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Abstract This paper explores which classes of graphs and matroids are k-balanced.
A connection between k-balanced graphs and k-balanced matroids was also obtained.
In this paper, we continue our study of the class of k-balanced matroids in order to see
what matroid operations preserve k-balance. Since strong maps of matroids are defined
as analogues of continuous maps of topological spaces, it is natural to ask what other
topological notions carry over to matroids. In characterizing strong maps from 2000
to 2003, Al-Hawary defined a closure matroid to be a matroid in which A ∪ B = A∪B
for all subsets A and B of its ground set. We obtain a new classification of closure
matroids. Moreover, necessary and sufficient conditions for the direct sum, parallel
extension connection and series extension connection to preserve k-balance property
are given.
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1 Background

The matroid terminology will follow [11]. Let M = (E,F) denote the matroid on the ground
set E with a collection of flats F . The direct sum of M1 = (E1,F1) and M2 = (E2,F2) is
the matroid M1 ⊕ M2 = (E,F) where E = E1

.∪ E2, and

F = {F ⊆ E1 ∪ E2 |F ∩ Ei ∈ Fi for i = 1, 2}. (1.1)

In the first two sections of this paper, we only consider loopless matroids, that is, in
which ∅ is a flat. If M1 has a basepoint p1 and M2 has a basepoint p2 are defined on disjoint
ground sets such that neither pi is an isthmus of Mi, then the parallel connection of M1

and M2 is the matroid P (M1, M2) with ground set (E1 − p1) .∪ (E2 − p2) .∪ p and flats

{F : F ∩ Ei is a flat in Mi, i = 1, 2}, (1.2)

where we make the identification for its basepoint p = p1 = p2. The series connection of
M1 and M2 is defined to be S(M1, M2) := [P (M1, M2)]∗. We remark that when p is an
isthmus, P (M1, M2) := (M1 − p) ⊕ M2 and S(M1, M2) := M1 ⊕ (M2 − p), see [10].

Let M be a matroid on E = E1 ∪E2 such that M |E1 = M1 and M |E2 = M2, then M is
called an amalgam of M1 and M2. We remark that the amalgam of two matroids need not
exist, see for example [10]. When E1 and E2 are disjoint, the amalgam is M1 ⊕ M2, while
it is P (M1, M2) when E1 ∩ E2 = {p}. Next, we recall the following result from [8].
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Theorem 1 The amalgam of the uniform matroids Ul,n and Ur,m, exists.

Let M = (E,F) be a matroid of rank greater than k. The k-density of M is given by
dk(M) := |M |

r(M)−k , where |M | is the size of the ground set E of M and r(M) is the rank of
the matroid M . A matroid M is k-balanced if r(M) > k and

dk(H) ≤ dk(M) for all non-empty submatroids H of M of rank greater than k, (1.3)

and strictly k-balanced if the inequality is strict for all such H 6= M. When k = 0, M is
called balanced, see for example [4, 5, 7, 8].

The following quote from [5] provides a good motivation for k-balanced matroid:

The concept of balanced graphs was introduced by Erdös and Rényi in the
1950’s and the concept of k-balanced graphs was introduced by Veerapandiyan,
Ramachandran and Arumugam [9]. Since this time the theory of k-balanced
graphs has undergone enormous growth because it is often easier to find a proof
for the k-balanced graph case and then extend it to the general graph case.
Since matroids are generalizations of graphs, it is natural to see which results
for graphs may be extended to matroids.

Just a few matroid operations preserve k-balance, for example in [9] it was shown that
the dual of a 0-balanced matroid without isthmuses is 0-balanced and the union of two 0-
balanced matroids defined on the same ground set is 0-balanced. In the class of k-balanced
matroids, the preceding two operations are not preserved as shown in the following two
examples.

Example 1 The matroid M in Figure 1 is 1-balanced but M∗ is not as M∗ has 1-density
5/2 while the 1-density of M |{1,2,3} is 3.

Figure 1: A 1-balanced matroid whose dual is not 1-balanced

Example 2 Let M1 = M2 = U2,3. Clearly M1 and M2 are 1-balanced while the union
M1 ∨ M2 is not.

In section 2, we show that the amalgam A of the uniform matroids M1 and M2 is k-
balanced if and only if the k-density of Mi, i = 1, 2 is at most the k-density of A. We
then obtain conditions for the parallel connection (and consequently the series connection)
of uniform matroids to be k-balanced. For our purposes, we recall the following result
from [5].
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Lemma 1 A matroid M with r(M) > k is k-balanced if the k-density of every flat in M of
rank at least k + 1 is less than the k-density of M.

In section 3, we classify all closure matroids and show that this property is stronger
than modularity.

2 K-balance Preserving Operations

We begin this section by giving a characterization of k-balanced matroids, which conse-
quently gives conditions for the direct sum to preserve k-balance.

Lemma 2 Let M = (E,F) be a connected matroid with r(M) > k. Then M is k-balanced
if and only if each component H of M with r(H) > k is k-balanced and dk(H) = dk(M).

Proof. Let M be a connected k-balanced matroid and let H be a component of M with
r(H) > k. Then H = {e} ∪ {f ∈ E : M has a circuit containing both e and f} for some
e ∈ E. As M is connected, H = M. Thus, dk(H) = dk(M) and as M is k-balanced, H is
k-balanced.

Conversely, let H be a component of M. As M is connected, H = M and as H is
k-balanced, M is k-balanced. �

The following result which follows immediately from Lemma 2 was also proved in [5].

Corollary 1 Let M1 and M2 be connected k-balanced matroids such that r(N ∩E(Mi)) > k
for all submatroids N of M1 ⊕ M2. Then M1 ⊕ M2 is k-balanced if and only if dk(M1) =
dk(M2) = dk(M1 ⊕ M2).

To characterize the flats of the amalgam of two uniform matroids M1 = (E1,F1) ∼= Ul,n

and M2 = (E2,F2) ∼= Ur,m where E1 ∩ E2 = T ∼= Uα,α, we follow the procedure in [8]. Let
E = E1 ∪ E2 and

L(M1, M2) = {Y ⊆ E : E|Y ∩ Ei ∈ Fi, i = 1, 2}.

We denote by AS(M1, M2) the amalgam of M1 and M2 where E1 ∩ E2 = S. Using the
following indices: α = 0, 1, ..., r + l − 2; β = 1, 2, ..., α; lα = α, α + 1, ..., (l − 1) lβ =
β, β + 1, ..., (r − 1); and rβ = β, β + 1, ..., (r − 1), we recall the following result from [8] to
prove our main result in this section, that the amalgam A of two uniform matroids each of
rank greater than k is k-balanced if and only if each has k-density at most the k-density of
A.

Lemma 3 The flats of L(M1, M2) are of the following types: Uα,α; AT (M1, M2);
AS(Ulβ ,lβ , Urβ,rβ

); AS(Ulα,lα , M2); and AS(M1, Urα,rα) for some S ⊆ T with S ∼= Uβ,β.

Next, we prove that the amalgam A of the uniform matroids M1 and M2 is k-balanced if
and only if the k-density of Mi, i = 1, 2 is at most the k-density of A, this is a generalization
of the main result in [8].
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Theorem 2 Let k be a positive integer such that k < l and k < r. The amalgam A of the
uniform matroids M1

∼= Ul,n and M2
∼= Ur,m with E1 ∩ E2 = T ∼= Uα,α for some α > k

is k-balanced if and only if dk(Mi) ≤ dk(A), i = 1, 2. The amalgam is strictly k-balanced if
and only if dk(Mi) ≤ dk(A), i = 1, 2 and 1 < dk(A).

Proof. Suppose dk(Mi) ≤ dk(A), i = 1, 2. Then since M1 and M2 are submatroids of A, it
is trivial that A is k-balanced. Conversely, If F is a nonempty proper flat of the amalgam
A such that r(F ) > k, then F must be congruent to one of the matroids given in Lemma 3.

Thus, F must have k-density
α

α − k
,
m + lα − α

r + lα − k
or

n + rα − α

l + rα − α − k
for some lα, rα as defined

above. Note that the maximum of
m + lα − α

r + lα − k
for lα ∈ [α, l−1] is

m

r − k
and the maximum

of
n + rα − α

l + rα − α − k
for rα ∈ [α, r − 1] is

n

l − k
. As r ≤ m and l ≤ n, then r − k ≤ m and

l − k ≤ n. thus, 1 ≤ m

r − k
and 1 ≤ n

l − k
and hence dk(F ) ≤ max{ m

r − k
,

n

l − k
} ≤ dk(A)

and A is k-balanced by Lemma 1. The proof for the condition of strictly k-balanced is
similar. �

The following two results, in which we get conditions for the parallel connection (and
consequently the series connection) of uniform matroids to be k-balanced, follow immedi-
ately from Theorem 1 combined with Theorem 2 when taking α = 1.

Corollary 2 The parallel connection P (M1, M2) of M1
∼= Ul,n and M2

∼= Ur,m with k <
l < n and k < r < m is k-balanced if and only if dk(Mi) ≤ dk(P (M1, M2)) for i = 1, 2, that
is if and only if

n(r − k − 1) ≤ l(m − k − 1) and
m(l − k − 1) ≤ r(n − k − 1).

Since the series connection operation is the dual of the parallel connection operation,
we obtain the following result.

Corollary 3 The series connection S(M1, M2) of M1
∼= Ul,n and M2

∼= Ur,m with k <
l < n and k < r < m is k-balanced if and only if

n(r − k) ≥ l(m − k − 1) and
m(l − k) ≥ r(n − k − 1).

3 Closure Matroids

We begin this section with the following definition.

Definition 1 A matroid M is called a closure matroid if A ∪ B = A ∪ B for all subsets A
and B of E(M).

In [6], it was shown that a closure matroid can also be defined in terms of flats and this
definition was used to characterize the class of all closure matroids as given next.
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Lemma 4 [6] A matroid M is a closure matroid if and only if unions of flats of M are
again flats of M.

Theorem 3 [6] Let M1 and M2 be matroids on disjoint ground sets. Then M1 ⊕ M2 is a
closure matroid if and only if M1 and M2 are closure matroids.

Corollary 4 [6] Free matroids are closure matroids.

Lemma 5 [6] A matroid M is a closure matroid if and only if M̃ is a closure matroid.

Next, a comparison of modular and closure matroids is given. Recall that a matroid M
is modular if and only if for every flat X in M and for every other flat Y, r(X) + r(Y ) =
r(X ∪ Y ) + r(X ∩ Y ), see [10].

Theorem 4 [6] A closure matroid is a modular matroid.

Next, we recall Birkhoff’s Theorem that classifies all modular matroids. A similar clas-
sification for closure matroids is given next.

Theorem 5 [10] A matroid M is a modular if and only if for every connected component
N of M , Ñ is either a free matroid or a finite projective space.

Theorem 6 [6] A matroid M is a closure matroid if and only if M̃ is free.

From Theorems 3 and 6, we immediately deduce the following classification of closure
matroids.

Corollary 5 [6] A matroid M is a closure matroid if and only if M is the direct sum of a
parallel extension of a free matroid and U0,m for some positive integer m.

Finally, we give one more classification of the class of all closure matroids.

Theorem 7 A matroid M is a loopless closure matroid if and only if all circuits have size
exactly 2.

Proof. Since M is loopless all circuits have size at least 2. Say C is a circuit of size k > 2.
Choose x ∈ C and let A and B be a partition of C−x where both A and B are non-empty..
Now x /∈ A ∪ B, but x ∈ A ∪ B. Thus M is not a closure matroid.

The converse is easy to show. �
Thus, closure matroids can all be obtained from free matroids (where all subsets are

independent) by replacing elements by parallel classes.

4 Conclusion

It was shown that the amalgam of uniform matroids is k-balanced if and only if each
matroid is k-balanced, which is an extension of the result obtained in [8]. In addition, k-
balanced matroids were characterized and a new classification of them was obtained. Thus
necessary and sufficient conditions for the direct sum, parallel extension connection and
series extension connection to preserve k-balance property are given.
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