

∣

∣

∣

∣

∣

−µ − α 0 −β 0
0 −(κ + µ) − α β 0
0 κ −(µ + δ + γ) − α 0
0 0 γ −µ − α

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (16)

Evaluating along the first column

(−µ − α)(−µ − α) [−(κ + µ) − α)(−(µ + δ + γ) − α) − κβ] = 0,

(µ + α)2
[

(κ + µ)(µ + δ + γ) + (κ + µ + µ + δ + γ)α + α2 − κβ
]

= 0,

(µ + α)2
[

α2 + (κ + 2µ + δ + γ)α + (κ + µ)(µ + δ + γ)(1 − R0)
]

= 0,

(µ + α)2f(α) = 0, (17)

where f(α) = α2 + (κ + 2µ + δ + γ)α + (κ + µ)(µ + δ + γ)(1 − R0).
Clearly, α1 = −µ, α2 = −µ while f(α) has no sign change only if R0 < 1. Hence, the

solution of f(λ) are all real and negative which implies that α3 and α4 are negative if R0 < 1.
Following the Routh Hurwitz stability criterion, we conclude that the TFE point is locally
asymptotically stable. 2
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4.5 Global Stability of the TB Free Equilibrium

Global Stability of TFE, T 0, for R0 ≤ 1: Inspired by [39–41], where we already know that
TFE state T 0 is locally asymptomatically stable if R0 < 1. and unstable if R0 > 1 [36,38]. We
shall construct a Lyapunov function to prove the global stability of TFE. Define a Lyapunov
function as follows:

L = A1Eι + A2Iι, (18)

Differentiating equation (18) with respect to time, we have

dL

dt
= A1

dEι

dt
+ A2

dIι

dt
, (19)

Substitute the values of dEι

dt
and dIι

dt
into equation (19), we get

dL

dt
= A1

[

βSιIι

Nι

+
σβIιRι

Nι

− (κ + µ)Eι

]

+ A2 [κEι − (µ + δ + γ) Iι] . (20)

After some algebraic calculations,

A1 = 1and A2 =
A1

κ
(κ + µ), (21)

such that
dL

dt
≤

(κ + µ)(µ + γ + δ)

κ
(R0 − 1)Iι. (22)

Thus, if R0 < 1, then dL
dt

is negative. Hence the largest compact invariant set in Φ is the
singleton set T 0. Therefore, LaSalles invariant principle [40,41] then implies that T 0 is globally
asymptotically stable in Φ.

4.6 Endemic Equilibrium

To obtain the existence of endemic equilibrium point for the system model (2), represented by
T ∗ = (Sι, Eι, Iι, Rι) given in (13). The system model (1) are solved in terms of force of infection
in equation (2) at a steady state which satisfy the following

Iι

Nι

=
κσλ2 + κµλ

(σ(µ + δ + γ) + κσ)λ2 + (G0 + µ(µ + δ + γ) + κ(µ + γ)λ + G1

, (23)

using (23) in (2) yields

λ =
βκσλ2 + βκµλ

G2λ2 + G3λ + G1
. (24)

where
G2 = σ(µ + δ + γ) + κσ,

G3 = G0 + µ(µ + δ + γ) + κ(µ + γ).

Cross multiply (24), we have

⇒ λ(G2λ
2 + G3λ + G1) = βκ(σλ + µ)λ,
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G2λ
2 + (G3 − βκσ)λ + µ(κ + µ)(µ + δ + γ) − βκµ = 0,

G2λ
2 + (G3 − βκσ)λ + µ(κ + µ)(µ + δ + γ)(1 − R0) = 0. (25)

The equation (25) can be written as

G2λ
2 + G4λ + G5 = 0. (26)

where
G4 = G3 − βκσ,

G5 = µ(κ + µ)(µ + δ + γ)(1 − R0)

The endemic equilibrium of the TB model with reinfection (1) can be achieved by solving λ
from (25), and replacing the values λ into the expressions in (13). The quadratic equation (26)
can be examined for the possibility of multiple endemic equilibria when R0 < 1. Notice that the
coefficient G2 is always positive of the quadratic equation (25) and G5 is positive or negative if
R0 is less or greater than one. The following outcome, therefore, is established.

Theorem 4 The TB model with reinfection (1)

1. has a unique endemic equilibrium if G5 < 0 ⇔ R0 > 1;

2. a unique endemic equilibrium when if (G4 < 0 and G5 = 0) or G2
2 − 4G2G5 = 0 ;

3. one or more than one endemic equilibrium when G5 > 0, G4 < 0 and G2
2 − 4G2G5 > 0;

4. no endemic equilibrium otherwise.

4.7 Bifurcation Analysis of The Model

Primarily, bifurcation theory deals with the change in stability criteria of a system of differential
equations. The point where changes in stability occurs is known as bifurcation value. The
bifurcation property for the developed model shall be examined employing the idea of center
manifold studied in Theorem 4.1 of [42]. To examine the local stability of the TB model with
reinfection T ∗ [43]. Let the bifurcation parameter be β =β0. Firstly, we obtained the bifurcation
parameter at R0 = 1. Thus

βκ

(κ + µ)(µ + δ + γ)
= 1,

therefore

β = β0 =
(κ + µ)(µ + δ + γ)

κ
. (27)

To investigate the use of centre manifold theory in [42], it is convenient to make simplification
and transform the variables on the TB model with reinfection (3). This is done by rewriting
our system model (3). Let

x1 = Sι, x2 = Eι, x3 = Iι andx4 = Rι,

so that
Nι = x1 + x2 + x3 + x4.
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More so, by using the vector notation V = (x1, x2, x3, x4)
T , the TB model with reinfection (3)

can be restated in the form of dV /dt = (f1, f2, f3, x4)
T as follows

dx1

dt
= Λ − λx1 − µx1 = f1,

dx2

dt
= λx1 + σλx4 − (κ + µ) x2 = f2,

dx3

dt
= κx2 − (µ + δ + γ) x3 = f3,

dx4

dt
= γx3 − σλx4 − µx4 = f4.

(28)

where

λ =
β(x3)

Nι

, (29)

The Jacobian of the basic model system (28), evaluated at the TFE, T 0 (denoted by J(T 0)),
is given by

J(T 0) =









−µ 0 −β 0
0 −(κ + µ) β 0
0 κ −(µ + δ + γ) 0
0 0 γ −µ









. (30)

The linearized system of the transformed model system (28) with β = β0 chosen as a bifurcation
parameter has a simple zero eigenvalue. We then calculate the right eigenvector W and the left
eigenvector V which are associated with the zero eigenvalue of the Jacobian of (31) at (denoted
by Jβ0) chosen such that J(T0)W = 0 and V J(T0) = 0 with V W = 1, where

W = [w1, w2, w3, w4]

V = [v1, v2, v3, v4].

Then

J(T 0) =









−µ 0 −β 0
0 −(κ + µ) β 0
0 κ −(µ + δ + γ) 0
0 0 γ −µ

















w1

w2

w3

w4









=









0
0
0
0









. (31)

−µw1 − βw3 = 0,
−(κ + µ)w2 + βw3 = 0,
κw2 − (µ + δ + γ)w3 = 0,
γw3 − µw4 = 0.

(32)

Solving (32), gives

w1 = −
βw3

µ
,

w2 = −
βw3

κ + µ
,

w3 > 0 (can take any value),

w4 =
γw3

µ
.

(33)
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Similarly, it is easy to obtain the left eigenvectors denoted as V = (v1, v2, v3, v4)
T with V J(T 0) =

0, gives

J(T 0)Vi = (v1, v2, v3, v4)









−µ 0 −β 0
0 −(κ + µ) β 0
0 κ −(µ + δ + γ) 0
0 0 γ −µ









=









0
0
0
0









. (34)

i.e.,
−µv1 = 0 ⇒ v1 = 0,

−(κ + µ)v2 + κv3 = 0,

−βv1 + βv2 − (µ + δ + γ)v3 + v4 = 0,

−µv4 = 0 ⇒ v4 = 0.

(35)

Solving(35), gives
v1 = v4 = 0,

v2 =
κ

(κ + µ)
v3,

v3 > 0 (can take any value).

(36)

For the computation of a and b. The computation of coefficient bifurcations, a and b has been
mentioned in [42]. Its known that when both coefficients are non-negative, then the system
undergoes a backward bifurcation and otherwise forward bifurcation will occur.
It is convenient to find both a and b defined by [42] as follows:

For a, gives

a =
n
∑

k,i,j=1

vkwiwj

∂2fk(0, 0)

∂xi∂xj

, (37)

a = −
2β(σγΛ

µ
+ Λ)(δΛ + κΛ + κγΛ

µ
+ Λµ + γΛ)µ

(κ + µ)Λ3
< 0, (38)

Similarly, for b, gives

b =
4
∑

k,i=1

vkwi

∂2fk(0, 0)

∂xi∂ϕ
(0, 0). (39)

b =
κ

κ + µ
+

κγσ

(κ + µ)µ
> 0. (40)

Observing from the signs of coefficient of a and b the direction of bifurcation is transcritical
(forward) since coefficient of a is negative and b is positive. By item iv of Theorem presented
in [42] , we conclude that the basic TB model exhibits forward bifurcation at R0 = 1. Thus,
establishing that unique endemic equilibrium is locally asymptotically stable if R0 > 1. The
figure below shows force of infection ′λ′ versus basic reproductive number ′R′

0 which exhibits
a forward transcritical bifurcation for the chosen numerical data: γ = 2, β = 0.02, µ = 0.015,
Λ = 9, κ = 0.0005, δ = 0.2, σ = 0.5. Figure 2 depicts the bifurcation diagram of the TB model
with reinfection (1) as the basic reproduction number (R0) is varied. A critical value occurs,
that is, BP, which corresponds to transcritical bifurcation. Generally, we have two branches
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Figure 2: Bifurcation diagram of the basic TB model of system (1) demonstrating force of
infection λ as R0 varies with threshold BP represents forward or transcritical bifurcation.

of steady states: (i) the upper branch corresponding to stable endemic equilibria, EEP ; and
(ii) the lower branch corresponds disease free equilibria, DFE, which can be stable or unstable
depending on the magnitudes of R0. Similar to our theoretical analysis section, the value of
R0 quantity can be estimated using Equation (14). The emergence of alternate stable states
is observed, with both endemic and disease-free equilibria being stable. The convergence to
any of these stable states relies upon the initial abundance of individuals in the population,
when R0 > 1, only EEP is stable, leading to TB disease outbreak. Also observed is that as R0

reduced and lies below BP point, i.e., R0 < BP , DFE is stable in this case. Eventually, this
condition eliminates the disease.

4.8 Global Stability of Endemic Equilibrium

Theorem 5 The endemic equilibrium of the TB model with reinfection T ∗ = (S∗

ι , E
∗

ι , I
∗

ι , R
∗

ι )
is asymptotically globally stable if R0 > 1.

Proof Following the method considered by [44], the following positive definite Lyapunov
function can be considered:

L(Sι, Eι, Iι, Rι) =

(

Sι − S∗

ι − S∗

ι ln
S∗

ι

Sι

)

+

(

Eι − E∗

ι − E∗

ι ln
E∗

ι

Eι

)

+

(

Iι − I∗

ι − I∗

ι ln
I∗

ι

Iι

)

+

(

Rι − R∗

ι − R∗

ι ln
R∗

ι

Rι

)

.

(41)
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The derivatives of L(Sι, Eι, Iι, Rι) with respect to t produced

dL

dt
=

(Sι − S∗

ι )

Sι

dSι

dt
+

(Eι −E∗

ι )

Eι

dEι

dt
+

(Iι − I∗

ι )

Iι

dIι

dt
+

(Rι − R∗

ι )

Rι

dRι

dt
, (42)

Substituting the expressions given in (1) into (42) gives:

dL

dt
=

(Sι − S∗)

Sι

(Λ − (λ + µ)Sι) +
(Eι − E∗

ι )

Eι

(λSι + σλRι − (κ + µ)Eι)

+
(Iι − I∗

ι )

Iι

(κEι − (γ + µ + δ)Iι) +
(Rι − R∗

ι )

Rι

(γIι − (σλ + µ)Rι),

(43)

Simplifying (43), we obtain

dL

dt
=

(Sι − S∗

ι )

Sι

(Λ − (λ + µ)(Sι − S∗

ι )) +
(Eι − E∗

ι )

Eι

(λ(Sι − S∗

ι ) + σλ(Rι −R∗

ι )

− (κ + µ)(Eι − Eι)) +
(Iι − I∗

ι )

Iι

(κ(Eι − E∗

ι ) − (γ + µ + δ)(Iι − I∗

ι )

+
(Rι − R∗

ι )

Rι

(γ(Iι − I∗

ι ) − (σλ + µ)(Rι − R∗

ι )).

(44)

Now let us open the bracket in (44) and simplify to have

dL

dt
=

(Sι − S∗

ι )

Sι

Λ −
(Sι − S∗

ι )
2

Sι

(λ + µ) +
(Eι − E∗

ι )

Eι

λ(Sι − S∗

ι ) + σλ

(R − R∗

ι ) −
(Eι − E∗

ι )
2

Eι

(κ + µ) +
(Iι − I∗

ι )

Iι

κ(Eι − E∗

ι ) −
(Iι − I∗

ι )
2

Iι

(γ + µ + δ) +
(Rι − R∗

ι )

Rι

γ(Iι − I∗

ι ) −
(Rι − R∗

ι )
2

Rι

(σλ + µ).

(45)

dL

dt
=

(

1 −
S∗

ι

Sι

)

Λ −
(Sι − S∗

ι )
2

Sι

(λ + µ) +

(

1 −
E∗

ι

Eι

)

(λSι − λS∗

ι ) + (σλRι − σλR∗

ι )

−
(Eι −E∗

ι )
2

Eι

(κ + µ) +

(

1 −
I∗

ι

Iι

)

(κEι − κE∗

ι ) −
(Iι − I∗

ι )2

Iι

(γ + µ + δ)

+

(

1 −
R∗

ι

Rι

)

(γIι − γI∗

ι ) −
(Rι − R∗

ι )
2

Rι

(σλ + µ)).

(46)

dL

dt
= Λ −

S∗

ι

Sι

Λ −
(Sι − S∗

ι )
2

Sι

(λ + µ) + λSι − λS∗

ι + σλRι − σλR∗

ι

− λSι

E∗

ι

Eι

+ λS∗

ι

E∗

ι

Eι

− σλRι

E∗

ι

Eι

+ σλR∗

ι

E∗

ι

Eι

−
(Eι − E∗

ι )
2

Eι

(κ + µ)

+ κEι − κE∗

ι − κEι

I∗

ι

Iι

+ κE∗

ι

I∗

ι

Iι

−
(Iι − I∗

ι )
2

Iι

(γ + µ + δ)

+ γIι − γI∗

ι − γIι

R∗

ι

Rι

+ γI∗

ι

R∗

ι

Rι

−
(Rι −R∗

ι )
2

Rι

(σλ + µ).

(47)
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Group positive terms together and negative terms together, we get

dL

dt
= Λ + λSι + γI∗

ι +
R∗

ι

Rι

+ κE∗

ι +
I∗

ι

Iι

+ γIι + σλR∗

ι +
E∗

ι

Eι

+ κEι + λS∗

ι

E∗

ι

Eι

+ σλRι −
S∗

ι

Sι

Λ

− λS∗

ι − σλR∗

ι − λSι

E∗

ι

Eι

− σλRι

E∗

ι

Eι

− κE∗

ι − κEι

I∗

ι

Iι

− γI∗

ι − γIι

R∗

ι

Rι

−
(Sι − S∗

ι )
2

Sι

(λ + µ)

−
(Eι − E∗

ι )
2

Eι

(κ + µ) −
(Iι − I∗

ι )
2

Iι

(γ + µ + δ) −
(Rι − R∗

ι )
2

Rι

(σλ + µ)

(48)

dL

dt
= (Λ + λSι + γI∗

ι +
R∗

ι

Rι

+ κE∗

ι +
I∗

ι

Iι

+ γIι + σλR∗

ι +
E∗

ι

Eι

+ κEι + λS∗

ι

E∗

ι

Eι

+ σλRι, ) − (
S∗

ι

Sι

Λ

− λS∗

ι − σλR∗

ι − λSι

E∗

ι

Eι

− σλRι

E∗

Eι

− κE∗

ι − κE
I∗

I
− γI∗ − γI

R∗

R
−

(S − S∗)2

S
(λ + µ)

(Eι − E∗

ι )
2

Eι

(κ + µ) −
(Iι − I∗

ι )2

I
(γ + µ + δ)−

(Rι − R∗

ι )
2

Rι

(σλ + µ).

(49)

dL

dt
= M1 − M2,

where

M1 = Λ + λSι + γI∗

ι +
R∗

ι

Rι

+ κE∗

ι +
I∗

ι

I
+ γIι + σλR∗

ι +
E∗

ι

Eι

+ κEι + λS∗

ι

E∗

ι

Eι

+ σλRι, (50)

M2 =
S∗

ι

Sι

Λ − λS∗

ι − σλR∗

ι − λSι

E∗

ι

Eι

− σλRι

E∗

ι

Eι

− κE∗

ι − κEι

I∗

ι

Iι

− γI∗

ι − γIι

R∗

ι

Rι

−
(Sι − S∗

ι )
2

Sι

(λ + µ) −
(Eι − E∗

ι )
2

Eι

(κ + µ) −
(Iι − I∗

ι )
2

Iι

(γ + µ + δ)−
(Rι − R∗

ι )
2

Rι

(σλ + µ).

(51)

dL

dt
≤ 0 if M1 is less than M2.

dL

dt
= 0 if and only if Sι = S∗

ι , Eι = E∗

ι , Iι = I∗

ι , Rι = R∗

ι .

Therefore, the largest invariant impact invariant set in ,{(S∗

ι , E
∗

ι , I
∗

ι , R
∗

ι ) ∈ Φ : dL
dt

= 0}, is the
singleton set T ∗, where T ∗ is the endemic equilibrium of the system (1). Therefore, by Lasalles
Invariant principle, it implies that T ∗ is globally asymptotically stable in Φ if M1 is less than M2

[44]. Therefore, the largest invariant impact invariant set in ,{(S∗

ι , E
∗

ι , I
∗

ι , R
∗

ι ) ∈ Φ : dL
dt

= 0},
is the singleton set T ∗, where T ∗ is the endemic equilibrium of the system (1). Therefore, by
LaSalles Invariance principle, it implies that T ∗ is globally asymptotically stable in Φ if M1 is
less than M2 [44].

5 Numerical Investigations and Discussions

This section, presents the numerical simulation solutions of the TB model with reinfection.
To demonstrate the solutions, we utilized MATLAB software. The diagram displayed below
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confirm the solutions employing the initial conditions and parameter values of the proposed
model. In this situation, we have taken the parameter values from the published literature
papers, by estimation and assumption and they are presented in Table 2. In addition, Sι =
0.99, Eι = 0.01, Iι = 0 and Rι = 0.

Table 2: The Parameters and Baseline Values of the System (1)

Parameters Baseline values Ranges References

Λ 3,768,410 [3,000,000, 4,000,000] [45]
µ 0.02041 [0.0143,0.03] [46]
β Variable [0.1 − 1] Assumed
σ 0.25 [0-1] [3, 47]
κ 0.05 [0.005,0.05] [48]
γ 1.5 [0.5, 2.5] [45]
δ 0.413 [0.2, 0.6] [49]
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Figure 3: Simulations of system (1) showing the behaviour of individuals when β = 0.2433,
which gives R0 < 1.

Figure 3 illustrates the variation of the system model (1) as a function of time (years) which
gives R0 = 0.4183 < 1. This figure depicts the global stability of the TB-free equilibrium with
β = 0.2344 and all parameter values as specified in Table 2. The diagram shows that the
trajectories of the solution of the system model (1) converge to the disease-free equilibrium T0.
This figure implies that the TB will not invade the population if R0 < 1, verifying that the
TB-free equilibrium is GAS if R0 < 1.
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Figure 4: Simulations of system (1) showing the behaviour of individuals when β = 0.5433,
which gives R0 > 1.
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Figure 5: Simulations of system (1) showing the total number of infected individuals using
different initial conditions (Sι = 0.9, Eι = 0.1, Iι = 0, Rι = 0) with β = 0.2433 and R0 =
0.4183 < 1.
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Figure 6: Simulations of system (1) showing the total number of infected individuals using
different initial conditions (Sι = 0.9, Eι = 0.1, Iι = 0, Rι = 0) with β = 0.5433 and R0 =
1.1192 > 1.
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Figure 7: The effect of transmission rate (β) on the total number of infected individuals.



F. Sulayman and F. A. Abdullah / MATEMATIKA 39:2 (2023) 125–148 143

0 20 40 60 80 100 120 140 160 180 200

Time (Years)

0

500

1000

1500

2000

2500

3000

3500

T
o
ta

l 
n
u
m

b
e
r 

o
f 
in

fe
c
te

d
 i
n
d
iv

id
u
a
ls

 = 0.03

 = 0.25

 = 0.50

 = 0.75

 = 0.95

Figure 8: The effect of re-infection among the treated individuals (σ) on the total number of
infected individuals.

Figure 4 represents the variation of the system model (1) as a function of time (years), which
gives R0 = 1.1192 > 1. The figure shows that the global stability of the endemic equilibrium T ∗

is locally asymptotically stable with β = 0.5344 and all parameter values as specified in Table
2. From the diagram, it can be seen that the trajectories of the solution of the system model (1)
converge to the endemic equilibrium point T ∗; this shows that TB transmission persists in the
population if R0 > 1, which verifies the justification for the statement that endemic equilibrium
is GAS if R0 > 1.
Figure 5 shows the time-series plot for the infected population (Iι) for β = 0.2433 which gives
R0 = 0.4183 with all other parameter values as specified in Table 2. The curve converges to
the TFE, with different initial population sizes, (Sι = 0.9, Eι = 0.1, Iι = 0, Rι = 0).
Figure 6 shows the time-series plot for the infected population (Iι) for β = 0.5433 which gives
R0 = 1.1192 with all other parameter values as specified in Table 2. The curve converges to the
endemic equilibrium T ∗, with different initial population sizes, (Sι = 0.9, Eι = 0.1, Iι = 0, Rι =
0).
Figure 7 illustrates the impact of transmission rate (β) on the total number of infected individ-
uals as we vary β = 1, 0.75 0.50, 0.25. As β decreases, the peak becomes less pronounced and
drastically reduced. For small value of β there will be no peak, and the total number of infected
individuals decreases directly to zero. Epidemiologically, as anticipated, a decrease in contact
rate yields a productive positive impacts in the dynamics of TB infection with a reduction in
the total number infected individuals.
Figure 8 demonstrates the impact of re-infection among the treated individuals σ between 0.03
and 0.95. [3] stated that people that have been treated can re-infect as a result of low immunity.
Increasing σ results in a huge force of infection, which causes the TB infection. Similarly, it
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can be clearly observed that, with a lower threshold value of the reinfection among the treated
individuals σ, the infection rate is low. For high values of σ, the infection rate is higher; see
figure 8, which shows that decreasing the value of σ from 0.95 to 0.03 brings down the number
of infected individuals. Epidemiologically, we observed that a reduction in TB cases emerge
due to low value of the reinfection parameter. This result is in agreement with previous results
on endemic TB transmission [3].

6 Conclusions

In this article, the dynamic behavior of the TB model with reinfection was formulated. The
boundedness of the TB model with reinfection was proved. The invariant region in which the
solutions of the basic TB model are biologically meaningful was also obtained. Mathematical
analysis shows that the TB model with reinfection (1) at the TB-free case is locally and globally
asymptotically stable whenever the associated basic reproductive number R0 < 1. In addition,
when associated basic reproductive number R0 > 1, the TB model with reinfection (1) are
both locally and globally asymptotically stable. This means that TB infection will disappear
if R0 < 1, and otherwise will be prevalent when R0 > 1. Theorem 4 and Theorem 5 verify that
R0 is the keys threshold for eradicating the disease. A detailed analysis of the TB model with
reinfection (1) based on the use of the center manifold theory, demonstrates the existence of
transcritical bifurcation phenomenon, where there is an exchange of stability from the disease-
free equilibrium to endemic equilibrium points at R0 = 1. Finally, some numerical investigations
are performed for the verification of the theoretical results. Numerical investigation illustrated
that when the reinfection value is increase, it results into a huge force of infection. However,
the population of infected individuals does not go to extinction even at equilibrium state.

• To consider a stochastic model approach. This will result in more realistic TB model
dynamics.

• Since the spread of TB affects all age groups, it is crucial to consider the dynamics of the
TB model by incorporating an age-structured model.

• Real data will also be considered because collecting data for TB patients is difficult in
epidemiological models; as a result, we use data collected or estimated from literature
sources. Once we have real-world data for TB patients, we can compare it to theoretical
outcomes.

• Analyzing the dynamics of the TB model using a fractional order differential equation
(FODE). It will be extremely interesting to use a FODE to examine the dynamics of TB
model.

• To consider a different control strategies which remain the important factors that con-
tribute to a decreased of the infection.
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