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Abstract This paper aims to estimate the market price of risks from the relationship

between the spot and forward price dynamics in the shipping freight market. We employ
three different stochastic models, which are analytically tractable and enable for pricing
of forwards. Subsequently, we examine the forward curve performance. By doing that

in such a way, we offer a method for estimating the market price of risk and the market
price of volatility risk by adjusting theoretical prices to today’s observed forward curve.

The findings of this study are essential for minimizing the difference of price gap between
the theoretical and actual forward prices.
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1 Introduction

According to Bernaschi et al. [1], the market price of risk is a measurement of the level of
the market’s risk aversion. The greater it is, the more compensation (measured by the excess
expected rate of return) the market demands in exchange for accepting risks (measured in terms
of the standard deviation of return). Hence, the ratio of expected return above the risk-free
interest rate to the standard deviation of returns is used to measure a market price of risk for
a stock. Interestingly, leverage does not affect this quantity. When someone borrows at the
risk-free rate to invest in a risky asset, the expected return and risk both rise, but the market
price of risk remains unchanged. This ratio is also known as the Sharpe ratio when suitably
annualized (see Kolos and Ronn [2] as well Bailey and López de Prado [3]).

Hitherto, there have been plenty of trials in the literature to investigate the market price
of risk, possibly because the market price of risk has a pivotal role in determining the pricing
measure. Examples of this literature are Lintner [4], Schwartz [5], Lucia and Schwartz [6],
Cartea and Figueroa [7], Bernaschi et al. [1], Rhee and Kim [8], Kolos and Ronn [2], Cartea and
Williams [9], Benth et al. [10], Weron [11] and Bhar et al. [12]. To mention a few, Bernaschi et
al. [1] describe a straightforward yet efficient technique for estimating the market price of risk.
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They contribute an idea to compare the findings obtained using two alternative strategies to the
Cox-Ingersoll-Ross (CIR) model calibration. Surprisingly, this CIR model can offer a reasonable
approximation of the market price of risk, given these techniques enable the isolation of the
market price of risk and the evaluation (under the Local Expectations Hypothesis) of the risk
premium offered by the market for various maturities. Further, a study done by Kolos and
Ronn [2] proposed that spot and futures prices be used to assess the market price of risk for
energy commodities while accounting for the Samuelson effect. They found that the long-term
market price of risk is typically positive, and the short-term market price of risk is generally
negative, which is compatible with positive energy betas and hedging, respectively.

Since the introduction of the market price of risk, there have also been endeavours to bring
about the market price of volatility risk. To the best of our knowledge, there is a vast body
of literature on stochastic volatility models; nevertheless, only minimal information on the
market price of volatility risk. Based on studies by Boswijk [13] and Negrea [14], Mohtar and
Taib [15] defined the market price of volatility risk as a function of two variables: the price of
the underlying asset and its volatility. Both reflect the risk preferences of agents in the market,
which is fully used to determine the choice of relevant equivalent martingale measures for pricing
derivatives. Therefore, the market price of volatility risk is crucial since it may be used to rate
a market’s appetite for risk. In the presence of stochastic volatility, Bakshi and Kapadia [16]
found that a delta-hedged portfolio’s underperformance was related to a negative market price
of volatility risk. There has also been the endeavour to demonstrate the presence of a negative
market price of volatility risk in commodities markets. Doran and Ronn [17] employed New
York Mercantile Exchange options and futures data to illustrate that the divergence between
the realized and implied volatility was directly linked to the presence of a negative market price
of volatility risk in energy markets (i.e., heating oil, natural gas and crude oil).

Yet, since freight services are essentially non-storable, the market for freight rates is unlike
the market for other commodities such as agriculture, crude oil or natural gas. Notwithstanding,
the nonstorability feature makes the shipping freight market more analogous to energy markets,
exemplifying the electricity and temperature market due to temperature cannot be traded, and
the electricity must be used once generated. Thus, users in the freight market, including
the market for temperature and electricity, typically execute a forward (or futures) contract
associated with a particular delivery time to ensure that the commodity can be carried at such
time. To this end, Taib [18] studies the pricing of the forward freight contracts under the spot-
forward relationship structure by inferring forward prices from six distinct continuous stochastic
models of spot freight rates proposed by Benth et al. [19]. The author also introduces a shift
of measure from physical probability to risk-neutral measure utilizing the Esscher transform.
As a result, the market price of risk is included in the formula of forward, and the market
price of volatility risk is assimilated into models with stochastic volatility. Even so, the Esscher
transform is nothing more than a traditional Girsanov transform if such a case is related to
Brownian motion. As an extension of that study, a recent paper by Mohtar and Taib [15]
then reviewed the pricing of the freight options rate under the spot-forward-option relationship
structure.

We frequently seek to describe quantities under derivatives theory as stochastic, that is,
random. The risk stems from such randomness, which compels us to examine how to value the
risk, namely how much return we should expect through taking a risk. To price derivatives,
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one needs to consider the risk preferences of the investors, or in other words, the risk premium1

that is discernible in the market. Traditionally, this is described by the spot-forward relation
through a market price of risk and the market price of volatility risk charged for issuing the
derivative, which is essentially the spec of a risk-neutral probability. By utilizing the Esscher
transform to select the risk-neutral probabilities, we shall derive the equivalent martingale
measures providing us with time-dependent parameters (i.e., the market price of risk and the
market price of volatility risk). These parameters are also closely linked to the risk premium
(refer to Benth et al. [20]). For example, a negative market price of risk (or market price of
volatility risk) is equivalent to the negative risk premium in normal backwardation. Nonetheless,
the sign of the market price of risk for power commodities may shift depending on the time
duration in consideration (see Benth et al. [10]).

Motivated by the prior discussion, we calibrate the market price of risk and the market
price of volatility risk from the relationship between the spot and forward (or futures) price
dynamics in the shipping freight market. We shall look at how theoretical pricing may be fitted
to today’s observed forward curve to find the market price of risk and volatility risk. In many
circumstances, this can be done perfectly; however, an approximation of the observed forward
curve would be sought under the most realistic situations. We analyse data on the Panamax
index, which is route averages for that shipping market segment. Here, we follow the procedure
structured in Mohtar and Taib [15] for the stochastic dynamics of spot price modelling. The
models are then analytically tractable, allowing for pricing forward.

Demand and supply, which differ seasonally in the forward pricing contracts, also affect the
form of the forward curve under seasonally dependent commodities (the reader may refer to
Borovkova and Geman [21] for a detailed explanation of seasonality behaviour in the forward
curve). For example, the temperature market is seasonally dependent, while the electricity
market is highly demanded all along the winter season for heating as opposed to summer.
Even so, the inability of the supply side to act expeditiously to fulfil demand distinguishes the
freight market from other seasonal-dependent markets. Based on the rejection of the existence
of stochastic seasonality in freight rates (Kavussanov and Alizadeh [22]) and the absence of
(deterministic) seasonality in the dry bulk freight time series (Benth et al. [19]), we agree with
Taib [18] to disregard seasonality behaviour in our forward pricing since the discoveries of
seasonality are mixed.

The discoveries of this paper are presented as follows. We start by introducing the stochastic
dynamics of spot price that shall be employed in the pricing of forwards, simultaneously
by investigating the empirical data that engage such dynamics in Section 2. Next, we put
forward the analytic equations of the forward price in Section 3, where the forward curve’s
shapes for different stochastic models are also described. Section 4 discusses the forward curve
performance of the non-stationary one-factor models. The market price of risk and market
price of volatility risk is enumerated through the implementation of the Esscher transform in
Section 5. Subsequently, we offer a method for adjusting those parameters to today’s forward
curve. Finally, Section 6 concludes the paper. All computations in this paper were carried out
in Matlab version R2017b.

1The risk premium is the compensation for keeping a risky investment rather than a risk-free one, according
to Weron [11]. More precisely, risk premium represents the additional return above the risk-free rate that an
investor needs to compensate for a particular investment’s risk. Put another way, the higher the return required
by the investor, the riskier the investment.
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2 Empirical Analysis of The Spot Freight Data

This study analyses a freight rates series from the dry bulk market segment. The Panamax
index is four daily Panamax time charter rates on average. This index is formally denoted as
PM4TC and quoted in USD/day2. We shall call this the Panamax index for the rest of the
study. We also have obtained data for this index from the Shipping Intelligence Network3. The
data for the Panamax index is included over the period ranging from May 6, 1998, to September
3, 2020. There about 5,587 records covering 22 years of daily observations data are observed.
Nonetheless, weekends and holidays are not included in the data set. Figure 1 shows the time
series plot for these spot freight rates and the corresponding logreturns.

6/5/1998

25/4/2002

27/4/2006

28/4/2010

1/5/2014

2/5/2018

Date

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

$/
da

y

0 1000 2000 3000 4000 5000

Time

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Figure 1: Daily spot freight rates (top) and time series of the logreturns (bottom) for the
Panamax index.

2A detailed index description is provided at www.balticexchange.com on the different routes and an overview
of panellists reporting daily quotes.
3The report was retrieved from https://sin.clarksons.net.



Z. I. Mohtar / MATEMATIKA 39:2 (2023) 173–190 177

2.1 Geometric Brownian motion

Let B(t) be a Brownian motion defined on a complete filtered probability space
(Ω,F , {Ft}t>0, P ) under the real-world probability measure P and suppose S(t) represents
the spot price at time t > 0. The geometric Brownian motion (GBM for short) model describes
the spot using the dynamics

dS(t) = µS(t)dt+ σS(t)dB(t), ∀µ, σ > 0, (1)

where the constant µ and σ are the drift and volatility, respectively. Solving equation (1) for
0 6 t 6 T gives

S(T ) = S(t) exp

((

µ−
σ2

2

)

(T − t) + σ

∫ T

t

dB(u)

)

. (2)

Since we fit our freight rate data to the GBM, Figure 1 also exhibits the graph plot of
corresponding logreturns, defined as the logarithm of the ratio between two consecutive prices.
In Table 1, we present the descriptive statistics of such an index. The mean daily value for the
Panamax spot rates is 17,066.60, and the standard deviation is 15,894.42. The average value
for the logreturns is 0.0001, corresponding to 2.52% in annual logreturn4. In annual terms, the
Panamax logreturns have a volatility of 38.89% based on the value of the standard deviation of
0.0245. Since the positive skewness indicates that the Panamax spot rates skewed to the right,
unfortunately, the Panamax logreturns show the opposite, whereby it is slightly left-skewed.

Table 1: Descriptive statistics for the Panamax index.

Min Max Mean Standard Deviation Skewness Kurtosis

Spot rates 2,260.00 94,977.00 17,066.60 15,894.42 2.2280 8.2562

Logreturns -0.2166 0.1379 0.0001 0.0245 -0.0711 8.3071

The logreturns, in this model, are assumed to be independent and normally distributed.
Figure 2 exhibits the empirical distribution of freight rate logreturns, illustrating the mass
concentration at the centre of the distribution. Furthermore, the tails are heavier compared
to normal. Then, based on normality tests of the logreturns, the Kolmogorov-Smirnov test
formally rejects the hypothesis, with a statistic of 0.4652 for the Panamax Index (the series are
significant at the 1% level) and eventually, the GBM is not suitable spot model.

2.2 Lévy-based dynamics

Rather than utilizing GBM for modelling the spot price, we might use an exponential Lévy
model, which is a straightforward generalization of a Brownian motion to the Lévy process.
The normal inverse Gaussian (NIG) Lévy process is a possible nomination for explaining the
spot. For t > 0, the spot price S(t) is defined by

S(t) = S(0) exp(L(t)) (3)

as an exponential Lévy process. We define L(t) as a stochastic process with NIG distributed
increments, the so-called NIG Lévy process, and because of that, equation (3) represents NIG

4We use the convention of 252 trading days in a financial year.
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Figure 2: Density plot of the empirical (complete line) with fitted normal distributions (dashed
line) for the logreturns of the Panamax spot freight rates.

Lévy model. We describe the NIG distribution briefly below, and further information may be
found in Benth et al. [20].

Let NIG(α, β, δ, µ) denotes the NIG with four parameters is a generalized hyperbolic
distributions class with density functions,

f(x|α, β, δ, µ) = c exp(β(x− µ))
K1(α

√

δ2 + (x− µ)2)
√

δ2 + (x− µ)2
, (4)

in which c = δα exp(δ
√

α2 − β2)/π and K1(x) is the modified Bessel function of the third kind
of order 1 evaluated at x. Then, we may label L(t) to be NIG Lévy process when L(1) is
distributed based on the NIG distribution with (α, β, δ, µ) parameters. Here, α > |β| measures
the tail heaviness of such distribution, β ∈ R is the skewness parameter, δ > 0 is the scale
parameter, and lastly, µ ∈ R is the density location. The Lévy measure of L(t) can be stated
as (refer to Barndorff-Nielsen and Shephard [23])

`(dz) =
αδ

π|z|
eβzK1(α|z|)dz, (5)

and the cumulant function as shown by (refer to Benth and Šaltylė Benth [24])

ψ(λ) = iλµ + δ
(

√

α2 − β2 −
√

α2 − (β + iλ)2
)

. (6)

Figure 3 and the study by Mohtar and Taib [15] indicate that normal inverse Gaussian fitted
the logreturns of the freight rates effectively and achieved the high peak in the centre. We also
put forward the density plot with a log-scale on the frequency axis, highlighting how the tails
are captured by NIG.

Table 2 reports the parameters estimated using the maximum likelihood for the normal
inverse Gaussian distribution. The logreturns of the Panamax index are nearly 0.0004, while
the negative value of β̂ reflects that the logreturns left-skewness. The third parameter,
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Figure 3: Density plot (left) and density plot with logarithmic frequency axis (right) of the
empirical (bullet marker) together with the NIG distributions (complete line) for the logreturns
of the Panamax spot freight rates.

δ̂, corresponds to the normal inverse Gaussian distribution scale. Small values narrow the
distribution, making the larger ones wider. Parameter δ̂ plays the same role as the standard
deviation, σ (or volatility), in the normal distribution. The value of the tail heaviness parameter
α̂ is 30.7049.

Table 2: Parameter estimates of the logreturns for the NIG distribution.

α̂ β̂ δ̂ µ̂
30.7049 -0.5472 0.0184 0.0004

According to Mohtar and Taib [15], the empirical logreturns’ time series of freight rates
indicate volatility clustering. This factuality, along with the presence of heavy-tailed logreturns,
reveals the existence of stochastic volatility in the dynamics. Besides, empirical studies by
Benth et al. [20] and Benth [25] demonstrate that using a model of stochastic volatility might
capture various stylized facts of empirical logreturns data, and Benth [25] proposed to employ
the famous stochastic volatility model, namely Barndorff-Nielsen and Shephard (BNS) model.
Following those studies, we represent the time-varying volatility process using the BNS model.

2.3 Barndoff-Nielsen and Shephard stochastic volatility model

Suppose X(t) = lnS(t) is the stochastic differential equation solution,

dX(t) = (µ + βσ2(t))dt+ σ(t)dB(t), (7)

whereby B(t) is the standard Brownian motion. Let σ2(t) be a stationary process that depends
on a weighted sum of the processes Yi(t) given by

σ2(t) =
n
∑

i=1

ωiYi(t), ωi ∈ [0, 1]. (8)
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The OrnsteinUhlenbeck process Yi(t) takes the form

dYi(t) = −λiYi(t)dt+ dUi(λit), i = 1, 2, . . . , n, (9)

whereby λi is strictly positive constant, the so-called speed of mean reversion of the volatility
process. The U(λt) process, also known as subordinator, has only positive increments and no
drift to ensure the positivity of variable Y (t). We make Y (t) obey the inverse Gaussian law;
thus, the increments of equation (7) would more or less be NIG distributed. For 0 6 t 6 T , we
may rewrite equation (7) to be

S(T ) = S(t) exp

(

µ(T − t) + β

∫ T

t

σ2(u)du+

∫ T

t

σ(u)dB(u)

)

. (10)

As in Mohtar and Taib [15], fitting the empirical autocorrelation function (ACF) for squared
logreturns with a single exponential function is challenging. Because of the combination of
rapidly dwindling for small-order lags and, afterwards, gradually diminishing ACF for bigger-
order lags, they suggest leastwise two exponential functions employed for calibrating the BNS
model over this empirical ACF. The fitted ACF for the squared logreturns of the Panamax index
with one and two exponential functions is shown in Figure 4. Table 3 reports the estimated
λs, where λi is a positive constant in the Ornstein-Uhlenbeck process dynamics. The weights
ωi ∈ [0, 1] for i = 1, 2, . . . , n summed to 1. Here, the non-linear least squares method is employed
to calibrate the exponential functions for both cases. Notice that the speed of mean reversion
is confined to be positive for the stationary volatility process, σ2(t). Fitting two exponential
functions procedure over Panamax index data was oversensitive to lag selection. We attained
positive results for the fitted λs by selecting the number of lags until 50, which seems to be
a sensible calibration of the data. Readers may refer to Mohtar and Taib [15] for a detailed
explanation.
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Figure 4: The autocorrelation function of the squared logreturns (complete line) of the Panamax
spot freight rates, along with the fitted exponential function (dashed line) on the left, while the
two exponential functions on the right.
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Table 3: The estimated constant λ with the fitted ACF.

One exponential function Two exponential functions

λ̂ ω̂1 ω̂2 λ̂1 λ̂2

0.2602 0.7967 0.2033 0.5850 0.0184

3 Forward Prices Formulas

A forward contract’s price will provide insight into future spot price behaviour. It will also
be evident for the underlying spot price and the stochastic volatility state. To this end, we
introduce forward prices based on our proposed models, as denoted in the prior section.

Let us introduce the arbitrage-free price of a forward contract F (t, T ) at time t with delivery
time T whereby 0 6 t 6 T < ∞. This contract settled against the spot price of freight at
t > 0, as S(t). Referring to Mohtar and Taib [15] and Taib [18], we shall consider the following
propositions.

Proposition 1 The forward contract price at time t with delivery time 0 6 t 6 T for the
geometric Brownian motion model is given by

F (t, T ) = S(t) exp(λ(T − t)), (11)

whereby λ = µ + σθ with µ is the constant of drift and σ is the constant of volatility. Here, θ
is a real-valued function that relies on time and has often interpret as the market price of risk.

Proposition 2 The forward contract price at time t with delivery time 0 6 t 6 T for the NIG
Lévy model is defined by

F (t, T ) = S(t) exp(Λ(T − t)), (12)

whereby Λ = φL(θL + 1) − φL(θL) with φL is the logarithm of the moment generating function
under Lévy process L (also known as the cumulant function). The constant θL has regarded as
the market price of risk.

Proposition 3 The forward contract price at time t with delivery time 0 6 t 6 T for the BNS
stochastic volatility model is derived by

F (t, T ) = S(t) exp

(

(µ+ θ)(T − t) +
n
∑

j=1

Ψ(T − t)Yj(t)

)

× exp

(

n
∑

j=1

∫ T

t

{φU(Ψ(T − v) + θV ) − φU(θV )}dv

)

, (13)

whereby Ψ(ϕ) =
ωj

λj
(β +0.5)(1− exp(−λjϕ)), Yj(t) is the Ornstein-Uhlenbeck processes and the

constant θV being the market price of volatility risk.

With this, we have provided the analytic equations of the forward price under the freight
market employing three proposed spot models. In this paper, however, we put forward only the
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proposition of price modelling of freight forwards for each model. Readers may refer to Mohtar
and Taib [15] or Taib [18] for detailed proofing of each.

Further, we shall briefly describe the shape of the forward curve5. The forward curve’s
form has generally set on by today’s spot price, S(t), together with the contribution of some
constant, such as the risk premium, θ in the exponential, wherewith leads to a fixed shape.
The risk premium has no impact other than scaling the original curve. Observe that in the
GBM model, the forward curve will exponentially increase or decrease, known as contango6 or
backwardation7, respectively, relying on the positivity or negativity of the λ value. Meanwhile,
for the NIG Lévy spot model, integrands of cumulant function give another contribution to the
forward price. We may directly calculate the integral employing the normal inverse Gaussian
cumulant function as in equation (6).

Nevertheless, the forward price for BNS stochastic volatility spot model consists of the
contribution of stochastic volatility, particularly as weighted by the parameter Ψ for the second
expression of the equation (13). The last phrase of such an equation involves the integrands
of the inverse Gaussian cumulant function, which is not stochastically varying. Notice that
under the BNS stochastic volatility spot model, time-varying volatility Y (t) is the most crucial
part of the forward price. This Y (t) that emerges in equation (13) also embraces the change of
randomness in the price. Accordingly, one must first acquire the stochastic volatility present
state to identify the forward shape.

4 Forward Curves

We analyse the performance of the models proposed in the previous section by comparing
the actual forward prices from the Baltic Exchange8 with the theoretical ones obtained from
those models. Figure 5 presents the forward curves of the Baltic Forward Assessments (BFA)
Panamax Time Charter at several given time points for different times of delivery. We can
see that the market is in contango on the observed date, January 2, 2009, and being in
backwardation on January 4, 2010. The forwards’ prices on January 4, 2011, and January
3, 2012, stay relatively similar, indicating flat forward curves.

The samples of BFA Panamax Time Charter forward prices observed from January 2, 2009,
to December 24, 2009, cover 2,500 data. For the sake of simplicity, we may refer forward prices
as BFA Panamax. Table 4 presents the BFA Panamax data for January 2, 2009. Those values
then being plotted in Figure 6, with the x-axis corresponding to the delivery time measured
in days, while the BFA Panamax price on the y-axis measured in USD/day. We can spot that
the forward prices become more expensive for the delivery period longer than the short one.
This issue may be due to the uncertainty contributing to the price dynamics, making the price
costly for the long-term contract.

Based on the prior section, the forward price formulas have been attained utilizing three

5The forward curve (also known as the future curve) reflects the relationship between the forward contract price
and the time to maturity of the contract graphically.
6A market is said to be in contango if the forward (or future) contract price increases over time to the spot
price as the delivery date approaches.
7In contrast with the contango, a market is to be backwardation if the forward (or future) contract price drops
over time to the spot price when the delivery date approaches.
8See www.balticexchange.com for further information about the forward price data.
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Figure 5: The slope of the forward curves for Panamax vessels with different delivery times.
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Table 4: The BFA Panamax on January 2, 2009.

No. of contract
BFA Panamax

FFA maturity
FFA rate

(USD/day)
1 January (Month 1) 5,756.00
2 Quarter 1 (Q1) 8,728.00
3 Quarter 2 (Q2) 12,417.00
4 Quarter 3 (Q3) 13,319.00
5 Quarter 4 (Q4) 13,878.00
6 Year 1 13,472.00
7 Year 2 13,603.00
8 Year 3 13,697.00
9 Year 4 13,681.00
10 Year 5 13,361.00

continuous-time stochastic models. Generally, the forward price at time t with delivery time T
can be formulated as

F (t, T ) = g(t, S(t), p, θ), (14)

where S(t) is the spot price and θ is the market price of risk (or market price of volatility risk).
The spot model parameters, such as the drift and the volatility, are grouped in p, including four
parameters for NIG distribution and others, which have been empirically measured in Section 2.
Still, θ is the unknown parameter.

5 The Market Price of Risks

Herewith, we investigate the values of θ̂, namely the estimated market price of risks
(representing the market price of risk and market price of volatility risk) for the theoretical
price to match the observed one. Referring to Benth and Šaltylė Benth [24] and Benth [25],
this θ̂ can be found by adjusting theoretical prices to the observed forward curve, which also
minimizes the gap between the two. We may now estimate θ as given by

θ̂ := min
θ

Nt
∑

i=1

|| F (t, Tt,i) − F̂ (t, Tt,i) || , (15)

whereby minimize against measurable functions θ being uniformly bounded by a constant for
each delivery time i until Nt, the maximum delivery period at any particular day t. Here,
F̂ (t, Tt,i) are the observed prices, also known as the actual forward prices quoted in the market.
The gap (or distance) is calculated by || · ||, usually the Euclidean distance or some weighted
version. This established technique has been demonstrated by Härdle and López Cabrera [26],
in which the market price of risk for temperature forwards is studied.

The implied market price of risks for each day t is computed using non-linear least squares
regression9. We started the calculation of θ̂ on January 2, 2009, for time charter contracts with

9The calculation was done using the nlinfit-command in Matlab.
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delivery periods of one month, quarter-1, quarter-2, quarter-3, quarter-4, year-1, year-2, year-3,
year-4 and year-5. Then we moved to January 3, 2009, and the same procedure has done. We
do this for each business day until December 24, 2009, giving us a total of t = 250 days. The
input data to value the market price of risks θ̂, such as the estimated parameters under the
proposed spot models, are summarized in Table 5. Observe that herein the ’∗’ refers to the
estimated parameters for the logreturns, while ’?’ is the corresponding value in annual terms.

Table 5: Summary of the parameters for the spot models.

Model α̂ β̂ δ̂ µ̂ σ̂ λ̂ ω̂1 ω̂2 λ̂1 λ̂2

GBM∗
− − −

0.0001 0.0245
− − − − −

(0.0243?) (0.3891?)
NIG Lévy∗ 30.7049 −0.5472 0.0184 0.0004 − − − − − −

BNS∗ 30.7049 −0.5472 0.0184 0.0004 − 0.2602 0.7967 0.2033 0.5850 0.0184

Note: ∗indicates the estimated parameters for the logreturns; ?indicates the corresponding value in annual terms.

Let us compare the empirical θ̂ values obtained from GBM with the non-stationary Lévy-
based dynamics and BNS stochastic volatility spot models. The estimated θ̂ and their
corresponding density are plotted in Figure 7.

Referring to Benth et al. [10], one of the commodities markets’ oddities is that the market
price of risk may be either negative or positive, subject to the horizon of time considered. For
instance, a study by Schwartz [5] reports that the one-factor model calibration towards futures
prices of copper and oil experienced negativity for market prices of risk in both samples. Lucia
and Schwartz [6] also find a negative market price of risk associated with the non-stationary
term in their two-factor models when analysing data from the Nord Pool market. Then Cartea
and Figueroa [7] also estimated a negative market price of risk under England and Wales
wholesale electricity prices modelling. Further, Cartea and Williams [9] discovered that there
is positivity on the market price of risk for long-term contracts under modelling gas prices and
forward contracts. In contrast, for short-term contracts, the market price of risk changes signs
across time despite being positive on average.

Besides, in their study, Bakshi and Kapadia [16] and Doran and Ronn [17] have also
attempted to demonstrate a negative market price of volatility risk. In our case study, notice
that the value of the estimated market price of risks, namely θ̂, decreases across time, as in
Figure 7. However, the θ̂ value under NIG Lévy spot model is positive for the short term and
turns negative in the long term. Meanwhile, for both GBM and BNS spot models, the empirical
θ̂ has produced the negativity values for the entire duration.

Subsequently, Table 6 reports the results respectively, namely the actual forward prices
of the BFA Panamax for each time to maturity of the contracts and the theoretical forward
prices of each model obtained employing the θ̂ in the equations (11), (12) and (13). From the
results, it can be observed herein that all the forward prices between GBM and NIG Lévy spot
models under theoretical forward price show a low-lying deviation compared to BNS stochastic
volatility spot model. A similar issue is also discovered in Figure 8, that the theoretical forward
curve of the GBM and exponential NIG Lévy spot models show no change rate between those
two forward curves. This issue occurs because those curves for GBM and exponential NIG Lévy
spot models are fixed, unlike the BNS spot model, which contains stochastic volatility factors.

Additionally, all of the theoretical forward curves in Figure 8 also decrease with time due
to the decreasing of the empirical θ̂ values as inscribed above (refer to Figure 7). It can be
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Figure 7: The estimated values of θ̂ on the left while their corresponding density on the right:
GBM (top), NIG Lévy (middle) and BNS (bottom) models.
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Table 6: The forward prices (theoretical and actual) for the BFA Panamax data were observed
on January 2, 2009.

Forward maturity
Actual forward Theoretical forward price driven by empirical θ̂

price GBM model NIG Lévy model BNS model

January (Month 1) 5,756.00 28,047.16 28,047.17 23,249.84

Quarter 1 (Q1) 8,728.00 27,293.04 27,293.06 19,636.33

Quarter 2 (Q2) 12,417.00 26,199.70 26,199.74 17,782.59

Quarter 3 (Q3) 13,319.00 25,150.16 25,150.21 17,292.07

Quarter 4 (Q4) 13,878.00 24,142.66 24,142.73 17,176.35

Year 1 13,472.00 20,500.42 20,500.55 16,757.76

Year 2 13,603.00 17,407.67 17,407.83 16,414.82

Year 3 13,697.00 14,781.49 14,781.67 16,071.14

Year 4 13,681.00 12,551.51 12,551.70 15,728.97

Year 5 13,361.00 9,050.06 9,050.25 14,935.31
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Figure 8: Forward curves for the Panamax prices that adopt our empirical θ̂ values - observed
on January 2, 2009: GBM (top left), NIG Lévy (top right) and BNS (bottom) models.
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observed that before the delivery period year-3, for the GBM and exponential NIG Lévy spot
models, the theoretical forward curves gradually decline over time to the actual forward curves,
such that they hit the intersection point as shown respectively in between the delivery period
year-3 and year-4. This case means, driven by adopting our empirical θ̂ values observed on
January 2, 2009, we managed to produce the minimization of the difference price gap between
the theoretical and actual forward prices. Unfortunately, these difference price gaps later ascend
after those intersection points under GBM and exponential NIG Lévy spot models since both
curves of forward deviate from each other for those two models.

On the contrary, the plotted graph for the theoretical forward curve in the BNS stochastic
volatility spot model varies drastically compared to others, as illustrated in Figure 8. It swiftly
declines over time to the actual forward curve as early as before the delivery period Q2. Then,
it gradually becomes horizontal afterwards and eventually gets closer to the actual forward
curve. The depreciation of the difference price gap between the theoretical and actual forward
prices under the BNS stochastic volatility spot model also occurs significantly at the beginning
of the delivery period and later slowly shrinks over this horizontal period consistently. This
condition mirrors that the BNS stochastic volatility spot model is fast and stable practically
throughout the delivery period for governing the theoretical forward price becomes closer to
the actual forward price since time is a valuable quantity.

6 Conclusion

We establish the investigation of three distinct stochastic spot models developed for the
evolution of freight rates in the dry bulk market. It covers GBM, NIG Lévy, and BNS stochastic
volatility spot models, all of which shall be utilized in the forward pricing since the models
are analytically tractable. Driven by the theory of arbitrage-free pricing, we acquire evident
forward prices for all models in the study. We also describe the shape of the forward curves
based on those formulas of the forward pricing. As a matter of fact, such curves are invariable
for the GBM and exponential NIG Lévy spot models, whereas the curve for the BNS stochastic
volatility spot model fluctuated.

Furthermore, we also analyse the forward curve performance of the non-stationary one-
factor models. By doing that in such a way, we offer a method for estimating the market price
of risk and the market price of volatility risk by adjusting theoretical prices to today’s observed
forward curve, which minimizes the distance between both of them. Our results are in line with
most of the commodities literature (to exemplify, see Schwartz [5], Cartea and Figueroa [7],
Kolos and Ronn [2]; Bakshi and Kapadia [16], Doran and Ronn [17]). We discover that the
time-dependent parameters under the shipping freight market are negative either for the market
price of risk or the market price of volatility risk. The impact goes that we manage to minimize
the difference of price gap between the theoretical and actual forward prices.

The results of this study may help calculate the risk premium on an extension of future
research. It is said that the market price of risks is closely related to the risk premium. In
normal backwardation, a negative market price of risk is equivalent to a negative risk premium
in the above context, as in Benth et al. [20]. We believe that such a procedure is not impossible
to put into effect soon since the calculation of risk premium has been pointed out by Härdle
and López Cabrera [26] for the weather market.
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