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Abstract Generating numerical solutions for boundary value problems (BVPs) using numerical methods can be a

difficult task since the solutions may involve complex mathematical formulations. Hence, various types of B-splines

collocation methods were developed to produce better numerical approximations with much simpler approaches. The

present study introduced two new types of extended Cubic Hybrid B-spline Collocation Method (CHBSM) namely the

Extended Cubic Hybrid B-spline Collocation Method (ECHBSM) and Extended Trigonometric Cubic Hybrid B-spline

Collocation Method (ETCHBSM) for solving second order linear two-point BVPs. These methods were tested on three

examples of linear two-point BVPs of order two. For comparison purposes, three established collocation methods which

are the Cubic B-spline Collocation Method (CBSM), Cubic Trigonometric B-spline Collocation Method (CTBSM) and

Cubic Hybrid B-spline Collocation Method (CHBSM) were also applied on these examples. The numerical results

were tabulated and analysed to make comparisons with the analytical solutions and the conventional methods from past

literatures. For CHBSM, ECHBSM and ETCHBSM, optimization was applied to the free parameter, γ using a simple

proposed approach. The result demonstrated that CHBSM yields the best approximation with the analytical solutions.
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1 Introduction

BVPs in ordinary differential equations (ODEs) frequently arise in modeling numerous practical applications within

the fields of applied mathematics, physics, chemistry, and engineering. Examples of such applications include heat

transmissions [1], traffic flow [2-6] and transports in fluid mechanics [7-11]. The reason behind this prevalence is simply

that these problems can be modeled as BVPs and solved in this form. In this study, the second order linear BVPs of the

following form were considered:

y
′′

(x) +q (x)y
′

(x)+r (x) y (x) = f (x) , x ∈ [a, b] ,

y (a) = α1, y (b) = α2.
(1)

Given that y(x) is a function in terms of x, where y′(x) and y′′(x) are the first and second-order derivative functions

with respect to x, and f (x) is a continuous function in the domain [a, b]. The coefficients of the functions y(x)and y′(x)

are denoted by r(x) and q(x), respectively, while a, b, α, and α are known real numbers. It is noteworthy that the solution

is specified at the boundary points a and b. This type of boundary condition is referred to as the Dirichlet condition.

In the past century, numerous types of numerical methods have been established to solve differential equations (DEs),

including ODEs and partial differential equations (PDEs). However, the approximation of the solutions is not continuous

and can only be computed at defined grid points in the domain. It was in 1968 when a study was conducted on Cubic

Splines Interpolation, giving rise to the concept of splines [12]. In contrast to numerical methods, spline approximations

can provide continuous approximations in the domain of the problem. The following year revealed that the spline approach

is more precise than the conventional finite difference method (FDM) using the same knots [13]. Subsequently, the authors

in [14] proposed the use of one-dimensional Cubic B-spline Interpolation (CBI) for two-point BVPs. The study laid the

foundation for ideas extensively investigated in CBSM. A few years later, CTBSM and ECBSM were discovered [15].

The author concluded that ECBSM was superior to CBI and other numerical approaches, while CTBSM provided better

approximations for problems involving trigonometric functions.
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Following the work in [15], B-splines have been utilized to generate the numerical solutions of linear and non-

linear PDEs. This is due to the favourable characteristics of B-spline functions, such as their composition of piecewise

polynomials and local support within specific intervals, making them effective in producing numerical solutions for

DEs. The initial implementation was demonstrated by the authors in [16], where CBSM were employed to solve one-

dimensional heat and advection-diffusion equations. More recent applications can be observed in [2, 4, 8, 17, 18].

Similar to CBSM, promising results were obtained when CTBSM and Extended Cubic B-spline Methods (ECBSM)

were examined in the context of non-linear PDEs, including fractional PDEs [3, 6, 7, 11, 20-25]. In 2016, a new type of

B-spline, the CHBSM, was proposed for solving non-linear Klein-Gordon and Korteweg-de Vries equations [26]. This

method hybridizes the basis functions of cubic B-spline and cubic trigonometric B-spline, resulting in precise accuracy.

The same idea presented in [26] was echoed in [27], where CHBSM surpassed the accuracy of other B-spline methods.

[10] further verified the superiority of CHBSM when the author tested it on non-linear PDEs.

To the best of the authors’ knowledge, no methods involving the extension of CHBSM through the hybridization

of basis functions had been undertaken prior to this date. Therefore, this study aims to propose new methods, namely

ECHBSM and ETCHBSM, for solving problems in the form of Equation (??). The new methods are established by

hybridizing the extended cubic B-spline basis with the cubic B-spline basis and the trigonometric cubic B-spline basis,

respectively. Theoretically, the outcomes were anticipated to be comparable to those of CHBSM. Additionally, this study

presents a simple and direct approach for optimizing a free parameter, γ, in CHBSM, ECHBSM, and ETCHBSM to

enhance the accuracy of the approximation.

2 Methodology

The basis functions for the Cubic Hybrid B-spline, Extended Cubic Hybrid B-spline, and Extended Trigonometric Cubic

Hybrid B-spline were developed. Subsequently, this concept was applied to establish collocation methods, namely

CHBSM, ECHBSM, and ETCHBSM, for solving BVPs. A straightforward approach was employed to optimize the

parameter γ in all three methods.

2.1 Basis Functions

In this section, four types of basis functions namely the Cubic Hybrid B-spline, Extended Cubic Hybrid B-spline and

Extended Trigonometric Cubic Hybrid B-spline were presented.

2.1.1 Cubic Hybrid B-spline

The Hybrid B-spline is defined as the linear combination of the Cubic B-spline function, Bk
j
(x) and Trigonometric B-spline

function, T k
j

(x). The j-th Hybrid B-spline basis function of k-th order is defined in [26] as:

H k
j (x)=γB k

j (x)+ (1−γ)T k
j (x) , γ ∈ R. (2)

It is important to point out that the value of the parameter, γ has significant importance in the Hybrid B-spline basis

function. When γ= 1, the basis function is reduced to the B-spline basis function and when γ= 0, the basis function

becomes the Trigonometric B-spline basis function. The relationship between the order, k, and degree, d, of a basis

function is defined by k = d + 1 [28]. For instance, if a B-spline function of degree, d = 4, is used, the value of k will

be 5, as the order is simply the degree plus 1. In our study, B-spline basis functions of degree, d = 3, were used; hence,

the order k = d + 1 = 4 was substituted. However, it is possible to use other values of k, as a B-spline curve can also

be defined by the control points, n. Based on [28], a B-spline curve can be constructed up to order n + 1 by adjusting

the locality of the B-spline. Subsequently, the Cubic Hybrid B-spline basis can be obtained by substituting k = 4 into

Equation (2) yielding

H4
j (x)=γB4

j (x) + (1−γ) T 4
j (x) , γ ∈ R. (3)

....[29]. The definitions of B4
j
(x) and T 4

j
(x) are as follows:
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B4
j (x) =

1

6h3























































































































(x − xi)
3, x ∈

[

x j, x j+1

]

,

h3 + 3h2
(

x − x j+1

)

+ 3h
(

x − x j+1

)2

−3
(

x − x j+1

)3
, x ∈

[

x j+1 , x j+2

]

,

h3 + 3h2 (xi+3 − x) + 3h(xi+3 − x)2

−3(xi+3 − x)3, x ∈
[

x j+2 , x j+3

]

,

(xi+4 − x)3, x ∈
[

x j+3 , x j+4

]

,

0, otherwise.

(4)

T 4
j (x) =

1

ϕ























































































































δ3
(

x j

)

, x ∈
[

x j, x j+1

]

,

δ
(

x j

) [

δ
(

x j

)

θ
(

x j+2

)

+ θ
(

x j+3

)

δ
(

x j+1

)]

+θ
(

x j+4

)

δ
2 (

x j+1

)

, x ∈
[

x j+1 , x j+2

]

,

δ
(

x j

)

θ2
(

x j+3

)

+ θ
(

x j+4

)

[δ
(

x j+1

)

θ
(

x j+3

)

+θ
(

x j+4

)

δ
(

x j+2

)

], x ∈
[

x j+2 , x j+3

]

,

θ3(x j+4), x ∈
[

x j+3 , x j+4

]

,

0, otherwise,

(5)

where δ
(

x j

)

= sin

( x − x j

2

)

, θ
(

x j

)

= sin

( x j − x

2

)

and ϕ = sin

(

h

2

)

sin (h) sin

(

3h

2

)

[25].

2.1.2 Extended Cubic Hybrid B-spline

The Extended Cubic Hybrid B-spline is simply an extension of CHBSM, where it consists of the linear combination of

the Extended Cubic B-spline function, Ek
j

(x) [15] with the Cubic B-spline function, Bk
j
(x) . The j-th Extended Hybrid

B-spline basis function, EHk
j (x) of order k is defined as:

EHk
j (x) = γEk

j (x) + (1 − γ) Bk
j (x) , γ ∈ R. (6)

By substituting k = 4 into Equation (6), the Cubic Hybrid B-spline basis can be obtained as:

EH4
j (x) = γE4

j (x) + (1 − γ) B4
j (x) , γ ∈ R, (7)

where

E4
j (x) =































































































































4h (1 − λ)
(

x − x j

)3
+ 3λ

(

x − x j

)4
, x ∈

[

x j, x j+1

]

,

h4 (4 − λ) + 12h3
(

x − x j+1

)

+ 6h2 (2 + λ)
(

x − x j+1

)2

−12h
(

x − x j+1

)3
− 3λ

(

x − x j+1

)4
, x ∈

[

x j+1 , x j+2

]

,

h4 (4 − λ) + 12h3
(

x j+3 − x
)

+ 6h2 (2 + λ)
(

x j+3 − x
)2

−12h
(

x j+3 − x
)3
− 3λ

(

x j+3 − x
)4
, x ∈

[

x j+2 , x j+3

]

,

4h (1 − λ)
(

x j+4 − x
)3
+ 3λ

(

x j+4 − x
)4
, x ∈

[

x j+3 , x j+4

]

,

0, otherwise.

(8)

and B4
j
(x) as shown previously in Equation (4).
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2.1.3 Extended Trigonometric Cubic Hybrid B-spline

The Extended Trigonometric Cubic Hybrid B-spline is also an extension of CHBSM such that it consists of the linear

combination of the Extended Cubic B-spline function, Ek
j

(x) [15] with the Trigonometric B-spline function, T k
j

(x). The

j-th Extended Trigonometric Hybrid B-spline basis function, ET k
j
(x) of order k is defined as:

ET k
j (x) = γE k

j (x) + (1 − γ) T k
j (x) , γ ∈ R. (9)

Subsequently, the 4-th order basis function can be written as:

ET 4
j (x) = γE 4

j (x) + (1 − γ) T 4
j (x) , γ ∈ R, (10)

where E4
j

(x) is defined in Equation (8) and T 4
j

(x) as shown in Equation (5).

2.2 Collocation Method

This section explains only one hybrid collocation method which is CHBSM as the same procedures were implemented on

ECHBSM and ETCBSM. The only difference between all three collocation methods are the basis functions as discussed

earlier. An approximate solution of Equation (1) using CHBSM can be written as:

S (x) =

n−1
∑

j=−3

C jH
4
j (x) = f (x) , x ∈ [x0, xn] , (11)

where C j (x) are the unknown real coefficients and H4
j

(x) is the Cubic Hybrid B-spline basis functions presented in

Equation (3). The term f (x) is the continuous function in the domain [x0, xn] located at the right-hand side of the BVP.

Analogous to CBSM and CTBSM, there are three nonzero terms at each knot, x j namely H4
j−3 (x) , H4

j−2 (x), and H4
j−1 (x)

[26]. The values are shown in Table 1.

Table 1: Values of H 4
j

(x) ,H
′4
j

(x) and H
′′4
j

(x)

x j x j+1 x j+2 x j+3 x j+4

H4
j

(x) 0 h1 h2 h1 0

H
′4

j (x) 0 h3 0 h4 0

H
′′4

j (x) 0 h5 h6 h5 0

The value of h j for j = 1, 2, . . . , 6 are as follows:

h1 =
γ

6
+

(1 − γ) sin2

(

h

2

)

sin (h) sin

(

3h

2

) ,

h3 =
γ

2h
+

3 (1 − γ)

4 sin

(

3h

2

) ,

h5 =
γ

h2
+

3 (1 − γ)

[

sin

(

h

2

)

− 2 sin3

(

h

2

)

+ sin

(

3h

2

)]

8 sin

(

h

2

)

sin (h) sin

(

3h

2

) ,

h2 =
4γ

6
+

2 (1 − γ) sin

(

h

2

)

sin

(

3h

2

)

h4 =
−γ

2h
−

3 (1 − γ)

4 sin

(

3h

2

) ,

h6 =
−2γ

h2
−

3 (1 − γ)

[

sin (2h) + 2 sin2

(

h

2

)

+ sin (h)

]

4 sin

(

h

2

)

sin (h) sin

(

3h

2

) .

Thus, the approximated solution in Equation (11) and its derivatives with respect to x up to order two can be obtained

as follows:

S
(

x j

)

=C j−3H4
j−3

(

x j

)

+C j−2H4
j−2

(

x j

)

+C j−1H4
j−1

(

x j

)

= f
(

x j

)

,

or S
(

x j

)

=C j−3 (A1)+C j−2 (A2)+C j−1 (A1)= f
(

x j

)

,
(12)
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S
′
(

x j

)

= C j−3H
′4

j−3

(

x j

)

+C j−2H
′ 4

j−2

(

x j

)

+C j−1H
′4

j−1

(

x j

)

= f
′
(

x j

)

,

or S
′
(

x j

)

= C j−3 (A3)+C j−2 (0)+C j−1 (A3)= f
′
(

x j

)

,
(13)

S
′′
(

x j

)

= C j−3H
′′4

j−3

(

x j

)

+C j−2H
′′4

j−2

(

x j

)

+C j−1H
′′ 4

j−1

(

x j

)

= f
′′
(

x j

)

or S
′′
(

x j

)

=C j−3 (A4)+C j−2 (A5)+C j−1 (A4)= f
′′
(

x j

)

,
(14)

where

Ai = γσi+ (1 − γ) ηi, for i = 1, 2, . . . , 5 (15)

and

σ1=
1

6
, σ2=

4

6
, σ3=

−1

2h
, σ4=

1

h2
, σ5=

−2

h2
,

κ1 = sin

(

h

2

)

, κ2 = sin (h) , κ4 = sin (2h) . κ4 = sin (2h) .

η1=
κ1

2

κ2κ3
, η2=

2κ2

κ3
, η3=

−3
4κ3
, η4=

3
(

κ1−2κ1
3+κ3

)

8κ1κ2κ3
, η5 =

−3
(

κ4 + 2κ1
2κ2

)

4κ1κ2κ3
.

Since S (x) is assumed to be the approximated solution of the analytical solution y (x), Equation (1) can be written as:

S
′′
(

x j

)

+q
(

x j

)

S
′
(

x j

)

+r
(

x j

)

S
(

x j

)

= f
(

x j

)

, x∈ [x0 , xn] ,

S (x0) = α1, S (xn) = α2,
(16)

for j = 0, 1, . . . , n − 1. Equation (12) – Equation (14) is then substituted in Equation (16) and upon simplifications,

Equation (17) is obtained as:

C j−3

[

γσ4 + (1−γ) η4−q
(

x j

)

(γσ3+ (1−γ)η3)+r
(

x j

)

(γσ1+ (1−γ) η1)
]

+C j−2

[

γσ5+ (1−γ) η5+r
(

x j

)

(γσ2+ (1−γ)η2)
]

+ C j−1

[

γσ4+ (1−γ) η4+q
(

x j

)

(γσ3+ (1−γ) η3)+r
(

x j

)

(γσ1+ (1−γ) η1)
]

= f
(

x j

)

,

(17)

with boundary conditions

S H (x0) = C−3

[

γσ1 + (1 − γ) η1

]

+ C−2

[

γσ2 + (1 − γ)η2

]

+C−1

[

γσ1 + (1 − γ) η1

]

= α1, (18)

S H (xn) = Cn−3

[

γσ1 + (1 − γ) η1

]

+ Cn−2

[

γσ2 + (1 − γ)η2

]

+Cn−1

[

γσ1 + (1 − γ) η1

]

= α2. (19)

Equation (17)–Equation (19) results in a tridiagonal matrix system of size (n + 3) × (n + 3). This system can be denoted

as BC j= F. The matrix C is a column matrix of the coefficients C = (C0,C1, . . . ,Cn−1,Cn), the right hand side matrix is

the function F = (α1, f (x0) , f (x1) , . . . , f (xn) , α2)T whereas the coefficients of matrix B is presented as follows:

B =















































































Q1 Q2 Q1 0 . . . . . . 0

λ0 (x0) µ0 (x0) ρ0 (x0) 0 . . . . . . 0

0 λ1 (x1) µ1 (x1) ρ1 (x1) . . . . . . 0
...

. . .
. . .

. . .
. . . . . . 0

...
. . .

. . .
. . .

. . . 0 0
...

. . . . . . 0 λn (xn) µn (xn) ρn (xn)

0 . . . . . . 0 Q1 Q2 Q1















































































.,

with

Q1 =γσ1+ (1−γ) η1, (20)

Q2 =γσ2+ (1−γ) η2, (21)

λ j

(

x j

)

=
[

γσ4+ (1−γ) η4

]

−q
(

x j

)

[

γσ3+ (1−γ) η3

]

+ r
(

x j

)

(Q1) , (22)

µ j

(

x j

)

=
[

γσ5+ (1−γ) η5

]

+ r
(

x j

)

(Q2) , (23)

ρ j

(

x j

)

=
[

γσ4+ (1−γ) η4

]

+q
(

x j

)

[

γσ3+ (1−γ) η3

]

+ r
(

x j

)

(Q1) , (24)
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for j = 0, 1, . . . , n − 1. The values of the unknown C j for j = 0, 1, . . . , n − 1 can be obtained by solving the matrix system

using

C j=B−1F, (25)

which are then substituted back in Equation (11) to get the approximated solution of the second order linear two-point

BVP in Equation (1).

2.3 Optimization of γ

The accuracy level of the approximated solutions of second order linear two-point BVPs using CHBSM, ECHBSM and

ETCHBSM is highly dependent on the value of the free parameter γ. This section explains the method of determining γ

without involving the use of an analytical solution for CHBSM, which was adopted from [15]. The approach applies for

ECHBSM and ETCHBSM as well but is omitted here to avoid redundancies.

In contrast to the approach in [15], a much simpler method, which does not include Newton’s method for minimization,

was applied. Firstly, the approximated solution of CHBSM given in Equation (11) is written in the form of γ such that

S (x, γ)=

n−1
∑

j=−3

C j H
4
j (x, γ) , x∈ [x0, xn] , (26)

for j= 1, 2, . . . , n−1 where Ci’s are the unknown real coefficients and H4
j

(x) is the Cubic Hybrid B-spline basis function.

Now, the general form of the second order linear two-point BVP as in Equation (1) can be written as:

y
′′

(x)+q (x) y
′

(x)+r (x) y (x)− f (x) = 0. (27)

Then, substituting the approximated solution, S (x, γ) and its respective derivatives into Equation (27) yields

S
′′

(x, γ)+q (x) S
′

(x, γ)+r (x) S (x, γ)− f (x)≈0. (28)

Equation (28) is a form of error formula, denoted by E (x, γ) such that

E (x, γ)=S
′′

(x, γ)+q (x) S
′

(x, γ)+r (x) S (x, γ)− f (x) . (29)

Further expanding the previous equation for each piecewise polynomial, S j (x, γ) yields

S
′′

E j (x, γ)=S j

′′

(x, γ)+q (x) S j

′

(x, γ)+r (x) S j (x, γ)− f (x) , (30)

where j= 1, 2, . . . , n−1. Next, for a sequence
{

x j
∗
}n−1

j=1
with x j

∗∈ [x0, xn], a collocation point representative from each

sub-interval is chosen to be evaluated such that

x j
∗=

x j+x j+1

2
,

for i= 1, 2, . . . , n−1. The error at collocation points can be written as:

E
(

x j
∗, γ

)

, x∈
[

x j, x j+1

]

. (31)

The previous expression is further combined using the Euclidean norm (L2) formula defined as:

L2=

√

√

√

n−1
∑

j=1

[

S
(

x j

)

−y
(

x j

)]2
, (32)

which yields

e1 (γ)=

√

√

√

n−1
∑

j=1

[

E
(

x j
∗
)

, γ
]2
. (33)
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The former equation measures the accuracy of the approximated solution without relying on the exact solution. Now,

applying minimization to Equation (32) results in

e2 (γ)=

n−1
∑

j=1

[

E
(

x j
∗
)

, γ
]2
. (34)

It is evident that Equation (34) is essentially the square of Equation (33), making it easier to compute than the former

equation. Another alternative is to combine the expressions using the one-norm formula, yielding a more simplified

equation

e3 (γ)=

n−1
∑

j=1

∣

∣

∣

∣

E
(

x j
∗
)

, γ

∣

∣

∣

∣

. (35)

Theoretically, finding the optimized value of γ implies that e1 (γ) , e2 (γ) and e3 (γ) in Equation (33), Equation (34) and

Equation (35) need to be minimized as well. This can be achieved by setting the error at collocation points to be zero, as

follows.

E
(

x j
∗, γ

)

= 0,

e1 (γ)=

√

√

√

n−1
∑

j=1

[

E
(

x j
∗
)

, γ
]2
= 0,

e2 (γ)=

n−1
∑

j=1

[

E
(

x j
∗
)

, γ
]2
= 0,

e3 (γ)=

n−1
∑

j=1

∣

∣

∣

∣

E
(

x j
∗
)

, γ

∣

∣

∣

∣

= 0.

Note that the error equations, e1 (γ) , e2 (γ) and e3 (γ) are in terms of two unknowns: the collocation points representative,

x j
∗, and the parameter, γ. The collocation points representative was defined earlier as the midpoint value of the collocation

points in each sub-interval. Then, by substituting the values of x j
∗, the error equations will be left in terms of γ. Now, the

value of γ in the error equations e1 (γ) , e2 (γ) and e3 (γ) can be found by using Mathematica 12.3 with a simple built-in

function “Solve”. The value found is considered the optimized value of γ since the error equations have been minimized.

In this study, Equation (34), representing the Euclidean norm (L2) , was considered to determine the value of γ. This

choice was made because the L2-norm is capable of accurately measuring the dispersion of a feature. Another reason is

that the square root, as seen in Equation (33) and Equation (34), implies a continuously differentiable function, in contrast

to the absolute function in Equation (35), which introduces a discontinuity. Generally, being continuously differentiable

is a crucial criterion for optimization problems. It is worth mentioning that ECHBSM and ETCHBSM undergo this

optimization process twice since the basis of the Extended Cubic B-spline itself has a free parameter, λ. Therefore, the

first optimization is carried out on the Extended Cubic B-spline basis to obtain an optimized value of λ before proceeding

to the second optimization for the bases of Extended Cubic Hybrid B-spline and Extended Trigonometric Cubic Hybrid

B-spline to obtain an optimized value of γ.

3 Results and Discussion

The findings of this study were presented and discussed in this section. The discussion focuses on the numerical results

of all five types of B-spline collocation methods compared to the analytical solutions when implemented on three chosen

problems of second order linear two-point BVPs.

Example 1: y
′′

(x) −y (x) =2 ex−1 , 0 ≤ x< 1, with y (0)= 0 and y (1)= 1. [29]

The analytical solution is y (x) =x ex−1. Table 2 presents the absolute errors and norms upon applying CBSM, CTBSM,

CHBSM, ECHBSM and ETCHBSM to Example 1.

From Table 2, the corresponding maximum absolute error (L∞) for CBSM, CTBSM, CHBSM, ECHBSM and

ETCHBSM are found to be 2.66489 × 10−4, 6.62037 × 10−4, 1.45553 × 10−5, 8.11253 × 10−1 and 8.07113 × 10−1,
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respectively. The results of CBSM agree with those of [29]. On the other hand, CHBSM produces better approximations

of the solutions than CTBSM and the other two new hybrid methods. It also has smaller error compared to CBSM.

Table 2: The absolute errors and norms upon applying

CBSM, CTBSM, CHBSM, ECHBSM and ETCHBSM to Example 1

CHBSM
ECHBSM ETCHBSM

x CBSM [29] CBSM CTBSM
(γ = − 0.70786)

(λ = − 0.0356, (λ = − 0.0356,

γ = − 0.0486) γ = − 0.07426)

0.1 8.20 × 10−5 8.20393 × 10−5 1.98907 × 10−4 6.86513 × 10−7 3.96483 × 10−2 3.83012 × 10−2

0.2 1.15 × 10−4 1.15096 × 10−4 3.67729 × 10−4 2.48477 × 10−6 8.86978 × 10−2 8.71384 × 10−2

0.3 2.06 × 10−4 2.05606 × 10−4 5.03258 × 10−4 5.09038 × 10−6 1.47626 × 10−1 1.45824 × 10−1

0.4 2.44 × 10−4 2.44454 × 10−4 6.01275 × 10−4 8.12575 × 10−6 2.17968 × 10−1 2.15891 × 10−1

0.5 2.66 × 10−4 2.65555 × 10−4 6.56420 × 10−4 1.11229 × 10−5 3.01474 × 10−1 2.99082 × 10−1

0.6 2.66 × 10−4 2.66489 × 10−4 6.62037 × 10−4 1.35035 × 10−5 4.00133 × 10−1 3.97383 × 10−1

0.7 2.44 × 10−4 2.44305 × 10−4 6.09998 × 10−4 1.45553 × 10−5 5.16209 × 10−1 5.13054 × 10−1

0.8 1.95 × 10−4 1.95449 × 10−4 4.90498 × 10−4 1.34050 × 10−5 6.52276 × 10−1 6.48659 × 10−1

0.9 1.16 × 10−4 1.15684 × 10−4 2.91808 × 10−4 8.98678 × 10−6 8.11253 × 10−1 8.07113 × 10−1

L
∞

2.66 × 10−4 2.66489 × 10−4 6.62037 × 10−4 1.45553 × 10−5 8.11253 × 10−1 8.07113 × 10−1

L2 6.20 × 10−4 6.19963 × 10−4 1.53512 × 10−3 2.96136 × 10−5 1.29607 × 100 1.28330 × 100

Figure 1 depicts the error for the approximated analytical solution using CBSM, CTBSM, CHBSM, ECHBSM and

ETCHBSM with n = 10. From the figure, it is evident that the error of approximation is the smallest for CHBSM,

followed by CBSM, ECHBSM, CTBSM and ETCHBSM. Since the error is the smallest for CHBSM, it implies that the

approximated solution is the closest to the analytical solution compared to the other four methods. Figure 2 validates that

the approximated solution is in good agreement with the analytical solution, as both solutions are seen to overlap.

Figure 1: Error plots of the approximated analytical solution for Example 1 with n = 10 and h= 1
10

.
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Figure 2: Plot of exact solution with approximated solution for Example 1 by CHBSM.

Example 2: y
′′

(x) +
4 x

1 + x2
y
′

(x) +
2

1 + x2
y (x) = 0, 0 ≤ x < 2, with y (0) = 1 and y (2) = 1

5
. [29]

The analytical solution is y (x) =
1

1 + x2
. Table 3 presents the absolute errors and norms upon applying CBSM, CTBSM,

CHBSM, ECHBSM and ETCHBSM to Example 2.

Table 3: Absolute errors and norms at collocation points using CBSM, CTBM, CHBSM, ECHBSM and

ETCHBSM for Example 2 with n= 10 and h= 1
5

x CBSM [29] CBSM CTBSM CHBSM

(γ = 1.98222)

ECHBSM

(λ = − 1.89774,

ETCHBSM

( λ = − 1.89774,

γ = 0.02036) γ = 0.01364)

0.2 1.52 × 10−3 1.51882 × 10−3 1.22065 × 10−3 9.27793 × 10−4 6.3540 × 10−1 4.23380 × 10−1

0.4 4.05 × 10−3 4.04647 × 10−3 3.13880 × 10−3 2.24726 × 10−3 3.31356 × 10−1 4.84335 × 10−2

0.6 5.34 × 10−3 5.34080 × 10−3 3.86910 × 10−3 2.42357 × 10−3 2.74447 × 10−1 9.78919 × 10−3

0.8 5.00 × 10−3 5.00427 × 10−3 3.24409 × 10−3 1.51522 × 10−3 3.51896 × 10−1 7.47952 × 10−1

1.0 3.84 × 10−3 3.83821 × 10−3 2.09235 × 10−3 3.77544 × 10−4 5.13389 × 10−1 8.68052 × 10−1

1.2 2.58 × 10−3 2.57757 × 10−3 1.06527 × 10−3 4.20136 × 10−4 7.36301 × 10−1 6.33041 × 10−1

1.4 1.55 × 10−3 1.54831 × 10−3 3.88934 × 10−4 7.49821 × 10−4 4.89627 × 10−1 4.99794 × 10−1

1.8 3.15 × 10−4 3.14843 × 10−4 5.31774 × 10−5 4.14653 × 10−4 3.12447 × 100 8.31428 × 10−1

L
∞

5.30 × 10−3 5.34080 × 10−3 3.86910 × 10−3 2.42357 × 10−3 3.12447 × 100 1.35569 × 100

L2 9.84 × 10−3 9.83740 × 10−3 6.51960 × 10−3 3.95312 × 10−3 3.62754 × 100 2.16202 × 100

Based on the results in Table 3, the corresponding maximum absolute error (L∞) for CBSM, CTBSM, CHBSM,

ECHBSM and ETCHBSM are found to be 5.34080 × 10−3 , 3.86910 × 10−3 , 2.42357 × 10−3, 3.12447 × 100 and

1.35569 × 100, respectively. The results of CBSM align with those in [29]. It can be observed that the approximations by

CTBSM have slightly smaller errors compared to CBSM. However, CHBSM gives the smallest error compared to both

CBSM and CTBSM, although the differences are very small. Table 3 also demonstrates that ETCHBSM provides better

results compared to ECHBSM. Even so, CHBSM surpasses all the other methods.

For better visualisation, the error for the approximated analytical solution using CBSM, CTBSM, CHBSM, ECHBSM

and ETCHBSM for Example 2 is presented in Figure 3. The plot of the approximated solution using CHBSM alongside

the analytical solution is also presented in Figure 4.
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Figure 3: Error plots of the approximated analytical solution for Example 2 with n = 10 and h = 1
5

Figure 4: Plot of exact solution with approximated solution for Example 2 by CHBSM

Figure 3 clearly illustrates the irregular behaviour of the errors for ECHBSM and ETCHBSM. One possible reason

for this behaviour is the unreliability of the optimization method proposed for ECHBSM and ETCHBSM. Meanwhile,

the overlap of the approximated solution with the analytical solution in Figure 4 suggests that there are insignificant

differences between both plots. However, from both figures, it is safe to conclude that CHBSM produces the best

approximation for this problem.

Example 3: y
′′

(x) + 2 y
′

(x) + 5 y (x) = 6cos (2x) − 7sin (2x) , 0 ≤ x < π
4
, with y (0) = 4 and y

(

π
4

)

= 1. [30]

The analytical solution is y (x) = 2
(

1 + e−x) cos (2x) + sin (2x) .
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Table 4: Absolute errors and norms at collocation points using CBSM, CTBM, CHBSM, ECHBSM and

ETCHBSM for Example 3 with n= 20 and h=
π

80

x CBSM [30] CBSM CTBSM
CHBSM

(γ=0.14871)

ECHBSM

(λ = 0.81650,

ETCHBSM

(λ = 0.81650,

γ = − 0.000192) γ = − 0.000787)

π

80
0 1.4211×10−14 4.1619×10−5 1.13760 ×10−5 2.0769 ×10−5 4.2125 ×10−5

π

40
2.0634 ×10−5 2.0634 ×10−5 7.6890×10−5 1.96254 ×10−5 3.6615 ×10−5 7.7331 ×10−5

3π

80
3.6486 ×10−5 3.6486 ×10−5 1.0598×10−4 2.52119 ×10−5 4.8252 ×10−5 1.0636 ×10−4

π

20
4.8129 ×10−5 4.8129 ×10−5 1.2911×10−4 2.85565 ×10−5 5.6216 ×10−5 1.2945 ×10−4

π

16
5.6010 ×10−5 5.6010 ×10−5 1.4659×10−4 3.00401 ×10−5 6.1005 ×10−5 1.4688 ×10−4

3π

40
6.0895 ×10−5 6.0895 ×10−5 1.5874×10−4 3.00065 ×10−5 6.3082 ×10−5 1.5899 ×10−4

7π

80
6.2978 ×10−5 6.2978 ×10−5 1.6594×10−4 2.87656 ×10−5 6.2876 ×10−5 1.6616 ×10−4

π

10
6.2779 ×10−5 6.2779 ×10−5 1.6860×10−4 2.65967 ×10−5 6.08786 ×10−5 1.6879 ×10−4

9π

80
6.0696 ×10−5 6.0696 ×10−5 1.6715×10−4 2.37513 ×10−5 5.7182 ×10−5 1.6731×10−4

π

8
5.7099 ×10−5 5.7099 ×10−5 1.6201×10−4 2.04561 ×10−5 5.2406 ×10−5 1.6215 ×10−4

11π

80
4.6707 ×10−5 4.6707 ×10−5 1.5362×10−4 1.69162 ×10−5 4.6776 ×10−5 1.5375 ×10−4

3π

20
4.0526 ×10−5 4.0526 ×10−5 1.4244×10−4 1.33171 ×10−5 4.0587 ×10−5 1.4255 ×10−4

13π

80
3.4059 ×10−5 3.4059 ×10−5 1.2888×10−4 9.82776 ×10−6 3.4113 ×10−5 1.2898 ×10−4

7π

40
2.7560 ×10−5 2.7560 ×10−5 1.1337×10−4 6.60233 ×10−6 2.7607 ×10−5 1.1345 ×10−4

3π

16
2.1267 ×10−5 2.1267 ×10−5 9.6306×10−5 3.78222 ×10−6 2.1306 ×10−5 9.6376 ×10−5

π

5
1.5397 ×10−5 1.5397 ×10−5 7.8066 ×10−5 1.4977 ×10−6 1.5429 ×10−5 7.8125 ×10−5

17π

80
1.0154 ×10−5 1.0154 ×10−5 5.9004 ×10−5 1.3064 ×10−7 1.0179 ×10−5 5.9052 ×10−5

9π

40
5.7265 ×10−6 5.7265 ×10−6 3.3944×10−5 9.9109 ×10−7 5.7443 ×10−6 3.9483 ×10−5

19π

80
2.2885 ×10−6 2.2885 ×10−6 1.9689 ×10−5 9.7972 ×10−7 2.2992 ×10−6 1.9715 ×10−5

L
∞

6.2978 ×10−5 6.2978 ×10−5 1.6860×10−4 3.0040 ×10−5 6.3082 ×10−5 1.6879 ×10−4

L2 1.8733×10−4 1.8733×10−4 5.3528×10−4 7.6599 ×10−5 1.8770×10−4 5.3605×10−4
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According to Table 4, the corresponding maximum absolute error (L∞) for CBSM, CTBSM, CHBSM, ECHBSM and

ETCHBSM are 6.2978 × 10−5, 1.6860 × 10−4, 3.0040 × 10−5, 6.3082 ×10−5 and 1.6879 ×10−4, respectively. The results

of CBSM align with those in [30], and it was observed that CBSM produces slightly smaller error compared to CTBSM.

Similar to Example 1 and Example 2, CHBSM has the smallest errors, yielding the most accurate approximation of the

solution compared to the other four methods. This can be clearly seen in Figure 5. The plot of the analytical solution with

the approximated solution using CHBSM for this example is also shown in Figure 6.

Figure 5: Error plots of the approximated analytical solution for Example 3 with n = 20 and h = π
80

Figure 6: Error plots of the approximated analytical solution for Example 3 with n = 20 and h = π
80

From Table 2 to Table 4 and Figure 1 to Figure 6, it is evident that CHBSM has indeed provided more accurate

approximations of the solutions compared to CBSM, CTBSM, ECHBSM and ETCHBSM. The presence of the free

parameter γ contributes to this improved accuracy by offering greater flexibility in the approximations. Additionally, the
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optimization technique successfully enhances the numerical solutions for CHBSM. In summary, for all the examples,

there exist values of γ that lead to better approximations of the solutions. For the purpose of comparison, the maximum

absolute error (L∞) and Euclidean norm (L2) for Examples 1, 2, and 3 using CBSM, CTBSM, CHBSM, ECHBSM, and

ETCHBSM, along with other methods from the literature, are summarized in Table 5.

Table 5: Absolute errors and norms for Examples 1, 2 and 3 using CBSM, CTBM, CHBSM, ECHBSM,

ETCHBSM and other methods from literatures

Example Method Maximum Absolute Error (L
∞

) Euclidean Norm (L2)

1 LSM [29] 3.66 × 10−7 8.50 × 10−7

FDM [29] 2.66 × 10−4 6.18 × 10−4

CBSM [29] 2.66 × 10−4 6.20 × 10−4

CBSM 2.66489 × 10−4 6.19963 × 10−4

CTBSM 6.62037 × 10−4 1.53512 × 10−3

CHBSM (γ = − 0.70786) 1.45553 × 10−5 2.96136 × 10−5

ECHBSM (λ = − 0.0356,

γ = − 0.0486)
8.11253 × 10−1 1.29607 × 100

ETCHBSM (λ = − 0.0356,
8.07113 × 10−1 1.28330 × 100

γ = − 0.07426)

2 LSM [29] 2.98 × 10−5 3.97 × 10−5

FDM [29] 2.00 × 10−3 4.18 × 10−3

CBSM [29] 5.30 × 10−3 9.84 × 10−3

CBSM 5.34080 × 10−3 9.83740 × 10−3

CTBSM 3.86910 × 10−3 6.51960 × 10−3

CHBSM (γ = 1.98222) 2.42357 × 10−3 3.95312 × 10−3

ECHBSM (λ = −1.89774,
3.12447 × 100 3.62754 × 100

γ = 0.02036)

ETCHBSM (λ = 0.01364,
1.35569 × 100 2.16202 × 100

γ = 0.02036)

3 CBSM [30] 6.29781 × 10−5 1.87331 × 10−4

CBSM 6.29781 × 10−5 1.87331 × 10−4

CTBSM 1.68603 × 10−4 4.07593 × 10−4

CHBSM (γ = 0.14871) 3.00401 × 10−5 7.65993 × 10−5

ECHBSM (λ = 0.81650,
6.3082 ×10−5 1.8770×10−4

γ = −0.000192)

ETCHBSM (λ = 0.81650,
1.6879 ×10−4 5.3605×10−4

γ = −0.000787)

From Table 5, the errors produced by LSM appear to be better than FDM and all the B-spline collocation methods

presented. One reason is that LSM involves the use of the fourth order Runge-Kutta method, which yields a truncation

error of O
(

h4
)

. On the contrary, all the B-spline collocation methods and FDM, derived from finite difference

approximation, have a truncation error of O
(

h2
)

.
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Even though the approximations by LSM are better than CBSM, CTBSM, CHBSM, ECHBSM and ETCHBSM, the

approximation by CBSM is comparable to LSM when the subinterval, h is increased [29]. Therefore, the author concludes

that the accuracy of CHBSM can be improved by having smaller step size, h. Additionally, a better optimization approach

for the parameter γ can enhance the accuracy of the method, as well as for ECHBSM and ETCHBSM. Furthermore,

B-spline collocation methods can provide continuous approximation in the domain of the problem, whereas numerical

methods only give approximations at defined grid points. Therefore, CHBSM is the preferred method in approximating

second order linear two-point BVPs.

4 Conclusion

In conclusion, the numerical results reveal that CHBSM is the preferred method for approximating second order linear

BVPs compared to other spline methods. The primary reason for this is because CHBSM has a free parameter, γ,

which can be optimized using the proposed method to provide more accurate approximations. As for future work, two

major suggestions can be made. First, the optimization of the free parameter, γ can be further improved and explored to

give more promising results for hybridization methods. This is supported by the finding that Extended Cubic B-spline

Collocation Method (ECBSM) achieved more accurate solutions for second-order linear BVPs than CBSM and CTBSM

[15]. Additionally, CTBSM was proven to offer better approximations compared to CBSM for certain equations [15].

Therefore, theoretically, the approximation using ETCHBSM would provide the best accuracy. However, the results

obtained in this study showed otherwise, presumably due to the efficacy of the proposed optimization method. Lastly, due

to the efficiency of CHBSM, this method can be applied to solve more complex multidimensional BVPs in future works.

For instance, CHBSM can be applied to non-linear PDEs, such as those in fluid dynamics and heat transfer problems.
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