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Abstract This paper presents the equations used in the mathematical modeling of
lithium cells. The model equations include the material balance equations, the Ohms
Law and the flux equation for the porous electrodes in both the electrolyte and the
solid phases. These equations are solved analytically, by means of Laplace transform,
to give the concentration profile of the lithium ion concentration with respect to the
distance and time.
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Abstrak Kertas ini memaparkan persamaan-persamaan yang digunakan dalam per-
modelan sel litium. Persamaaan-persamaan yang terlibat dalam model ini terma-
suk persamaan pengangkutan jirim, hukum Ohm dan persamaan fluks bagi elektrod
berongga didalam fasa elektrolid dan fasa pepejal. Persamaan-persamaan ini disele-
saikan secara analitik, menggunakan kaedah penjelmaan Laplace, untuk mendapatkan
profil kepekatan ion litium terhadap jarak dan masa.

Katakunci Penjelmaan Laplace, masalah serapan, sel litium

1 Introduction

The development of lithium-ion batteries has progressed considerably over the past decade
such that they have become a state-of-the-art battery for consumer electronic applications
[3,8,9] and electric vehicles [1,13]. Many models have been proposed to predict the behavior
and performance of various types of batteries such as lithium-ion [4], nickel-cadmium [14]
and nickel-metal hydride [15]. The purpose of such models is to develop an understanding of
the specific system so that suggestions can be made towards the improvement and finally the
optimization in the battery system. Most of the works in this area were done numerically,
such as the thermal analysis [10], energy balance analysis [2] and charge/discharge analysis
[5]. The underlying phenomenon of these analyses is to study the diffusion process that
occurs inside a battery as the battery is being charge/discharge. However, this work will
focus only on solving the diffusion problem using an integral transform technique known as
Laplace transform. We began by briefly describing the development of the equations that
are used to model the isothermal discharge of lithium ion cell. The cell is divided into three
regions as shown in Figure 1. The anode is a carbon base electrode while the cathode is
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a closely packed composite electrode employing a LiyMn2O4 active material; separated by
a separator. The cathode consists of an inert conducting material, non-aqueous electrolyte
and solid active insertion particles.

2 Model Development of the Diffusion Process

Due to the large salt concentrations used in most lithium batteries, the concentrated solution
theory can be used to treat the transport of the electrolyte. According to the concentrated
solution theory [11], the driving force for mass transfer at constant temperature and pressure
is the gradient of the electrochemical potential for an ionic species; which is related to the
binary fluxes of each of the other species given by

N+ = −ν+D∇c +
it+
z+F

(1)

and

N− = −ν−D∇c +
it−
z−F

(2)

where c is the concentration of the lithium salt electrolyte (c = cj/νj), D is the salt diffusion
coefficient, v is the velocity of species, z is the charge number of species, F is the Faraday’s
constant (96487 C/mol), i is the current density and t+,− is the transference number. This
flux expression is then substituted into a general material balance for species j is given by

∂
(
εcj

)

∂t
= −∇ · Nj + Pj ; j = 1, 2 (3)

where ε is the porosity of the electrode, Pj is the rate of production of species j due to
reaction. The subscript 1 stands for the solid phase and 2 for the solution/electrolyte phase.
Our model has employed porous electrode due to its large interface area similar the porous
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electrode theory described by Newman et al. [11,12]. According to Newman et al. [11,12],
the material balance on salt can be written in one-dimensional as

ε
∂c2

∂t
=

∂

∂x

[
εD2

∂c2

∂x

]
+ ajn

(
1 − t0+

)
−

i2
F

∂t+
∂x

(4)

The variation of electrical state in the solution is to be defined with respect to a lithium
reference electrode in solution. This leads to the expression for the potential in solution as

i2 = −κ∇Φ2 −
κRT

F

(
1 +

d ln f±
d ln c

)
(1 − t+)∇ ln c2 (5)

where Φ2 is the electric potential, f± is the mean molar activity coefficient of the salt, T
is temperature, R is the universal gas constant (8.3143 J/mol K) and κ is the conductivity
of electrolyte. The term jn in equation (4) is the pore-wall flux of lithium ions across
the interface, which is averaged over the interfacial area between the solid matrix and the
electrolyte [5]. For a single electrode reaction, jn is related to the divergence of the current
flowing in the solution phase [5] by

ajn =
1
F

∂i2
∂x

(6)

where a is the interfacial area. The constructed model is based on a galvanostatic
charge/discharge mode. The boundary condition on the concentration at the lithium elec-
trode is found by setting the anion flux to zero. Hence, at x = 0

∇c2 = −I(1− t+)
FD2

(7)

At the positive electrode/current collector boundary, the flux of ions is equal to zero and all
currents are carried by electrons. Hence, the boundary conditions on the salt concentration
and solution-phase current density at x = δs + δc are

∇c2 = 0 and i2 = 0. (8)

During insertion and de-insertion of the lithium, there is no volume change and the lithium
ions diffuse into the solid particles of the active cathode material. The solid insertion
particles are taken to be spherical with radius Rs and a known constant solid diffusion
coefficient, D1. The diffusion in this solid phase is governed by Fick’s law, which when
written in spherical coordinate gives the governing equation the solid particles diffusion as

∂c1

∂t
= D1

[∂2c1

∂r2
+

2
r

∂c1

∂r

]
(9)

where c1(r, t) is the concentration of lithium ions inside a spherical electrode particle. This
diffusion process is subjected to an interfacial transfer and a symmetrical boundary condi-
tion

∂c1(0, t)
∂r

= 0 (10)

and

−D1
∂c1(Rs, t)

∂r
= jn. (11)

The initial condition is given by c1(r, 0) = c∗, where c∗ is the solid phase initial concentra-
tion.
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3 Solution and Discussion

The diffusion of lithium ions in the electrolyte phase can now be describe by the material
balance in equation (4). Assuming the transference number, t+ is a constant and using the
following dimensionless parameters

c =
c2

c0
, y =

x

δs
, τ =

D2t

δ2
s

, J =
a(1 − t+)δ2

sjn

εD2c0
, (12)

where c0 is the initial concentration of the solution phase, δc is length of the cathode and
δs length of the separator.

The concentration behavior due to one-dimensional diffusion in the electrolyte phase
can now be written as

∂c

∂τ
= ε1/2 ∂2c

∂y2
+ J (13)

subjected to the following boundary and initial conditions

∂c

∂y
= 0 at y = 1 + r (14)

∂c

∂y
=

Jr

ε1/2
at y = 1 (15)

c(y, 0) = 1 for all y. (16)

Applying Laplace transform with respect to dimensionless time τ to equation (13), we get

d2c2

dy2
− sc2

ε1/2
= − 1

ε1/2

(
1 +

J

s

)
(17)

where c2(y, s) is the Laplace transform of c2(y, τ). Applying boundary conditions (14) and
(15) gives

c2(y, s) =
1
s

+
J

s2
− Jr

ε1/4

(cosh q(1 + r − y)
s3/2sinh(qr)

)
, (18)

where q = s1/2/ε1/4. In order to be able to take the inverse of Lapace transform, the last
term of equation (18) is expanded in terms of hyperbolic sine and cosine and written as its
partial fraction [6,7] given by

Jr

ε0.25

cosh q(1 + r − y)
s1.5 sinh(qr)

=
J cosh q(1 + r − y)

s2

(
1 +

(qr)2

π2

) (
1 +

(qr)2

22π2

)
· · ·

=
A2

s2
+

A1

s
+

∞∑

m=1

Bm(
1 + (qr)2

m2π2

) (19)

where the numerator and the denominator are polynomials in s which have no common
factor and the degree of the numerator is lower than the degree of denominator. Solving
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for the partial fraction gives

A1 =
1

1 + r

((1 + r − y)2

ε0.25
− 2r2

ε0.5

)
, (20)

A2 = 1, (21)

Bm =
(−1)m+12r4 cos mπ

r (1 + r − y)
εm4π4

. (22)

These values are inserted into equation (19) and the inverse of Laplace transform is applied
to the resulting equation. Hence, the solution is

c(y, τ) = 1 − J
((1 + r − y)2

2ε0.5
− r2

6ε0.5

)

+
2J

ε0.5

∞∑

m=1

(−1)mr2

(mπ)2
e−(mπ/r)2ε0.5τ cos

(mπ

r
(1 + r − y)

)
. (23)

This equation is valid for all time intervals and is related to the discharge/charge coefficient.
Next, for the solid phase analysis, Laplace Transform is applied to equation (9) to get

d2c1

dr2
− s

Ds
c1 = − c∗

Ds
r (24)

where c1(y, s) is the Laplace transform of c1(r, t). Equation (24) was integrated twice with
respect to r to become

c1(r, s) = B
(
eqr − e−qr

)
+

c∗

s
r (25)

Here B is one of the two constants of integration obtained upon performing the integration
twice on equation (24) and the other constant B. Differentiating equation (25), applying
the boundary conditions (10) and (11) and inverting for small time interval, we get

c1(ρ, τ) =
Rsjn

Dsρ

[
− exp(−1 + ρ + τ)erfc

(
−
√

τ +
1− ρ

2
√

τ

)
+ erfc

(1 − ρ

2
√

τ

)

+ exp(−1 − ρ − τ)erfc
(
−

√
τ +

1 + ρ

2
√

τ

)
− erfc

(1 + ρ

2
√

τ

)]
+ c∗ (26)

where ρ = r/Rs and τ = Dst/R2
s are dimensionless parameters. Equation (26) gives

a relationship between the lithium ion concentrations in the solid phase with discharge
current only for short time intervals. The long time analysis is quite lengthy and can be
found in Hashim Ali et al. [6]. The final solution for the solid diffusion is given by [6] as

c1(r, t) = c0 −
jnR2

s

Ds

{3Dst

R2
s

+
1
2

( r

Rs

)2

− 3
10

− 2
(Rs

r

) ∞∑

n=1

sin(rαn/Rs)
α2

n sin αn
exp

(
− α2

nDst/R2
s

)}
(27)

where αn’s are the positive roots of αn cot αn = 1. Equation (27) is valid for all t.
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Figure 2 and 3 give the concentration profile of lithium ions during a galvanostatic
discharge of 1.39 mA/cm−2 in obtained from equation (23) and equation (27), respectively.
In Figure 2, the concentration of lithium ions decreases with time since during discharge
the front face of the cathode were filled up first as compared to the back at the cathode
(at y = 5). Figure 3 shows an increase in the lithium ions concentration, from the center of
the solid particle (r = 0) to the surface of the particle (r = Rs), as time increases. These
results indicated that the lithium ions inside the solid particle move to the surface of the
particle in order to be dispersed into the electrolyte during discharge.

4 Conclusion

This paper has presented the equations governing the modeling the diffusion process of a
lithium ion cell. Two cases have been considered: the electrolyte phase limitation and the
solid phase limitation. Both cases contributed to the movement of lithium ion in the three
region of a battery. The governing equations for both cases were solved by the well-known
transform technique known as the Laplace transform.
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