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Abstract Multicollinearity is the problem when there is linear dependency among the

independent variables. The Ordinary least squares estimator (OLSE) that is commonly adopted is

not suitable for the linear regression model when the independent variables are correlated. This

is due to the high variance in OLSE and hence the accuracy of OLSE reduces in the presence of

multicollinearity. Hence, the estimator named k-almost unbiased regression estimator (KAURE)

was proposed as an alternative to OLSE in this paper. KAURE was developed by using the

definition of an almost unbiased estimator to further reduce the bias of Liu-type estimator-special

case (LTESC). The properties of KAURE including bias, variance-covariance and mean squared

error (MSE) were derived. Theoretical comparison and real-life data comparison were carried

out to evaluate the performance of the KAURE based on the MSE criterion. The application of

the real-life data supported the theoretical comparison that showed the superiority of KAURE

over OLSE and LTESC. The results revealed that KAURE could be considered as an alternative

estimator for the linear regression model to combat the problem of multicollinearity.

Keywords Multicollinearity; Almost unbiased estimator; Mean squared error; Linear regression

model; Ordinary least squares estimator.
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1 Introduction

Multicollinearity is a common issue that can cause significant problems in various fields, particularly

when using linear regression for analysis. Belsley [1] stated that multicollinearity is a natural flaw in

data due to the uncontrollable processes of the data-generating mechanism. Multicollinearity occurs

when two or more independent variables in a regression model are highly correlated with each other.

In other words, they are not providing distinct or independent information to the model. When a near

exact relationship between two or more independent variables is present in a data set, multicollinearity

exists.

The ordinary least squares estimator (OLSE) is the most popular known estimation technique in

regression analysis. OLSE is an unbiased estimator in the regression model. However, it is not a
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good estimator when multicollinearity exists in the data [2] due to its large variance. A consequence

of having large variance is that the width of the confidence interval for the parameter will be inflated

and hence affects the accuracy of the estimator. In other words, multicollinearity can lead to higher

standard errors of the coefficients, which makes it harder to detect significant effects. The presence of

multicollinearity will also mislead with the significance test telling us that some important variables

are not needed in the model. Hence, multicollinearity can lead to coefficients being statistically

insignificant even if the variables are theoretically important. This can mask real relationships in

the data [3]. In addition, multicollinearity causes a reduction of statistical power in the ability of

statistical tests. Therefore, the impact of multicollinearity is serious if the primary interest of a study

is in estimating the parameters and identifying the important variables in the process.

As an alternative to the OLSE, many researchers have developed a number of biased estimators.

The biased estimators include but are not limited to Shrunken Estimator, Iteration Estimator, Ridge

Regression Estimator, Almost Unbiased Ridge Regression Estimator, Restricted Ridge Regression

Estimator, Liu Estimator, New Ridge-type Estimator, Modified Two-parameter Regression Estimator

[4-11].

In this paper, an almost unbiased estimator named k-almost unbiased regression estimator

(KAURE) was developed for the linear regression model in the presence of multicollinearity. Two

stages were involved in the development process. We derived a biased estimator named Liu-type

estimator-special case (LTESC) in the first stage. In the second stage, motivated by the concept of

reducing the distance between the biased estimator and the true value of the parameter, the estimator,

KAURE, was developed by reducing the bias of LTESC.

This research paper is organised as follows. The development process of KAURE has been

discussed in Section 2. Section 3 contains the theorems for the comparison between KAURE and

other estimators in terms of the mean squared error (MSE) criterion. A numerical comparison using

a real-life Portland cement data has been performed in Section 4. The conclusion is presented in

Section 5.

2 Development Process of KAURE

Linear regression model with p independent variables and a dependent variable can be written in the

matrix form

Y = Xβ + ε, (1)

where X is the matrix of independent variables, Y is the vector of dependent variable and ε is the

vector of error.

Linear regression model in Equation (1) can be written in canonical form

Y = Zα + ε, (2)

where Z=XQ, α = Q′β. Here, Q and Λ satisfy Q′ X′ XQ = Λ = diag(λ1, λ2, . . . , λp) where λ j is

the jth eigenvalue of X′ X and Q = (q1, q2, . . . , qp) consists of p eigenvectors of X′ X. It is noted

that Q′ X′ XQ = Z′ Z = Λ and λ j > 0.

Ordinary least squares estimator (OLSE), α̂ = (Z′Z)−1Z′Y, is an unbiased estimator for the

parameter α. OLSE has no bias. However, its variance is unacceptably high in the presence

of multicollinearity. Multicollinearity is the problem when there is linear dependency among the
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independent variables. Hence, the accuracy of the parameter estimates by using OLSE is reduced due

to its high variance.

Instead of using OLSE, biased estimators became the alternative for parameter estimates in linear

regression model in the presence of multicollinearity. It is possible for a biased estimator to have an

amount of bias but a much smaller variance. Hence, the mean squared error (MSE) of the biased

estimator would be less than the MSE of the unbiased estimator OLSE. The mean squared error is

a measure of goodness of an estimator. The MSE of an estimator is the sum of its variance and the

square of its bias.

Ordinary Ridge regression estimator (ORRE), α̂k = (Z′Z + kI)−1Z′Y, was proposed by Hoerl and

Kennard [6, 12]. The estimation procedure by ORRE was based on adding small positive number to

the diagonal of Z′Z. ORRE was developed from augmenting 0 =
√

kα+ε◦ to the equation Y = Zα+ε.

In the first stage to develop KAURE, we derived a biased estimator by augmenting 1√
k
α̂ =

√
kα+ε◦

to the equation Y = Zα + ε. Thus, we get

(

Y
1√
k
α̂

)

=

(

Zα + ε√
kα + ε◦

)

.

The errors can be expressed as
(

ε

ε◦

)

=













Y − Zα
1√
k
α̂ −
√

kα













.

Hence, the sum of squares of the errors is given by

(

ε

ε◦

)′ (
ε

ε◦

)

= (Y − Zα)
′
(Y − Zα) +

(

1
√

k
α̂ −
√

kα

)′ (
1
√

k
α̂ −
√

kα

)

.

A biased estimator that minimizes the sum of squares of the errors is obtained by solving

∂

∂α

(

ε

ε◦

)′ (
ε

ε◦

)

= 0

as below.
∂

∂α















(Y − Zα)
′
(Y − Zα) +

(

1
√

k
α̂ −
√

kα

)′ (
1
√

k
α̂ −
√

kα

)















= 0

∂

∂α















(Y − Zα)
′
(Y − Zα) +

(

1
√

k
α̂ −
√

kα

)′ (
1
√

k
α̂ −
√

kα

)















= 0

∂

∂α

[

(Y)
′
(Y) − 2 (α)

′
(Z)

′
Y + (α)

′
(Z)

′
Zα +

1

k
(α̂)

′
α̂ − 2 (α)

′
α̂ + k (α)

′
α

]

= 0

−2 (Z)
′
Y + 2 (Z)

′
Zα − 2α̂ + 2kα = 0

α = (Z′Z + kI)−1(Z′Y + α̂)

= (Z′Z + kI)−1 [

(Z′Z)α̂ + α̂
]

= (Z′Z + kI)−1(Z′Z + I)α̂ (3)
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Here, we named biased estimator in Equation (3) as Liu-type estimator-special case (LTESC).

LTESC can be expressed as Equation (4) or Equation (5).

α̂LT ES C = (Z′Z + kI)−1(Z′Z + I)α̂ (4)

=

[

(Z′Z + kI)−1(Z′Z + kI) − (Z′Z + kI)−1 (k − 1)
]

α̂

=

[

I − (Z′Z + kI)−1 (k − 1)
]

α̂ (5)

LTESC can also be written as

α̂LT ES C = HLT ES Cα̂, (6)

where HLT ES C = (Λ + kI)−1(Λ + I) = I− (Λ + kI)−1(k− 1) and Z′Z = Λ. It is noted that α̂ = Λ−1Z′Y

is the OLSE and its variance is var (α̂) = Λ−1σ2.

The bias, variance-covariance and MSE for LTESC are given as

bias (α̂LT ES C) = (HLT ES C − I)α (7)

cov (α̂LT ES C) = HLT ES CΛ
−1H′LT ES Cσ

2 (8)

MSE (α̂LT ES C) = HLT ES CΛ
−1H′LT ES Cσ

2
+ α′ (HLT ES C − I)

′
(HLT ES C − I)α

= σ2

p
∑

j=1

1

λ j

(

λ j + 1

λ j + k

)2

+

p
∑

j=1

α2
j

(

k − 1

λ j + k

)2

(9)

Liu [13] proposed Liu-type estimator (LTE) as given in Equation (10). It is noted that LTE is

equal to LTESC when d = −1.

α̂LT E = (Z′Z + kI)−1(Z′Z − dI)α̂ (10)

The first stage development process involved the derivation of the biased estimator named LTESC.

Hence, the objective of the first stage was achieved.

In the second stage to develop KAURE, we further improve the LTESC by deducting its bias

and obtained the estimator, KAURE, by using the Definition 1. The definition of almost unbiased

estimator is given in Definition 1.

Definition 1 Assume θ̂0 is the biased estimator of θ where bias
(

θ̂0

)

= E
(

θ̂0

)

− θ = Wθ. Then, the

estimator θ̂A = θ̂0 −Wθ̂0 is called almost unbiased estimator based on the biased estimator θ̂0 (see

[14]).

The rationale behind is to reduce the distance between the biased estimator and the true value of

parameter. This is in line with the direction of obtaining an almost unbiased estimator that could be

a better alternative for linear regression when multicollinearity presents in the data [7, 15-16]. Some

studies [14, 17-20] that are related to almost unbiased estimator in regression analysis are found in

literature.

To derive KAURE, we express the bias of α̂LT ES C as Equation (11).

bias (α̂LT ES C) = (HLT ES C − I)α

=

[

I − (Z′Z + kI)−1 (k − 1) − I
]

α

= −(Z′Z + kI)−1 (k − 1)α (11)
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Hence, bias (α̂LT ES C) = Wα, where W = −(Z′Z + kI)−1 (k − 1). By using Definition 1, an almost

unbiased estimator based on the biased estimator α̂LT ES C is derived and we named the almost unbiased

estimator as KAURE. The derivation of KAURE is shown as below.

α̂KAURE = α̂LT ES C −Wα̂LT ES C

= α̂LT ES C + (Z′Z + kI)−1 (k − 1) α̂LT ES C

=

[

I + (Z′Z + kI)−1 (k − 1)
]

α̂LT ES C

=

[

I + (Z′Z + kI)−1 (k − 1)
] [

I − (Z′Z + kI)−1 (k − 1)
]

α̂

=

[

I − (Z′Z + kI)−2 (k − 1)2
]

α̂ (12)

KAURE can also be written as

α̂KAURE = HKAURE α̂, (13)

where HKAURE = I − (Λ + kI)−2 (k − 1)2.

The bias, variance-covariance and MSE for KAURE are given as

bias (α̂KAURE ) = (HKAURE − I)α (14)

cov (α̂KAURE ) = HKAUREΛ
−1H′KAUREσ

2 (15)

MSE (α̂KAURE) = HKAUREΛ
−1H′KAUREσ

2
+ α′ (HKAURE − I)

′
(HKAURE − I)α

= σ2

p
∑

j=1

1

λ j













1 −
(

k − 1

λ j + k

)2










2

+

p
∑

j=1

α2
j

(

k − 1

λ j + k

)4

. (16)

3 Theoretical Comparison among Estimators using MSE

We made a theoretical comparison between the proposed estimator KAURE with OLSE and LTESC

based on MSE in order to check the superiority of the KAURE. The MSE for these estimators are

given as below.

MSE (α̂KAURE) = σ2

p
∑

j=1

1

λ j













1 −
(

k − 1

λ j + k

)2










2

+

p
∑

j=1

α2
j

(

k − 1

λ j + k

)4

MSE (α̂OLS E) = σ2

p
∑

j=1

1

λ j

MSE (α̂LT ES C) = σ2

p
∑

j=1

1

λ j

(

λ j + 1

λ j + k

)2

+

p
∑

j=1

α2
j

(

k − 1

λ j + k

)2

3.1 Comparison between KAURE and OLSE

The following comparison shows that KAURE is superior to OLSE when the values of k are according

to the Theorem 1.
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Theorem 1 The estimator α̂KAURE is superior to α̂OLS E using the MSE criterion, that is

MSE (α̂KAURE) −MSE (α̂OLS E) < 0 if and only if 1 < k < min
(

ω j

)

, where

ω j =

λ j

√

2σ2

λ jα
2
j
+ σ2

+ 1

1 −
√

2σ2

λ jα
2
j
+ σ2

for j = 1, 2, . . . , p.

Proof. The difference between MSE (α̂KAURE) and MSE (α̂OLS E) is given by

MSE (α̂KAURE ) −MSE (α̂OLS E)

= σ2

p
∑

j=1

1

λ j













1 −
(

k − 1

λ j + k

)2










2

+

p
∑

j=1

α2
j

(

k − 1

λ j + k

)4

− σ2

p
∑

j=1

1

λ j

= σ2

p
∑

j=1

1

λ j













1 − 2

(

k − 1

λ j + k

)2

+

(

k − 1

λ j + k

)4










− σ2

p
∑

j=1

1

λ j

+

p
∑

j=1

α2
j

(

k − 1

λ j + k

)4

= σ2

p
∑

j=1

1

λ j













−2

(

k − 1

λ j + k

)2

+

(

k − 1

λ j + k

)4










+

p
∑

j=1

α2
j

(

k − 1

λ j + k

)4

=

p
∑

j=1

1

λ j

(

k − 1

λ j + k

)2 











−2σ2
+

(

k − 1

λ j + k

)2

σ2
+

(

k − 1

λ j + k

)2

λ jα
2
j













Since 1
λ j

(

k−1
λ j+k

)2
> 0, then MSE (α̂KAURE) −MSE (α̂OLS E) < 0 if and only if

−2σ2
+

(

k − 1

λ j + k

)2

σ2
+

(

k − 1

λ j + k

)2

λ jα
2
j < 0

(

k − 1

λ j + k

)2

<
2σ2

λ jα
2
j
+ σ2

0 <
k − 1

λ j + k
<

√

2σ2

λ jα
2
j
+ σ2

1 < k <

λ j

√

2σ2

λ jα
2
j
+ σ2

+ 1

1 −
√

2σ2

λ jα
2
j
+ σ2

Hence, MSE (α̂KAURE ) −MSE (α̂OLS E) < 0 if and only if 1 < k < min
(

ω j

)

where

ω j =

λ j

√

2σ2

λ jα
2
j
+ σ2

+ 1

1 −
√

2σ2

λ jα
2
j
+ σ2

for j = 1, 2, . . . , p.
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3.2 Comparison between KAURE and LTESC

The following comparison shows that KAURE is superior to LTESC when the values of k are

according to the Theorem 2.

Theorem 2 The estimator α̂KAURE is superior to α̂LT ES C using the MSE criterion, that is

MSE (α̂KAURE) −MSE (α̂LT ES C) < 0 if and only if k > max
(

τ j

)

, where

τ j =

2 − λ j + λ j

√

9σ2
+ λ jα

2
j

σ2 + λ jα
2
j

3 −

√

9σ2
+ λ jα

2
j

σ2 + λ jα
2
j

for j = 1, 2, . . . , p.

Proof. The difference between MSE (α̂KAURE) and MSE (α̂LT ES C) is given by

MSE (α̂KAURE) −MSE (α̂LT ES C)

= σ2

p
∑

j=1

1

λ j













1 −
(

k − 1

λ j + k

)2










2

+

p
∑

j=1

α2
j

(

k − 1

λ j + k

)4

− σ2

p
∑

j=1

1

λ j

(

λ j + 1

λ j + k

)2

−
p

∑

j=1

α2
j

(

k − 1

λ j + k

)2

= σ2

p
∑

j=1

1

λ j













(

1 +
k − 1

λ j + k

)2 (

1 −
k − 1

λ j + k

)2

−
(

λ j + 1

λ j + k

)2










−
p

∑

j=1

α2
j













(

k − 1

λ j + k

)2

−
(

k − 1

λ j + k

)4










= σ2

p
∑

j=1

1

λ j

(

1 − k − 1

λ j + k

)2 











(

1 +
k − 1

λ j + k

)2

− 1













−
p

∑

j=1

α2
j

(

k − 1

λ j + k

)2 











1 −
(

k − 1

λ j + k

)2










= σ2

p
∑

j=1

1

λ j

(

1 −
k − 1

λ j + k

)2 











(

k − 1

λ j + k

)2

+ 2

(

k − 1

λ j + k

)











−
p

∑

j=1

α2
j

(

k − 1

λ j + k

)2 (

1 −
k − 1

λ j + k

) (

1 +
k − 1

λ j + k

)

= σ2

p
∑

j=1

1

λ j

(

1 −
k − 1

λ j + k

)2 (

k − 1

λ j + k

) (

k − 1

λ j + k
+ 2

)

−
p

∑

j=1

α2
j

(

k − 1

λ j + k

)2 (

1 −
k − 1

λ j + k

) (

1 +
k − 1

λ j + k

)

=

p
∑

j=1

1

λ j

(

k − 1

λ j + k

) (

1 − k − 1

λ j + k

) [(

1 − k − 1

λ j + k

) (

k − 1

λ j + k
+ 2

)

σ2 −
(

k − 1

λ j + k

) (

1 +
k − 1

λ j + k

)

λ jα
2
j

]

=

p
∑

j=1

1

λ j

(

k − 1

λ j + k

) (

1 −
k − 1

λ j + k

) 











−
(

σ2
+ λ jα

2
j

)

(

k − 1

λ j + k

)2

−
(

σ2
+ λ jα

2
j

)

(

k − 1

λ j + k

)

+ 2σ2













.

Since
1

λ j

(

k − 1

λ j + k

) (

1 − k − 1

λ j + k

)

> 0, then MSE (α̂KAURE) −MSE (α̂LT ES C) < 0 if and only if

−
(

σ2
+ λ jα

2
j

)

(

k − 1

λ j + k

)2

−
(

σ2
+ λ jα

2
j

)

(

k − 1

λ j + k

)

+ 2σ2 < 0

(

σ2
+ λ jα

2
j

)

(

k − 1

λ j + k

)2

+

(

σ2
+ λ jα

2
j

)

(

k − 1

λ j + k

)

− 2σ2 > 0

k − 1

λ j + k
>
−

(

σ2
+ λ jα

2
j

)

+

√

(

σ2 + λ jα
2
j

)2
+ 8σ2

(

σ2 + λ jα
2
j

)

2
(

σ2 + λ jα
2
j

)
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k − 1

λ j + k
> −

1

2
+

1

2

√

√

9σ2 + λ jα
2
j

σ2 + λ jα
2
j

k >

2 − λ j + λ j

√

9σ2
+ λ jα

2
j

σ2 + λ jα
2
j

3 −

√

9σ2
+ λ jα

2
j

σ2 + λ jα
2
j

Hence, MSE (α̂KAURE ) −MSE (α̂LT ES C) < 0 if and only if k > max
(

τ j

)

, where

τ j =

2 − λ j + λ j

√

9σ2
+ λ jα

2
j

σ2 + λ jα
2
j

3 −

√

9σ2
+ λ jα

2
j

σ2 + λ jα
2
j

for j = 1, 2, . . . , p.

4 Application in Real-life Portland Cement Data

To evaluate the performance of the proposed KAURE on real-life data, real-life Portland cement

data [2, 10, 21] is applied to perform the numerical comparison. The linear regression model was

constructed based on four independent variables and a dependent variable. The dependent variable

V represents the heat evolved after 180 days of curing measured in calories per gram of cement.

Four independent variables W1, W2, W3 and W4 represent tricalcium aluminate, tricalcium silicate,

tetracalcium aluminoferrite and dicalcium silicate, respectively. Portland cement data is shown in

Table 1.

Table 1: Portland cement data

Tricalcium Tricalcium Tetracalcium β dicalcium Heat evolved after

aluminate, silicate, aluminoferrite, silicate, 180 days of curing,

W1 W2 W3 W4 V

7 26 6 60 78.5

1 29 15 52 74.3

11 56 8 20 104.3

11 31 8 47 87.6

7 52 6 33 95.9

11 55 9 22 109.2

3 71 17 6 102.7

1 31 22 44 72.5

2 54 18 22 93.1

21 47 4 26 115.9

1 40 23 34 83.8

11 66 9 12 113.3

10 68 8 12 109.4
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The standardization is done on the dependent variable and independent variables [22]. Each

element of the standardized dependent variable and standardized independent variable is obtained

by equation (17) and (18), respectively.

yi =
νi − ν̄

√

∑n
i=1 (νi − ν̄)2

, (17)

xi j =
wi j − w̄ j

√

∑n
i=1

(

wi j − w̄ j

)2
, (18)

where ν̄ and w̄ j are mean of V and W j, respectively. It is noted that i = 1, 2, . . . , n and j =

1, 2, . . . , p where p = 4 and n = 13.

Hence, the linear regression model is represented by Y = Xβ + ε. The canonical form of

the linear regression model is given by Y = Zα + ε. It is noted that Z=XQ, α = Q′βand

Q′ X′ XQ = Λ = diag(λ1, λ2, . . . , λp), where λ1 ≥ λ2 ≥ . . . ≥ λp > 0. The matrix Λ consists

of eigenvalues of X′ X while the matrix Q consists of the corresponding eigenvectors of X′ X. In

this Portland cement data, the eigenvalues λ j are 2.235704, 1.576066, 0.186606 and 0.001624. The

estimated OLSE α̂ j are -1.198979, -0.018413, -1.549323, 0.573396. The mean squared error of the

regression model is σ̂2
= 0.002.

Multicollinearity diagnostics were performed on this Portland cement data. The correlation

matrix is equivalent to the matrix X′ X, where each element in the matrix represents the correlation

coefficient between the independent variables. Table 2 displays the correlation coefficient between

the independent variables.

Table 2: Correlation between independent variables

X1 X2 X3 X4

X1 1 0.228579 -0.824134* -0.245445

X2 0.228579 1 -0.139242 -0.972955*

X3 -0.824134* -0.139242 1 0.029537

X4 -0.245445 -0.972955* 0.029537 1

*Correlation between X1 and X3, correlation between X2 and X4

are significant at 0.01 level (2-tailed)

The high correlation coefficient between X1 and X3 as well as high correlation coefficient between

X2 and X4 show that multicollinearity exists in the data. However, the values of correlation coefficient

would not be enough since high values of correlation coefficients would only identify multicollinearity

involving two independent variables but might miss those involving more than two independent

variables.

In addition, variance inflation factors (VIF j) were investigated. The values of VIF j are the

diagonal element of matrix (X′ X)−1. The variance inflation factors VIF j are 38.496211, 254.423162,

46.868386 and 282.512861. It shows that all VIF j are higher than 10, indicating the existence of

multicollinearity in the data [3]. The variance of the parameter estimate is directly proportional to

VIF j. Large value of VIF j would result in having inflated variances of the parameter estimates.



Set Foong Ng / MATEMATIKA 39:3 (2023) 315–327 324

Hence, inflated width of the confidence intervals of the parameters might perhaps cause one or more

confidence intervals to be useless [22]. Furthermore, the condition indices

CI j =

√

λmax

λ j

are 1, 1.191022, 3.461339 and 37.106342. The largest condition index is greater than 30, indicating

that moderate to strong dependencies among the independent variables.

4.1 Numerical Comparison between KAURE and OLSE

Using the Portland cement data, the MSE of OLSE is obtained, that is

MSE (α̂OLS E) = σ̂2

4
∑

j=1

1

λ j

= 1.244601.

Using Theorem 1, the estimated value of

ω̂ j =

λ j

√

2σ̂2

λ jα̂
2
j
+ σ̂2

+ 1

1 −
√

2σ̂2

λ jα̂
2
j
+ σ̂2

are obtained. Table 3 displays the values of ω̂ j.

Table 3: The estimated value of ω̂ j

j σ̂2 λ j α̂ j ω̂ j

1 0.002 2.235704 -1.198979 1.118

2 0.002 1.576066 -0.018413 -11.627

3 0.002 0.186606 -1.549323 1.124

4 0.002 0.001624 0.573396 -3.908

According to Theorem 1, the values of MSE (α̂KAURE), MSE (α̂OLS E) and MSE (α̂KAURE ) −
MSE (α̂OLS E) for k that satisfies 1 < k < min

(

ω j

)

are presented in Table 4.
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Table 4: Numerical comparison between KAURE and OLSE

k MSE (α̂KAURE) MSE (α̂OLS E) MSE (α̂KAURE) −MSE (α̂OLS E)

1.001 1.244599 1.244601 -0.000002

1.010 1.244359 1.244601 -0.000242

1.050 1.239011 1.244601 -0.005590

1.110 1.220595 1.244601 -0.024006

1.115 1.218623 1.244601 -0.025978

1.117 1.217818 1.244601 -0.026783

Table 4 shows that the values of MSE (α̂KAURE) − MSE (α̂OLS E) are less than zero for k that

satisfies 1 < k < min
(

ω j

)

. Hence, the numerical comparison between KAURE and OLSE is aligned

with Theorem 1.

4.2 Numerical Comparison between KAURE and LTESC

Using Theorem 2, the estimated value of

τ̂ j =

2 − λ j + λ j

√

9σ̂2
+ λ jα̂

2
j

σ̂2 + λ jα̂
2
j

3 −

√

9σ̂2
+ λ jα̂

2
j

σ̂2 + λ jα̂
2
j

are obtained for the Portland cement data. Table 5 displays the values of τ̂ j.

Table 5: The estimated value of τ̂ j

j σ̂2 λ j α̂ j τ̂ j

1 0.002 2.235704 -1.198979 1.004

2 0.002 1.576066 -0.018413 15.847

3 0.002 0.186606 -1.549323 1.011

4 0.002 0.001624 0.573396 6.778

According to Theorem 2, the values of MSE (α̂KAURE), MSE (α̂LT ES C) and MSE (α̂KAURE) −
MSE (α̂LT ES C) for k that satisfies k > max

(

τ j

)

are presented in Table 6.
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Table 6: Numerical comparison between KAURE and LTESC

k MSE (α̂KAURE) MSE (α̂LT ES C) MSE (α̂KAURE ) −MSE (α̂LT ES C)

15.900 2.694088 3.323601 -0.629513

16.010 2.701571 3.328571 -0.627

17.005 2.766013 3.370997 -0.604984

19.500 2.905430 3.460625 -0.555195

20.100 2.934960 3.479248 -0.544288

22.025 3.021098 3.532883 -0.511785

The values of MSE (α̂KAURE ) − MSE (α̂LT ES C) in Table 6 are less than zero for k where k >

max
(

τ j

)

. Hence, the numerical comparison between KAURE and LTESC is aligned with Theorem 2.

5 Conclusion

In this paper, the k-almost unbiased regression estimator (KAURE) was developed as an alternative

estimator for the linear regression model in the presence of multicollinearity. We derived KAURE by

using the definition of almost unbiased estimator to further reducing the bias of Liu-type estimator-

special case (LTESC). We compared the superiority of KAURE with OLSE and LTESC theoretically

using mean squared error as criterion. Numerical comparison was also done on a real-life Portland

cement data where multicollinearity was presence in the data. The numerical comparisons supported

the theoretical findings where KAURE is superior to OLSE and LTESC based on MSE criterion

according to the theoretical comparison.
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