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Abstract The development of an approximation model for the true response surface
is needed in Response Surface Methodology. In multiple response optimization (with
replication), the sample mean is widely used to calculate the mean value at each design
point of every quality characteristic before the model fitting. However, the existence
of outliers may have certain effects on the sample mean. Thus, the Hodges-Lehmann
estimator, a robust estimator, is proposed in place of the sample mean in this paper.
A summary of the properties and advantages of the Hodges-Lehmann estimator will
be given together with an example from the literature to illustrate the computation of
this proposal.
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1 Introduction

In multiple response optimization, researchers seek to optimize the mean responses of p
quality characteristics simultaneously to find an optimal setting. Generally, there are two
types of multiple response optimization: multiple response optimization without replication
(non replication or single observation) and multiple response optimization with replication.
Researchers like Castillo et al. [1], Derringer and Suich [2] and others contributed to the
development of multiple response optimization (non replication). Table 1 is the general
form of an experimental design for a multiple response approach (non replication) with p
quality characteristics, m design points, k coded process settings and single observation
(non replication) at each design point.

Table 1 General Form of an Experimental Design for a Multiple Response Approach
(non replication).

Design Coded Process Settings Crality Characteristics
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On the other hand, Fogliatto and Albin [3] considered a multiple response approach
with replication in their paper. In their experimental design, there are more than one
observation at each design point of every quality characteristic. Table 2 is the general form
of an experimental design for a multiple response approach (with replication) with p quality
characteristics, m design points, k coded process settings and n replications at each design
point of every quality characteristic.

Table 2 General Form of an Experimental Design for a Multiple Eesponse Approach
{(with replication).

Desi Coded Process Chiality Characteristie 1 CUmality Characteristic 2 Cmality Characteristic p
=k}
PD::‘ Settings Fephodin Fephodon Fephodin
R e | oA 1 2 n 1 2 n 1 2 n
1 S NS N O I e | Ie o Bhp o | B Lo | B | ... | B
2 LS R RO i | N || T Bn | Yam || Tom Ha | B | | Tim
" 11 .0 Tigg | Thw | . | Tiem T | Toma | . | Tomm ol | Toma | .. | Towm

The sample mean was used by Fogliatto and Albin [3] to find the mean value at each
design point of every quality characteristic before they fitted models for the p quality char-
acteristics.

Hampel et al. [4] pointed out that many empirical datasets have typically 10% outliers.
The existence of outliers may be due to some sporadic variation, copying/recording/typing
error, computation error, observation that is not part of the population being studied, etc.
It is well known that the existence of outliers may have certain effects or influence on the
sample mean. In addition, Abu-Shawiesh and Abdullah [5] stated that when the underlying
assumptions under which the statistical procedure was developed are slightly incorrect or
not met, the traditional measures may not give accurate results. In order to overcome the
influential of outliers, robust estimators seem to be an alternative for solving the above
problems. Abu-Shawiesh and Abdullah [5] and Alloway and Raghavachari [6] applied a
robust estimator, which is known as the Hodges-Lehmann estimator (a.k.a. HL.E.), to
control charts. Here, we propose to replace the sample mean by HL.E. as an estimate for
the location parameter.

In the next section, the HL.E. and its properties will be given together with its advan-
tages. Next, a data set in the literature will be used to illustrate the computation of the
HL.E. Finally, conclusions will be drawn regarding this proposal.

2 The Hodges-Lehmann Estimator

In 1963, Hodges and Lehmann [7] proposed the HL.E. as an estimator for the point of sym-
metry 6 of a continuous and symmetric distribution. Initially, the HL.E. is a nonparametric
estimator based on the Wilcoxon signed-rank statistic. However, Lehmann [8] showed later
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that this estimator belongs to the class of robust R-estimators. The computations of the
HL.E. follow four steps:

Let Y1,Ys, ..., Y, be a random sample obtained from some distribution, which is contin-
uous and symmetrical about 6. Then,

(i) Compute

Mon (n+1) )
2
(ii) Compute the Walsh averages,
Yi+Y;
W, = 2 )

where r =1,2,...,. M and 1 <j=1,2,....n.

(iii) Reorder the Walsh averages in ascending order, that is

Wy < Wig) < ... < W (3)
(iv) The HL.E. for the point of symmetry 6 of a continuous and symmetric distribution is
defined as:
HL.E. = median {W(l), W(Q), ceey W(M)} (4)
or ;
. W(kJrl) if M is odd
HL.E. = {(W(k) + W(k+1)) /2if M is even (5)
where

L [(M =1)/2if M is odd
B M/2 if M is even

In addition to the above computations of the HL.E., the main properties of this estimator
are given below:

(i) The asymptotic relative efficiency of the HL.E. relative to the sample mean is 0.955 if
the underlying distribution is Normal (Gaussion). However, the asymptotic relative
efficiency of the HL.E. is often greater than unity if the underlying distribution is
non-normal (Lehmann [8]). Alloway and Raghavachari [6] stated that the asymptotic
properties of the HL.E. are impressive,

(ii) The asymptotic relative efficiency for the HL.E. is the same as the Wilcoxon signed-
rank test and it is asymptotically normally distributed. Besides that, it is robust
against gross errors (Hodges [9]),

(iii) The HL.E. has a breakdown point of 29%, which is high enough for most purposes
(Hampel [10]), and

(iv) The HL.E. is unbiased and translation invariant (Abu-Shawiesh and Abdullah [5]).

Besides having good properties, Abu-Shawiesh and Abdullah [5] gave an advantage of
the HL.E., that is: it should give reasonable results for distributions in the neighborhood of
the Normal (Gaussion) distribution. In addition, Alloway and Raghavachari [6] mentioned
that the performances of robust estimators are often better than traditional measures for
heavy tailed distributions and the HL.E. properties are reasonable and easy to explain to
users. Details concerning of the HL.E. can be found in Hodges and Lehmann [7].
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3 Example

This example is a food-processing case study taken from Fogliatto and Albin [3], which
have three control factors: the processing time (z1— in mins), the processing temparature
(x2— in °F) and the type of beef (x3— natural or restructured). Fogliatto and Albin [3]
stated that x3 is a qualitative control factor which should have been treated as a fixed block
effect. In order to overcome this problem, they considered z3 as a quantitative factor and
defined as an integer variable when searching for the optimum settings. This consideration
will also be applied in this paper. In addition, we also assume that x; and x5 are allowed to
vary within the limits in the experimental design (that is, —1 < 27 < 1 and 220 < zo < 265)
since they are quantitative factors. This example considered three responses that are related
to the food product and they are: the cohesiveness of beef cubes, the fibrousness of the meat
and the flaking of the meat. According to Fogliatto and Albin [3], evaluation of these three
responses were performed by the Spectrum Method, a quantitative descriptive analysis
technique and measured using a 15-point continuous scale. Thus, these three responses are
dimensionless. Table 3 is the data set plus the sample mean, the HL.E., upper bounds,
target values and lower bounds of the respective responses.

In Table 3, we see that there are four replications at each design point of all the three
responses. Hence, n = 4. In order to help readers to understand better about the com-
putations of HL.E., the first design point of Cohesiveness will be used. Let Y7 = 7,
Y, = 10.5, Ys = 9.3 and Yy, = 10.3, the computations follow the description in the pre-
vious section:

(i) Compute

where

Y;+Y;
(ii) Compute the Walsh averages, W, = —;_ J

r=1,2,..,10 and i < j = 1,2, ..., 4.

Thus,
Yi+ Y Y1+ Y5 Y: + Y5 Y1 +Y, Y + Y5
Wy = s LWy = s % W3:71+ 2 oWy = Lt L Ws = Eha %
2 2 2 2 2
= 7.00 = 8.75 = 8.15 = 8.65 = 10.50
Ys + Y5 Y + Y, Y; + Y5 Y;+Y, Y, + Y,
We = Cha 5 Wr = i LW = 2t Wy = i 2 Wi = 1t h
2 2 2 2 2
=9.90 = 10.40 =9.30 = 9.80 = 10.30

(iii) Reorder the Walsh averages in ascending order, that is

Wi = 7.00; Wy =8.15; W5 = 8.65; Wy =875 Wy = 9.30;
W = 9.80; Wy = 9.90; Wy = 10.30; Wy = 10.40; Wi = 10.50
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(iv) Since M =10 is even, k = 12 =5, then

Wie + W, . .
HL.E. = <5>; © _ 930;980 —9.55

The computations for the rest of the design points of all responses repeat the whole
procedure as illustrated above and the HL.E. are given in Table 3.

Table 3 The Food-Processing Data.

Responses
Contral Factors
Dresizgn Coheciturecs Fibronstess Fliking
Pomt
ST R
Lrata S.ML HL.E. Drata S HL.E Lrata S HL.E.
T. 105, 68,108, 63,108,
1 -1 225 -1 03103 Q75 9550 05105 400 Q750 03108 Q425 QATS
98,11, 98,114, a3,115,
2 1 220 -1 95,103 10225 10175 9811 10525 10525 9511 10525 10525
33,389, 34,3, 345,25,
3 -1 2065 1 235 2825 3000 235 3000 3125 3395 2950 2950
2555, 25,6, 23,35,
4 1 250 1 3535 3.F00 3500 3538 4025 3800 i3 2050 3000
TRAS, 645,54, 63,6,
5 -1 220 -1 0583 75 TH25 0325 TA450 7450 0585 i i
3.4, 3,34, 3,15,
3 1 220 1 223 2325 2425 133 2450 2450 223 2450 2450
33,35, 33,38, 33,2,
T -1 250 1 23 2550 2550 22 275 2775 23 2325 2000
10,10, 10,10, 10,10,
8 -1 250 -1 9508 Q825 QA50 2800 fa00 fran 95.10 QTS 10000
Tpper Bomd 15 15 15
Target Vahie, I' | 80 EE) G0
Lot Bonmd ] 0 ]

In this paper, we fit the three responses with linear models (since this data set only
has eight design points) for the sample mean and the HL.E. Model selection procedures
in SPSS, version 7.5.2, that is, Stepwise, Backward and Forward will be employed here.
We use the default settings in SPSS, namely, the probability of F for entry is 0.05 and for
removal is 0.10. For each model selection procedure, models for the sample mean and the
HL.E. of the three responses will be obtained. In order to make this study meaningful, the
adjusted R squared value will be used to choose the best models. For example, SPSS give
3 models for the sample mean of the response, Flaking, when the Backward procedure is
used. Thus, we will choose the model with the highest adjusted R squared value among the
3 models before proceeding to the optimization.

3.1 Model Selection Procedure: Stepwise

Let @1,g.m. denotes the fitted model for the sample mean of the response, Cohesiveness;
wo.g.M. denotes the fitted model for the sample mean of the response, Fibrousness; ws g.m.
denotes the fitted model for the sample mean of the response, Flaking; @ ur, r. denotes the
fitted model for the HL.E. of the response, Cohesiveness; ws p1,.g. denotes the fitted model
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for the HL.E. of the response, Fibrousness and w3y, g. denotes the fitted model for the
HL.E. of the response, Flaking. The best models for the sample mean and the HL.E. of the
three responses are, respectively:

w1, s M. = 6.081 — 3.181x3
wa s M. = 6.153 — 3.091x3

6)
7)

o~ o~~~

w3 s M. = 6.025 — 3.356x3 8)
w1 HL.E. = 6.109 — 3.266x3 9)
wo HL.E. = 6.197 — 3.159x3 (10)
W3 aL.E. = 6.038 — 3.438x3 (11)

Table 4 shows the R squared and adjusted R squared values for (6), (7), (8), (9), (10)
and (11) when the Stepwise procedure is used. Table 4 clearly indicates that the adjusted
R squared values for (6) and (9), (7) and (10), and (8) and (11) are close to each other.

Table 4 E Squared and Adjusted B Squared Values for (63, (73, (2), (%, (10) and (11).

Iodel E zquared Adjusted B squared
(3] 0.946 0.937
] 0.923 0.910
() 0.950 0.542
&) 0.957 0.549
(10 0.927 0.915
(113 0.548 0.535

As mentioned in an earlier part of this section, these 3 responses are dimensionless.
Hence, minimization the Total Deviation will be used as optimization criterion. The Total
Deviation is defined as:

3
Total Deviation = Z | — T3] (12)
i=1
In addition, the Generalized Reduced Gradient algorithm in the “Solver” option in Microsoft

Excel is used to minimize the Total Deviation and to find the optimal settings of this
example. Two types of minimization have been carried out separately, that is, minimize

3 3
Z |&i s.m. — T3] and Z |&i mn.. — T3
i=1

i=1
when x3 is fitted as 1 and —1 together with the constraints
(-1 <z <1,220 < 29 <265 and 0 < responses < 15).

Table 5 summarizes the optimization of the sample mean and the HL.E. by using the
Stepwise procedure. When x3 = 1, the use of the sample mean leads to the optimal setting
(21,22, 23) = (*, %, 1) with Total Deviation = 8.7690 while the HL.E. also leads to the same
optimal setting (x1, za,x3) = (%, *, 1) with Total Deviation = 8.9190 where an insignificant
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control factor is denoted by “#”. This is because models (6), (7), (8), (9), (10) and (11) only
involve the constant and x3. The choice of levels for 27 and xo must be based on economic
considerations and on technical knowledge of the process. The use of the sample mean and
the HL.E. again shared the same optimal setting when x3 = —1 with almost comparable
Total Deviations. Generally, these two estimators produce almost identical result in term
of the Total Deviation when the Stepwise procedure is employed.

Table 5 Comparison of the Optimal Settings for the sample mean and the HL E.

% Estimator Opti_mal Cohesiveness | Fibrousness | Flaking Tgtgl
Settings Dewviation
1 sample mean S 2.9000 3.0620 2.6690 2.7690
HL.E. 1 2.8430 3.0380 2.6000 8.9150
1 sample mean i o* 1 82620 9.2440 9.3810 10,4570
HLE - 2.3750 9.3560 9.4760 10,8070

Mote: an insignificant contrel factor 1s denoeted by “*°

Figure 1 gives the Microsoft Excel spreadsheet after the spreadsheet implementation
used for models (9), (10) and (11) when z3 = 1.

3.2 Model Selection Procedure: Backward

We repeat the whole analysis again but now with the use of the Backward procedure. The
best models for the sample mean and the HL.E. of the three responses are, respectively:

@180 = —5.450 + 0.78021 + 0.0493825 — 3.808x3
G250, = —5.819 + 0.92521 + 0.0513825 — 3.771a3
G350, = —3.752 4 0.71921 + 0.0419225 — 3.903z3
&1 HLE, = —4.451 + 0642z + 0.0451425 — 3.821x3
@9 1L, = —5.208 + 0.8207; + 0.0488925 — 3.792x3
Gs.HLE, = —4.225 + 0764z + 0.0440225 — 4.014x3

Table 6 shows the R squared and adjusted R squared values for (13), (14), (15), (16),
(17) and (18) when the Backward procedure is used. From Table 6, the adjusted R squared
values for (13) and (16), (14) and (17), and (15) and (18) are close to each other.

The “Solver” option will be used again here with the same information (including con-
straints, minimize

3 3

Z |@i, s, — T3] and Z |w;,m.E. — Tl

i=1 i=1
separately) except that equations (13), (14), (15), (16), (17) and (18) would replace equa-
tions (6), (7), (8), (9), (10) and (11). Table 7 summarizes the optimization of the sample
mean and the HL.E. when Backward procedure is used. Table 7 clearly indicate that both
the sample mean and the HL.E. lead to the same optimal settings when x3 = 1 and z3 = —1
with almost comparable Total Deviations.
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Constrants

Lowe: Bound Uppes Bound
Cohesiveness 1] 13
Fittousness 1] 15

Flaking o 15

Figure 1 Microsoft® Excel® Implementation,

Table 6 E Squared and Adjusted B Squared Values for (13, {143, {15}, (163, (17} and

(180
Idodel E._ zquared Adjusted B squared
(12 0.987 0.978
(14 0.977 0.260
(15 0.980 0.265
(16 0.987 0.977
(1 0.570 0,243
(18 0.979 0.264
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Table 7 Comparison of the Optimal Zettings for the sample mean and the HLLE.

x Estimator Optitmal Cohesiveness | Fibrousness | Flaking Taotal
3 Settings Deviation

1 sample mean (1, 265, 1y 4.6077 4 9507 4.1728 5. 7702

HL E. (1, 265, 1) 4.3321 47755 4.1903 65.8535

1 sample mean | (-1, 220, -1) 8.4416& 8.3306 8.6544 B8.0266

HL.E. (-1, 220, -13 8.6588 8.5188 8.70534 g.48580

3.3 Model Selection Procedure: Forward

The use of the Forward procedure in this example produces the same models for the sample
mean, the HL.E., R squared and adjusted R squared values as the Stepwise procedure.
Thus, the Forward procedure as a model selection procedure will give exactly the same
results (optimal settings, responses and Total Deviations) as the Stepwise procedure for
this example.

4 Conclusion

Although the use of the Hodges-Lehmann estimator in this paper does not show any im-
provement over the sample mean, it manages to show that the Hodges-Lehmann estimator
can still give comparable results as the sample mean when no outliers exist. In addition,
this robust estimator will give more accurate results than the sample mean when outliers
exist or the underlying assumptions are slightly incorrect (or not met). Thus, the Hodges-
Lehmann estimator is very helpful especially to those practitioners who are inexperienced
in detecting outliers. We do admit that the computations of the Hodges-Lehmann estima-
tor are slightly more complicated than that for the sample mean but the use of existing
technologies (such as computers and programmable calculators) can overcome this difficulty
easily. As highlighted by Alloway and Raghavachari [6], the more efficient estimators tend
to involve more work.
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