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Abstract In the theory of finite groups, many major theorems have been proved by
the minimum counterexample technique or sometimes called least criminals technique.
It uses the fact that if there is a counterexample to a given theorem, then there is a
counterexample of smallest possible order. In this paper, we will find the least criminals
for five given conjectures in group theory.
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1 Introduction

The best way of proving that a theorem is false is to find an example where it is not
true. Such example is called a counterexample or least criminals, as they are sometimes
being used as ‘Gegenbeispiel ’ by the German [1]. In the theory of finite groups, many
major theorems have been proved false by the least criminal technique. In practice, the
contradiction frequently arises from the existence of a counterexample of order smaller than
that of the presumed least criminal. G. A. Miller [1] used this technique as early as 1916,
though it may have been used by earlier writers. All conjectures given in this paper are not
true in general and we will find a least criminal for each of the conjecture. We chose five of
the 47 conjectures given in [2]. The five given conjectures are listed as follows:

Conjecture 1: If every group of order k is cyclic, then k must be a prime number.

Conjecture 2: If G is non-Abelian, then G is a 2-generator group.

Conjecture 3: If G is a simple group, then G is Abelian.

Conjecture 4: Every group G has a subgroup of prime index.

Conjecture 5: If G is a group with trivial center, then G = G′.

In order to find a least criminal for the given conjectures, we will work with groups given by
generators and defining relations, which allows us to avoid the tedious use of multiplication
tables. The process of finding a least criminal for each conjecture will be shown starting
from the group of the smallest order.
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2 Conjecture 1

In this section, we determine a least criminal for Conjecture 1, which is stated as follows:

If every group of order k is cyclic, then k must be a prime number.

We know that a group of prime order is necessarily cyclic, but we will show that a cyclic
group need not necessarily be of prime order. In order to find a least criminal for this
conjecture, we first eliminate all groups of prime order. Then, we determine whether all
groups of a given order k is cyclic or not, where k is a non-prime number. If one of the
groups of order k is not cyclic, then we will eliminate this group from being a least criminal.

We will see that the group of order 15 is our least criminal. First, we rule out groups of
order 2, 3, 5, 7, 11, and 13 since all of these groups are groups of prime order less than 15,
leaving groups of order 4, 6, 8, 9, 10, 12, 14 and 15. Next, we eliminate groups of order 4,
6, 8, 9, 10, 12 and 14 since there is a group that is not cyclic for each of these orders.

Now, there is only one group of order 15 that is C15, the cyclic group of order 15. Thus
C15 is the least criminal for Conjecture 1.

3 Conjecture 2

In this section, we will find a least criminal for Conjecture 2, which is stated below.

If G is non-Abelian, then G is a 2-generator group.

In order to find a counterexample for this conjecture, we first eliminate all Abelian
groups. Next, we find the smallest non-Abelian group with more than two generators. We
will show that the group of order 16 is our least criminal. Since groups of order 1, 2, 3, 4,
5, 7, 9 and 11 are Abelian groups of order up to 12, thus we rule them out from being a
counterexample. Hence, only groups of order 6, 8, 10 and 12 would be left as non-Abelian
groups of order up to 12.

We know that S3 =< a, b|a3 = b2 = e, ba = a−1b > is the only non-Abelian group of
order 6. Since S3 is a 2-generator group, it does not produce a counterexample. Next, we
know that there are two non-Abelian groups of order 8, namely D4 and Q.

Now, D4 =< a, b|a4 = b2 = e, ba = a−1b > is the dihedral group of order 8. Since D4 is
a 2-generator group, it is ruled out as a counterexample.

Next, Q =< a, b|a4 = e, b2 = a2, ba = a−1b > is the quaternion group of order 8. Since
Q is a 2-generator group, it is also ruled out as a counterexample.

Now, we look at groups of order 10. D5 =< a, b|a5 = b2 = e, ba = a−1b >, dihedral
group of order 10, is the only non-Abelian group of order 10. Since D5 is a 2-generator
group, it does not produce a counterexample.

Next, there are three non-Abelian groups of order 12, namely A4, D6 and Q6. We know
that all of them are 2-generator groups, so they do not produce a counterexample. Similarly,
D7, the dihedral group of order 14 is the only non-Abelian group of order 14. Since D7 is
a 2-generator group, it does not produce a counterexample.

Finally, we look at groups of order 16. There are nine non-Abelian groups of order 16
([3]). However, we will look at only one of them, namely D4 × C2. We know that D4 × C2

is a 3-generator group. Thus, D4 × C2 is a least criminal for Conjecture 2.
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4 Conjecture 3

Next, we will determine a least criminal for Conjecture 3, stated as follows:

If G is a simple group, then G is Abelian.

A simple group is a group whose only normal subgroups are the trivial subgroup of order
one and the improper subgroup consisting of the entire original group. In other word, a
simple group is a group with no proper nontrivial normal subgroups.

Since all subgroups of an Abelian group are normal and all cyclic groups are Abelian,
the only simple cyclic groups are those that have no subgroups other than trivial subgroup
and the improper subgroup consisting of the entire original group.

We have that A5, the alternating group of order 60, is the smallest non-Abelian simple
group [3]. Thus, A5 is a least criminal for Conjecture 3.

5 Conjecture 4

Our goal in this section is to determine a least criminal for Conjecture 4, which is stated
below.

Every group G has a subgroup of prime index.

We first look at groups of prime order. Since the divisors of a prime number are the
number itself and 1, thus its subgroups must be either the trivial subgroup or the group
itself. Thus, for groups of prime order, there is a subgroup of prime index. So we rule out
all groups of prime order from being a least criminal. Next, we look at cyclic groups. Every
subgroup of a cyclic group is cyclic. Moreover, for a cyclic group, there is one subgroup for
each divisor of the order of group. Thus we need to determine whether the group has at
least one subgroup of prime index.

Finally, for a non-cyclic group, we need to find the order of each subgroup. Next,
determine whether the group has at least one subgroup of prime index. If there is no
subgroup of prime index for the appropriate group G, then we can conclude that G is a
least criminal for Conjecture 4.

We will now show that C4 ⊕C4, the internal direct product of two cyclic groups of order
4 is a least criminal for Conjecture 4. First we eliminate all groups of prime order less than
16, namely groups of order 2, 3, 5, 7, 11 and 13. Hence, groups of order 4, 6, 8, 9, 10, 12, 14,
15 and 16 are the groups of order less than 17 that need to be examined. There are fourteen
groups of order 16 ([4]), namely C16, C8 ⊕C2, C4 ⊕C4, C4 ⊕C2 ⊕C2, C2 ⊕C2 ⊕C2 ⊕C2,
D4 × C2, Q4 × C2, a subgroup of GL(2, Z5), Sylow 2 subgroup of SL(2, Z4), C4 o C4, a
subgroup of GL(2, Z5), Sylow 2 subgroup of GL(2, Z3), D8 and Q8. Firstly, C16 does not
produce a counterexample since C16 has a subgroup of prime index, namely a subgroup of
order 8.

Next, C8 ⊕C2 also does not produce a counterexample since it has a subgroup of prime
index, namely a cyclic subgroup of order 8. Finally, C4 ⊕ C4, the internal direct product
of two cyclic groups of order 4 has at least a cyclic subgroup for each of order 1, 2 and 4.
However, C4 ⊕C4 does not have a subgroup of order 8. So this group does not have at least
a subgroup of prime index. Thus C4 ⊕ C4 is a least criminal for Conjecture 4.
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6 Conjecture 5

In this last section, we will determine a least criminal for the last conjecture, which is stated
as follows:

If G is a group with trivial center, then G = G′.

We know that p-groups have nontrivial centers. In order to find a minimum counterex-
ample for this conjecture, we first eliminate all Abelian groups (including p-groups). Then
we find G′, a commutator subgroup for a group G, with trivial center. If G = G′, then G
does not produce a counterexample. However, if G 6= G′, then G is our least criminal for
Conjecture 5.

Since we already eliminated all Abelian groups from being a counterexample, so S3, the
symmetric group of order 6, is the first non-Abelian group that needs to be examined. We
have S3 =< a, b|a3 = b2 = e, ba = a−1b >, and S′

3 = {e, a2, a} 6= S3. Thus S3 is our least
criminal for Conjecture 5.

7 Conclusion

In this paper, minimum counterexamples or “least criminals” for five given conjectures were
shown. Conjecture 1 states that if every group of order k is cyclic, then k must be a prime
number. Since group of order 15 is cyclic but 15 is a non-prime number, thus group of
order 15 is a least criminal for this conjecture. Furthermore Conjecture 2 states that if G is
non-Abelian, then G is a 2-generator group. D4 ×C2 is a least criminal for this conjecture
since it is a non-Abelian 3-generator group. Conjecture 3 states that, if G is a simple group,
then G is Abelian. Since A5 is our smallest non-Abelian simple group, thus A5 is a least
criminal for Conjecture 3. Next is Conjecture 4, which states that every group G has a
subgroup of prime index. But since C4 ⊕C4 has no subgroup of prime index, thus C4 ⊕C4

is a least criminal for this conjecture. Finally Conjecture 5 states that if G is a group with
trivial center, then G = G′ and since S3 6= S′

3, thus S3 is a least criminal for Conjecture 5.
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