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Abstract Experimental and theoretical evidence has shown that adaptive step size
methods such as the backward differentiation formula (BDF) are more robust over a

wider range of step sizes compared to those used in fixed step methods. Acknowledging
the computational efficiency and accuracy obtained with such strategies, an adaptive

step size version of the block backward differentiation formula (BBDF) in a diagonally
implicit structure is proposed for solving stiff ordinary differential equations (ODEs),

particularly in addressing the challenges posed by the chemical reaction problem within
the domains of applied and industrial mathematics. The diagonally implicit structure

with a lower triangular matrix and constant diagonal inputs offers significant advantages
in evaluating the Jacobian and the lower-upper decomposition. The stability properties

that were investigated show that the new class is zero−stable, A0−stable and almost
A−stable. Comparative evaluations reveal the superior performance of the proposed
method compared to the existing fully implicit BBDF and ode15s conducted in MATLAB

software.

Keywords adaptive step size; ρ−type; block backward differentiation formula;
diagonally implicit; stiff stability.
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1 Introduction

Stiff ordinary differential equations (ODEs) are vital in simulating physical systems for science
and engineering applications, including control theory, insulator physics, nuclear reactor theory,
electrical circuits, chemical pyrolysis, chemical kinetics, molecular dynamics, reactor kinetics
and chemical reactions. These problems arise when different ODE components have varying
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spatial dependencies. Additionally, chemical reaction problems are a crucial aspect in this
context, with stiff ODEs playing a key role in modeling and optimizing reactions, especially in
chemical kinetics applications.

Consider an s × s linear system

ỹ′ = P ỹ + Ψ̃(t), ỹ(t0) = Q̃, t ∈ [t0, te] (1)

where ỹ, Ψ̃ ∈ <s, ỹT = (y1, y2, . . . , ys) and Q̃T = (Q1, Q2, . . . , Qs). P is a constant matrix
with eigenvalues, λa and corresponding eigenvectors, ca for a = 1, 2, . . . , s. The system in (1)
becomes stiff if Re(λa) < 0 and max

a
|Re(λa)| � min

a
|Re(λa)| where the ratio,

S =
max

i
|Re(λi)|

min
i
|Re(λi)|

is called the stiffness ratio or stiffness index, as defined in [1].
There exists a considerable body of literature on improving the accuracy and stability

characteristics of the conventional BDF while maintaining its structure. Cash in [2] derived the
extended BDF by introducing a future point to increase the order of accuracy. Later in 1981, [3]
presented a class of (p+2)−step BDF of order p. The two extra degrees of freedom leaves some
free parameters to the formula that leads to improving the absolute stability properties. The
α−type of variable step variable formula (VSVF) has been developed by Zlatev and Thomsen
in [4]. Since the α−type VSVF which is a generalization of the Adams formula that gives an
excellent stability property and improved accuracy on solving non-stiff ODEs, [5] extended the
implementation of α−type VSVF for the solution of stiff systems.

Another well-known method used for solving stiff differential equations is the fully implicit
of Runge-Kutta (FIRK) methods, which evaluate the Jacobian matrix,

J =
∂F

∂Y

(
Y

(i)
j+k

)

and perform the lower-upper (LU) factorization of the matrix I−haii
∂F
∂y

in each of its integration

stage. Therefore, the authors in [6–8] chose to incorporate the lower triangular matrix with a
constant value on the diagonal due to the high expense associated with implementing the FIRK
methods. The aforementioned methodologies are commonly referred to as diagonally implicit
Runge-Kutta (DIRKs) techniques, wherein the evaluation of J can be performed just once per
step. According to Butcher in [9], it has been suggested that if the Jacobian varies sufficiently,
it can be almost as effective as evaluating the Jacobian once for every stage.

This findings align with previous literature indicating that adaptive step size methods
such as BDF, discussed in [10] and the second derivative linear multistep methods of [11]
exhibit better performance in a wider range of step sizes than the fixed step methods (see [12]).
According to [9], on deciding which step size to be used in each new step, it is necessary to
employ a wise strategy in determining whether to accept or reject the previous step. Another
critical condition is the inclusion of a safety factor (less than 1) in the computation to mitigate
the risk of rejection in a new step. In addition, the step size ratio is typically forced to lie
between two boundaries, such as 0.5 and 2.0, for the purpose to prevent a significant variation
of the step size. In order to monitor the step size and optimize the method efficiency, the step



Hazizah Mohd Ijam et al. / MATEMATIKA 40:1 (2024) 27– 47 29

ratio in a block, r = 1, 2, 5
8
, were considered by [13,15,16]. Encouraged by the reliability of the

approach to choosing the r values, we would use r = 1 to retain the step size, r = 2 to reduce
the step size to 1

2
and r = 5

8
to increase the step size by 8

5
.

It was priorly shown that BBDF is applied to solving stiff ODEs at high accuracy (see
[7, 13, 14, 17–19]). However, the theoretical stability analysis has been less focused. In realizing
the full potential of the newly established method, we provide the proving of the stability
properties theoretically. In a previous study [20], an analysis was conducted on the stability
properties of the fixed step formula. The findings remain valid upon the selection of the free
parameter, ρ = −3

4
into such method. Since this selection offers advantages compared to other

existing BBDF methods, we extend the framework in adaptive step size accordingly and develop
a new class of ρ−type formula that improves the work of [20] and [21].

The rest of the paper is structured accordingly. In Section 2, we presented the formulation
of the proposed method. The stability analysis and the relevant proof are discussed in Section
3. The implementation of the method is outlined in Section 4. Numerical experiments are
presented in Section 5. The conclusion is finally presented in Section 6.

2 Derivation of 2−point ρ−type Adaptive Step Diagonally Implicit

BBDF

Let yj denote an approximation to the theoretical solution y(tj) of (1) at tj and fj = f(tj, yj).
As previously stated in [1], when a numerical method is employed to determine the sequence
of yj, it takes the form of a linear relationship between yj+k, fj+k, where k = 0, 1, . . . , m. This
relationship is defined as m−step linear multistep method (LMM) of the following form:

p∑

k=0

υkyj+k = h

p∑

k=0

ωkfj+k. (2)

In (2), if ω0 = ω1 = . . . = ωp−1 = 0 and ωp 6= 0, the resulting multistep formula is the BDF of
order p and denoted as BDF−p.

Consider the m−step 2−point block LMM of fully implicit BBDF in [21]

m∑

k=0

υk−2,pyj+k−2 = hωp,pfj+p, p = 1, 2 (3)

where h is the adaptive step size used and p = 1, 2 are notation for yj+1 and yj+2, respectively.
The 2−point ρ−type adaptive step diagonally implicit block backward differentiation formula
(ρ−ASDIBBDF) is an m−step LMM with ωp−1,p, ωp,p 6= 0 and ωp−1,p = −ρωp,p for −1 < ρ < 1
given by

p+m−1∑

k=0

υk−2,pyj+k−2 = hωp,p [fj+p − ρfj+p−1] , p = 1, 2 (4)

where m = 3. By taking arbitrary ωp−1,p 6= 0 and inserting a parameter ρ, we acquire a class
of ρ−ASDIBBDF which incorporates the BBDF as a subset.

It should be noted that fj+p = y′(tj + ph) is evaluated by using the Lagrange interpolating
polynomial, P (t) where y(t) ≡ P (t). In order to formulate the approximation values of yj+1
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Figure 1: Interpolating points of ρ−ASDIBBDF

and yj+2, we consider 2h as the step size of the computed block and 2rh as the step size of the
previous block, where r is the step size ratio as presented in Figure 1.

The associated Lagrange polynomial for yj+1 which interpolates yj−2, yj−1, yj, yj+1 is given
by

P (t) =
(t− tj−1)(t − tj)(t − tj+1)

(tj−2 − tj−1)(tj−2 − tj)(tj−2 − tj+1)
yj−2 +

(t− tj−2)(t − tj)(t− tj+1)

(tj−1 − tj−2)(tj−1 − tj)(tj−1 − tj+1)
yj−1

+
(t − tj−2)(t− tj−1)(t − tj+1)

(tj − tj−2)(tj − tj−1)(tj − tj+1)
yj +

(t − tj−2)(t − tj−1)(t− tj)

(tj+1 − tj−2)(tj+1 − tj−1)(tj+1 − tj)
yj+1.

(5)
By substituting t = tj+1 + sh, yields

P (t) =
s(1 + s)(1 + r + s)

2r2(−1 − 2r)
yj−2 −

s(1 + s)(1 + 2r + s)

r2(−1 − r)
yj−1 −

s(1 + r + s)(1 + 2r + s)

2r2
yj

+
(1 + s)(1 + r + s)(1 + 2r + s)

(1 + r)(1 + 2r)
yj+1.

(6)

Differentiating (6) with respect to the variable s, gives

P ′(t) = −2r2s + 3rs2 + r2 + 6rs + 3s2 + 2r + 4s + 1

2r2(1 + r)(1 + 2r)
yj−2

+
16r2s + 12rs2 + 8r2 + 24rs + 6s2 + 8r + 8s + 2

2r2(1 + r)(1 + 2r)
yj−1

− 4r4 + 12r3s + 6r2s2 + 12r3 + 26r2s + 9rs2 + 13r2 + 18rs + 3s2 + 6r + 4s + 1

2r2(1 + r)(1 + 2r)
yj

+
4r4 + 12r3s + 6r2s2 + 12r3 + 12r2s + 6r2

2r2(1 + r)(1 + 2r)
yj+1.

(7)

To obtain hfj+1 and hfj in (4), we set s = 0 and s = −1, respectively in (7). This gives

P ′(t) = hfj+1 = − 1 + r

2r2(1 + 2r)
yj−2 +

1 + 2r

r2(1 + r)
yj−1 −

2r2 + 3r + 1

2r2
yj +

2r2 + 6r + 3

(1 + r)(1 + 2r)
yj+1

(8)

P ′(t) = hfj =
1

2r(1 + 2r)
yj−2 −

2

r(1 + r)
yj−1 −

3 − 2r

2r
yj +

2r2

(1 + r)(1 + 2r)
yj+1 (9)
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and upon solving (hfj+1 − ρhfj) from (8) and (9) for yj+1, we obtain

yj+1 = − r2ρ + r2 + rρ + 2r + 1

2r2(2r2ρ − 2r2 − 6r − 3)
yj−2 +

8r2ρ + 8r2 + 4rρ + 8r + 2

2r2(2r2ρ − 2r2 − 6r − 3)
yj−1

+
4r4ρ − 4r4 − 12r3 − 7r2ρ − 13r2 − 3rρ − 6r − 1

2r2(2r2ρ − 2r2 − 6r − 3)
yj

+
4r4 + 6r3 + 2r2

2r2(2r2ρ − 2r2 − 6r − 3)
ρhfj −

4r4 + 6r3 + 2r2

2r2(2r2ρ − 2r2 − 6r − 3)
hfj+1.

(10)

The approximation for yj+2 is obtained by generating P (t) that interpolates y(t) at points
tj−2, tj−1, tj+1, tj+2; that is

P (t) =
(t − tj−1)(t− tj+1)(t − tj+2)

(tj−2 − tj−1)(tj−2 − tj+1)(tj−2 − tj+2)
yj−2 +

(t− tj−2)(t − tj+1)(t− tj+2)

(tj−1 − tj−2)(tj−1 − tj+1)(tj−1 − tj+2)
yj−1

+
(t − tj−2)(t − tj−1)(t− tj+2)

(tj+1 − tj−2)(tj+1 − tj−1)(tj+1 − tj+2)
yj+1 +

(t − tj−2)(t− tj−1)(t − tj+1)

(tj+2 − tj−2)(tj+2 − tj−1)(tj+2 − tj+1)
yj+2.

(11)
In a similar manner, by defining t = tj+2 +sh and on solving (hfj+2−ρhfj+1) for yj+2, gives

yj+2 = − r2ρ + r2 + 3rρ + 4r + 2ρ + 1

r(1 + 2r)(2r2ρ − 2r2 + 3rρ − 9r + ρ − 8)
yj−2

+
8r2ρ + 8r2 + 8rρ + 12r + 2ρ + 4

r(1 + 2r)(2r2ρ − 2r2 + 3rρ − 9r + ρ − 8)
yj−1

+
4r4ρ − 4r4 − 8r3ρ − 20r3 − 2r2ρ − 32r2 − 4rρ − 16r

r(1 + 2r)(2r2ρ − 2r2 + 3rρ − 9r + ρ − 8)
yj+1

− 4r4 + 14r3 + 14r2 + 4r

r(1 + 2r)(2r2ρ − 2r2 + 3rρ − 9r + ρ − 8)
hfj+2

+
4r4 + 14r3 + 14r2 + 4r

r(1 + 2r)(2r2ρ − 2r2 + 3rρ − 9r + ρ − 8)
ρhfj+1.

(12)

Next, the coefficients of υk−2,p and ωp,p in (10) and (12) are substituted into (4) to obtain
the corresponding corrector formula of 2−point ρ−ASDIBBDF for r = 1, 2, 5

8
as presented in

Table 1. The predictor formula for yj+1 and yj+2 are computed using tj−2, tj−1 and tj as the
interpolating points, and are provided as follows (see [21]),

(a) for r = 1,
yj+1 = yj−2 − 3yj−1 + 3yj, yj+2 = 3yj−2 − 8yj−1 + 6yj ,

(b) for r = 2,
yj+1 = 3

8
yj−2 − 5

4
yj−1 + 15

8
yj, yj+2 = yj−2 − 3yj−1 + 3yj,

(c) for r = 5
8
,

yj+1 = 52
25

yj−2 − 144
25

yj−1 + 117
25

yj, yj+2 = 168
25

yj−2 − 416
25

yj−1 + 273
25

yj.
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Table 1: Formula for 2−point ρ−ASDIBBDF

r Corrector formula

1 yj+1 = − ρ + 2

2ρ − 11
yj−2 +

6ρ + 9

2ρ − 11
yj−1 −

3ρ + 18

2ρ − 11
yj +

6ρ

2ρ − 11
hfj −

6

2ρ − 11
hfj+1

yj+2 = − 2ρ + 3

6ρ − 19
yj−2 +

6ρ + 8

6ρ − 19
yj−1 +

2ρ − 24

6ρ − 19
yj+1 +

12ρ

6ρ − 19
hfj+1 −

12

6ρ − 19
hfj+2

2 yj+1 = −1

8

(
6ρ + 9

8ρ − 23

)
yj−2 +

5

4

(
4ρ + 5

8ρ − 23

)
yj−1 +

5

8

(
6ρ + 45

8ρ − 23

)
yj +

15ρ

8ρ − 23
hfj

− 15

8ρ − 23
hfj+1

yj+2 = −2

5

(
3ρ + 4

15ρ − 34

)
yj−2 +

5ρ + 6

15ρ − 34
yj−1 +

2

5

(
28ρ − 96

15ρ − 34

)
yj+1 +

24ρ

15ρ − 34
hfj+1

− 24

15ρ − 34
hfj+2

5

8
yj+1 = −32

25

(
65
64ρ + 169

64
25
32ρ − 241

32

)
yj−2 +

64

25

(
45
16ρ + 81

16
25
32ρ − 241

32

)
yj−1 +

32

25

(
−4095

1024ρ − 13689
1024

25
32ρ − 241

32

)
yj

+
117ρ

32
(

25
32ρ − 241

32

)hfj −
117

32
(

25
32ρ − 241

32

)hfj+1

yj+2 = −32

45

(
273
64 ρ + 441

64
117
32 ρ − 461

32

)
yj−2 +

16

5

(
9
4ρ + 13

4
117
32 ρ − 461

32

)
yj−1 +

8

9

(
−147

256ρ − 5733
256 )

117
32 ρ − 461

32

)
yj+1

+
273ρ

32
(

117
32 ρ − 461

32

)hfj+1 −
273

32
(

117
32 ρ − 461

32

)hfj+2

3 Analysis of Stability Properties

This section primarily investigate the stability properties of p−ASDIBBDF for ρ ∈ (−1, 1). The
values of free parameter ρ are restricted to the above said interval to ensure the stiff stability of
the derived methods (see [13, 17, 20, 22]). The method adopted in this section to demonstrate
specific stability properties at p = 1, 2 is attributable to [22]. Some important stability
requirements for a numerical method are examined, including A0−stability, zero−stability and
A(α)−stability.

3.1 A0−Stability

For the next theorem associated with A0−stability, the subsequent lemmas are being used.

Lemma 1 Assume p(t) = p3t
3 + p2t

2 + p1t + p0, where pi’s are real values and p3 6= 0, then
p(t) is a Hurwitz polynomial if and only if these two conditions both hold:

(i) All pi’s are either positive or negative.

(ii) p1p2 − p0p3 > 0.
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Proof See [20]. 2

Lemma 2 Let f(t) = at2+bt+c, where a, b, c are real values, a > 0 and c ≥ 0. Then, f(t) > 0
for all t < 0 if and only if either b ≤ 0 or 0 < b < 2

√
ac.

Proof For a > 0, one can observed that the quadratic graph of f(t) will concave upward and
the vertex is at t0 = − b

2a
and the y−intercept, c ≥ 0. If b < 0, the position of the vertex will

be on the right of the t−axis. It means that, if b < 0, then f(t) > 0 for all t < 0. If b = 0,
then f(t) > 0 for all t 6= 0. If b > 0, then the vertex will be on the left of the origin. Now, by
observing the discriminant of a quadratic i.e. b2 − 4ac, consider for this two cases: (i) When
b > 0 and b2 − 4ac < 0, then f(t) > 0 for all t < 0. For case (ii) When b > 0 and b2 − 4ac ≥ 0,
then there exists t0 < 0 such that f(t) ≤ 0. Thus, f(t) > 0 for all t < 0 if and only if either
b ≤ 0 or b > 0 and b2 − 4ac < 0. Case (i) is equivalent to 0 < b < 2

√
ac. 2

Definition 1 The method is A0−stable if {µ ∈ C| Im(µ) = 0,−∞ < µ < 0} ⊂ Ã.

Theorem 1 The method satisfies A0−stability for ρ ∈ (−1, 1) if and only if all three conditions
below hold:

(a) Ã1 ≡ 1 + υ−2,p ≥ 0,

(b) Ã2 ≡ 1 − 2υ−2,p − υ−1,p ≥ 0,

(c) Ã3 ≡ 2 − ρυ−2,p − υ−1,p ≥ 0, or −2
√

Ã1Ã2 < Ã3 < 0.

Proof Given that the transformation of the Möbius maps the ξ−plane to the z−plane as
shown below

r(z) =

(
1 − z

2

)m

%

(
1 + z

1 − z

)
, s(z) =

(
1 − z

2

)m

σ

(
1 + z

1 − z

)
,

to form Q(z, µ) = r(z) − µs(z) where µ = hλ.
Remark: In solving stiff equations, the equation y′ = λy will be considered, where λ ∈ C in
which <(λ) < 0 is used. For p = 1, 2, the expanded polynomials can be represented as

8r(z) = 2(1 + υ−1,p)z
3 + 4(1 + υ−2,p)z

2 + 2(1 − 2υ−2,p − υ−1,p)z,

8s(z) = ωp,p

[
(1 + ρ)z3 + (3 + ρ)z2 + (3 − ρ)z + (1 − ρ)

]
,

to formulate Q(z, µ) which can be simplified into

8Q(z, µ) = [q1 − µωp,p(1 + ρ)] z3 + [q2 − µωp,p(3 + ρ)] z2 + [q3 − µωp,p(3 − ρ)] z − µωp,p(1 − ρ),

where q1 = 2(1+υ−1,p), q2 = 4(1+υ−2,p), q3 = 2(1−2υ−2,p −υ−1,p). Note that ωp,p > 0 and
υ−1,p > 0, then q1 > 0, µωp,p(1 − ρ) > 0 and −µωp,p(1 + ρ) ≥ 0 for all µ < 0. Thus, by Lemma
1, Q(z, µ) is a Hurwitz polynomial if and only if the following three conditions are satisfied for
µ < 0:

(i) p1 = q3 − µωp,p(3 − ρ) > 0,
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(ii) p2 = q2 − µωp,p(3 + ρ) > 0,

(iii) p1p2 − p0p3 > 0, where p3 = q1 − µωp,p(1 + ρ) and p0 = −µωp,p(1 − ρ).

Now, by referring to (ii), p2 > 0 for all µ < 0 if and only if q2 ≥ 0 and q2 ≥ 0 if and only if υ−2,p ≥
−1 which is condition (a) of the theorem. From (i), p1 > 0 for all µ < 0 if and only if q3 ≥ 0 and
q3 ≥ 0 if and only if (2υ−2,p + υ−1,p) ≤ 1 which is condition (b) of the theorem. For condition
(iii), we have p1p2 − p0p3 = 8 (ωp,pµ)2 − 8Ã3 (ωp,pµ)+ 8Ã1Ã2 = (ωp,pµ)2 − Ã3 (ωp,pµ)+ Ã1Ã2. By
comparing the coefficients of (ωp,pµ)2, (ωp,pµ) and constant term Ã1Ã2 with f(t) = at2 + bt + c

in Lemma 2, we can notate a = 1, b = −Ã3 and c = Ã1Ã2. By Lemma 1, p1p2 − p0p3 > 0 for

all µ < 0 with q2 ≥ 0 and q3 ≥ 0 if and only if either −Ã3 ≤ 0 or 0 < −Ã3 < 2
√

Ã1Ã2 which is
condition (c) of the theorem. The theorem satisfied all conditions in (a), (b) and (c), therefore
the method is said to be A0−stable for ρ ∈ (−1, 1). 2

3.2 Zero and A(α)−Stability

We are interested in determining for which hλ the derived method is zero−stable and absolutely
stable, based on the the following definitions:

Definition 2 The method in (4) is zero−stable if its characteristic polynomial has a simple
root at +1 and all the remaining roots reside strictly in the closed complex unit disc (refer [23]).

Definition 3 The method in (4) is said to have region of absolute stability <A, where <A is a
region of the complex ĥ−plane, if it is absolutely stable for all ĥ ∈ <A. The intersection of <A

with the x−axis is called the interval of absolute stability (refer [24]).

It is important to acknowledge that the absolute stability interval is applicable for the case
of the Dahlquist test equation y′ = λy and hλ = ĥ. The coefficients of the corrector formula in
Table 1 can be expressed using this notation:




1 − 2r2 + 3r + 1
7
2
r2 + 6r + 3

ĥ 0

− 7r3 + 26r2 + 61
2
r + 13

(2r + 1)
(

7
2

+ 45
4

+ 35
4

) − 3

2

(
r2 + 3r + 2
7
2

+ 45
4

+ 35
4

)
ĥ 1 − 2r2 + 6r + 4

7
2

+ 45
4

+ 35
4

ĥ




︸ ︷︷ ︸
A

[
yj+1

yj+2

]

=




− r2 + 5
2
r + 1

7
2
r4 + 6r3 + 3r2

ĥ
1

2

(
7r4 + 12r3 + 31

4
r2 + 15

4
r + 1

7
2
r4 + 6r3 + 3r2

)
+

3

4

(
2r2 + 3r + 1
7
2
r2 + 6r + 3

)
ĥ

− r + 5
2

7
2
r3 + 45

4
r2 + 35

4
r

0




︸ ︷︷ ︸
B

[
yj−1

yj

]
+




0
1

2

( 1
4
r2 + 5

4
r + 1

7
2
r4 + 6r3 + 3r2

)

0
1
4
r2 + 7

4
r + 5

2

(2r + 1)
(

7
2
r3 + 45

4
r2 + 35

4
r
)




︸ ︷︷ ︸
C

[
yj−3

yj−2

]

(13)
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to form AYJ = BYJ−1 + CYJ−2 in terms of r. Table 2 presents the stability polynomial of the
scalar test equation, denoted as π(t́, ĥ), which is used to establish the absolute stability region of
the method. This polynomial is produced by evaluating the roots of t́, where |At́2−Bt́−C| = 0.

Table 2: Stability polynomial for ρ−ASDIBBDF

r Stability polynomial

1 π(t́, ĥ) = t́4 − 1164

1175
t́4ĥ +

18

1175
t́2 +

288

1175
t́4ĥ2 +

54

1175
t́2ĥ − 2367

2350
t́3 − 1242

1175
t́3ĥ − 19

2350
t́ − 162

1175
t́3ĥ2

2 π(t́, ĥ) = t́4 − 5499

5249
t́4ĥ +

1471

83984
t́2 +

1440

5249
t́4ĥ2 +

411

20996
t́2ĥ − 5339

5249
t́3 − 9147

10498
t́3ĥ − 31

83984
t́ − 810

5249
t́3ĥ2

5

8
π(t́, ĥ) = t́4 − 2161848

2280605
t́4ĥ − 778464

57015125
t́2 +

511056

2280605
t́4ĥ2 +

3244176

57015125
t́2ĥ − 53033589

57015125
t́3 − 83130138

57015125
t́3ĥ

− 3203072

57015125
t́− 287469

2280605
t́3ĥ2

By setting ĥ = 0 and on solving the stability polynomials for r = 1, 2, 5
8

in Table 2, π(t́, ĥ)

turns out to have roots, t́ as listed in Table 3. Thus, by referring to Definition 2, we infer that
the method is zero−stable.

Table 3: Roots of the stability polynomial of ρ−ASDIBBDF

r 1 2
5

8

t́1 0 0 0
t́2 1 1 1
t́3 0.003617 + 0.08982i 0.008573 + 0.01719i −0.03492 + 0.2344i
t́4 0.003617 − 0.08982i 0.008573 − 0.01719i −0.03492 − 0.2344i

One further drawback of a numerical method are A(α) (or almost A−stability) and stiff
stability. Both properties were defined by [10] as follows:

Definition 4 A method is stiffly stable if in the region R1 = {Re(hλ) ≤ D} it is absolute
stable and in R2 = {D < Re(hλ) < α, |Im(hλ)| < θ} it is accurate. Gear in [10] illustrate the
regions of R1 ∪ R2 in Figure 2.

Definition 5 A method is A(α)−stable, α ∈ (0, π
2
) if all solutions of y′ = λy converge to 0

as n tend to infinity with a fixed h, so that |arg(−λ)| < α, |λ| 6= 0. This definition was given
by [10].

Butcher in [25] highlighted that Definitions 4 and 5 are based on the concept of stability, which
suggests that there are several rigid issues with spectra that are located in the left half-plane
but not close to the imaginary axis.

The definitions of stiffly stable and A(α)−stable provided in [25] are herein stated
accordingly (refer Figure 3).

Definition 6 The method in (4) is stiffly stable with stiffness abscissa, D if all complex
numbers hλ are included in the stability region, so that Re(hλ) ≤ −D.
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Figure 2: Stiffly stability region as illustrated in [10]

Figure 3: A(α)−stable region as featured in [25]

Definition 7 The method in (4) is A(α)−stable if all complex numbers hλ are included in the
stability region, so that −(π − α) ≤ arg(hλ) ≤ π − α.

The following theorem gives necessary and sufficient conditions for stiff stability. The related
proof for yn+1 have been presented in [20].

Theorem 2 The conditions (a)–(d) are necessary and sufficient for a convergent method to be
stiffly stable.

(a) The method is A0−stable,

(b) The modulus of any root of the polynomial %(ξ)
ξ−1

is less than 1,

(c) The roots of σ(ξ) of modulus 1 are simple,

(d) If ξ0 is a root of σ(ξ) with |ξ0| = 1, then

%(ξ)

ξσ′(ξ)

at ξ = ξ0 is real and positive.
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The following lemma will be used to prove Theorem 2.

Lemma 3 Let
p(x) = ã2x

2 + ã1x + ã0,

where ã0, ã1, ã2 6= 0 and ã0, ã1, ã2 are real. Then p(x) is a Schur polynomial if and only if the
conditions of (i) and (ii) are met.

(i) |ã0| < |ã2|,

(ii) |ã1| < |ã2 + ã0|.

Proof See [22]. 2

Theorem 3 The method is strongly stable for ρ ∈ (−1, 1).

Proof It suffices to show that
%(ξ)

ξ − 1

is a Schur polynomial for ρ ∈ (−1, 1). From Table 1, a−2,2 + a−1,2 + a0,2 + 1 = 0. Polynomial
%(ξ) can be written as %(ξ) = (ξ − 1)(ã2ξ

2 + ã1ξ + ã0). Then, by collecting the common terms
of ξ in (9), we have

ã0 = −a−2,2 =
3 + 2ρ

19 − 6ρ
, ã1 = −(a−2,2 + a−1,2) = −

(
5 + 4ρ

19 − 6ρ

)

and ã2 = 1. Since 3+2ρ

19−6ρ
≤ 5

13
for −1 < ρ < 1, we have ã0 < ã2. Now, ã2 + ã0 = 22−4ρ

19−6ρ
and

|ã2 + ã0| − |ã1| = 17−8ρ

19−6ρ
> 0 for −1 < ρ < 1. Thus, by Lemma 2, %(ξ)

ξ−1
is a Schur polynomial. 2

Theorem 4 The method is stiffly stable for ρ ∈ (−1, 1).

Proof σ(ξ) = b1,2 (ξ3 − ρξ2) where b1,2 = 12
19−6ρ

. The roots of σ(ξ) are 0, ρ and it has simple
root of modulus 1. Now Theorem 2 together with Theorem 1 and Theorem 3 imply that the
method is stiffly stable for all ρ ∈ (−1, 1). 2

Corollary 1 The method is A(α)−stable for all ρ ∈ (−1, 1).

Proof Stiff stability implies A(α)−stability (refer to [20]). 2

Next, the absolute stability region is determined. The boundary of the stability region for a
range of θ ∈ [0, 2π] is obtained by setting t́ = eiθ for which |t́| ≤ 1 into the stability polynomial
in Table 2. The absolute stability regions, intervals of unstable region, values of D and angles
of α for r = 1, 2, 5

8
are given in Table 4.

As depicted in Table 4, the stable region lies outside the closed contour of the graph. Thus,
by Definition 7, the method for r = 1, 2, 5

8
is considered A(α)−stable.



Hazizah Mohd Ijam et al. / MATEMATIKA 40:1 (2024) 27– 47 38

Table 4: Absolute stability regions, <A, intervals of unstable region, D and α of ρ−ASDIBBDF

r <A Interval of D α

unstable region

1 (0, 18.667) −0.156 85.657◦

2 (0, 15.825) −0.151 85.641◦

5

8
(0, 23.961) −0.919 73.577◦

4 Implementation of the Method using Newton’s Iteration

An approximation of the values yj+1 and yj+2 in (4) will be generated using Newton’s iteration.
General formulae in Table 1 can be described as:

yj+1 = υ2,1yj+2 + ω0,1hfj + ω1,1hfj+1 + ℵ1,

yj+2 = υ1,2yj+1 + ω1,2hfj+1 + ω2,2hfj+2 + ℵ2,
(14)
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where ℵ1 and ℵ2 are the back values. The matrix-vector of equation (14) is equivalent to

(I − υ)Y = h (Γ1F1 + Γ2F2) + ℵ,

where

I =

[
1 0

0 1

]
, υ =

[
0 υ2,1

υ1,2 0

]
, Γ1 =

[
0 ω0,1

0 0

]
, Γ2 =

[
ω1,1 0

ω1,2 ω2,2

]
,

Y =

[
yj+1

yj+2

]
, F1 =

[
fj−1

fj

]
, F2 =

[
fj+1

fj+2

]
,ℵ =

[
ℵ1

ℵ2

]
.

(15)

Let
F̂ = (I − υ)Y − h (Γ1F1 + Γ2F2) −ℵ = 0. (16)

Applying the Newton iteration to (16) will generate the (i +1)th iterative yj+p value as follows,

y
(i+1)
j+p = y

(i)
j+p −

F̂ (y
(i)
j+p)

F̂ ′(y
(i)
j+p)

, p = 1, 2. (17)

Equation (17) is equivalent to

y
(i+1)
j+p − y

(i)
j+p = −

(I − υ)Y
(i)
j+p − h (Γ1F1 + Γ2F2) − ℵ

(I − υ) − h

[
Γ1

∂F1

∂Y

(
Y

(i)
j+p

)
+ Γ2

∂F2

∂Y

(
Y

(i)
j+p

)] , (18)

where
∂F

∂Y

(
Y

(i)
j+p

)

denotes the Jacobian matrix of F with respect to Y .

4.1 Step Size Selection

The strategy of selecting the step size while implementing the adaptive step algorithm depends
on the estimation of the local truncation error (LTE) and the prescribed tolerance limit (TOL).
The LTE is obtained by computing the difference between the corrector formula for the yj+2 of
consecutive orders given by

LTE =
∣∣yq

j+2 − y
q−1
j+2

∣∣ (19)

where q is the order of the derived method. The LTE for each step size ratio are presented in
Table 5.
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Table 5: Local truncation error for ρ−ASDIBBDF

r Local truncation error

1 LTE = − 2ρ + 3

6ρ − 19
yj−2 +

3

4

6ρ2 − ρ − 15

(6ρ − 19)(ρ − 2)
yj−1 −

10ρ2 + ρ − 21

4(6ρ − 19)(ρ − 2)
yj+1

+
3ρ(2ρ + 3)

2(6ρ − 19)(ρ − 2)
hfj+1 −

3(2ρ + 3)

2(6ρ − 19)(ρ − 2)
hfj+2

2 LTE = −2

5

3ρ + 4

15ρ − 34
yj−2 +

2

3

15ρ2 − ρ − 28

(15ρ − 34)(3ρ − 5)
yj−1 −

8

15

12ρ2 + ρ − 20

(15ρ − 34)(3ρ − 5)
yj+1

+
4ρ(3ρ + 4)

(15ρ − 34)(3ρ − 5)
hfj+1 −

4(3ρ + 4)

(15ρ − 34)(3ρ − 5)
hfj+2

5

8
LTE = −112

15

13ρ + 21

117ρ − 461
yj−2 +

1344

65

117ρ2 − 32ρ − 357

(117ρ − 461)(13ρ − 29)
yj−1

− 112

39

403ρ2 + 40ρ − 987

(117ρ − 461)(13ρ − 29)
yj+1 +

84ρ(13ρ + 21)

(117ρ − 461)(13ρ − 29)
hfj+1

− 84(13ρ + 21)

(117ρ − 461)(13ρ − 29)
hfj+2

The strategies for selecting the step size are described based on the following conditions:

1. If (LTE ≤ TOL), then the step size is accepted and keep as constant i.e. considered the
formula for r = 1. After a successful step, the following step increment is computed:

hnew = c × hold ×
(

TOL

LTE

) 1

q

where c is the safety factor and hold is the step size from previous block. In our algorithm,

we consider c = 0.2. If hnew ≥ 8

5
× hold, then the new step size, hnew increase to

8

5
× hold

i.e considered the formula for r =
5

8
.

2. If (LTE > TOL), then the step size is rejected and the step is repeated by halving the

current step size and the new step size is computed as hnew =
1

2
× hold i.e considered the

formula for r = 2.

5 Numerical Experiments

In this section, the results for some numerical experiments to illustrate the performance of the
derived method in Table 1 for TOL = 10−i, i = 2, 4, 6 are presented. Three linear and nonlinear
stiff initial value problems (IVPs) were selected and categorized into two cases.
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In the first case, Problems 1 and 2 were tested with given theoretical solutions, where the
maximum error, MAXE is evaluated as follows:

MAXE = max︸︷︷︸
1≤s≤TS


 max︸︷︷︸

1≤n≤EQN

∣∣∣∣
(ys)n − (y(ts))n

M + N(y(ts))n

∣∣∣∣


 , (20)

with TS is the total steps, EQN is the number of equations in the system, (ys)n and (y(ts))n

are the n−th component of approximate and theoretical solutions, respectively. The values
M = 1 and N = 1 are set corresponds to a mixed error test for the algorithm.

In a situation where no theoretical solution to Problem 3 exists, the approximation values
are obtained to be compared with MATLAB solver, ode15s at TOL = 10−4.

We took three well-known test problems from the literature having no transient phase, which
allows us to use adaptive step sizes, viz.:

Problem 1 The cosine problem presented in [20]:

y′ = −2π sin(2πx)− 1

ε
(y − cos(2πx))

where ε = 10−3, y(0) = 1 and t ∈ [0, 10], with theoretical solution is y(t) = cos(2πx). The
eigenvalues of the Jacobian matrix, λ is −1000. This cosine problem becomes increasingly stiff
as ε → 0.

By demonstrating the effectiveness and efficiency of the proposed method, our goal is to
make a substantial contribution to the field of numerical simulations for chemically reacting
flows, specifically within the realms of applied and industrial mathematics, as exemplified
through these two chemical reaction problems.

Problem 2 Nonlinear stiff chemical reaction problem (the Kaps problem) in [13]:

y′
1 = −

(
ε−1 + 2

)
y1 + ε−1y2

2

y′
2 = y1 − y2(1 + y2)

where ε = 10−5, y1(0) = 1, y2(0) = 1 and t ∈ [0, 20], with theoretical solution is y1(t) =
e−2t, y2(t) = e−t. The eigenvalues of the Jacobian matrix, λ are −1 and −100002 making the
system highly stiff.

Problem 3 Nonlinear oregonator chemical reaction problem in [26]:

y′
1 = 77.27

(
y2 − y1y2 + y1 − 8.375 × 10−6y1

2
)

y′
2 =

1

77.27
(y3 − y2 − y1y2)

y′
3 = 0.161 (y1 − y3)

on the interval t ∈ [0, 360] and with y1(0) = 1, y2(0) = 2, y3(0) = 3. This is a well-known
chemical model with a periodic solution describing the Belousov-Zhabotinskii reactions which
exhibits a oscillatory behavior. The stiffness ratio could be as high as 3 × 104.



Hazizah Mohd Ijam et al. / MATEMATIKA 40:1 (2024) 27– 47 42

The comparison methods and abbreviations used in Tables 6–8 are described below:

TOL Tolerance limit
MTD Method
SS Total of success steps
FS Total of failure steps
TS Total steps taken
MAXE Maximum error
TIME Computational time in seconds
ρ−ASDIBBDF 2−point ρ−Adaptive Step Diagonally Implicit BBDF
VSBBDF 2−point Variable Step Fully Implicit BBDF in [21]
VSSBBDF 2−point Variable Step Fully Implicit BBDF in [13]
ode15s Variable order solver implemented in numerical differentiation formula

Table 6: Numerical results for Problem 1

TOL MTD SS FS TS MAXE TIME

10−2 ρ−ASDIBBDF 53 0 53 5.08545E-5 4.45362E-5
VSBBDF 87 19 106 6.18761E-5 9.87430E-4
VSSBBDF 65 1 66 5.16437E-5 8.67844E-4

10−4 ρ−ASDIBBDF 114 0 114 2.69909E-7 1.32737E-4
VSBBDF 208 21 229 2.09325E-6 3.25709E-3
VSSBBDF 116 0 116 1.54385E-6 1.49798E-3

10−6 ρ−ASDIBBDF 396 0 396 1.51905E-8 7.21924E-4
VSBBDF 580 37 617 5.05228E-8 8.55113E-3
VSSBBDF 398 4 402 3.11839E-8 4.65798E-3

Table 7: Numerical results for Problem 2

TOL MTD SS FS TS MAXE TIME

10−2 ρ−ASDIBBDF 26 0 26 3.50065E-5 6.28515E-4
VSBBDF 45 0 45 6.48394E-4 4.00089E-3
VSSBBDF 48 1 49 3.53673E-4 4.10795E-3

10−4 ρ−ASDIBBDF 54 0 54 6.91081E-7 3.01038E-3
VSBBDF 63 0 63 6.48780E-5 1.30311E-2
VSSBBDF 70 4 74 1.59269E-5 1.63960E-2

10−6 ρ−ASDIBBDF 102 0 102 4.91825E-9 9.42767E-3
VSBBDF 99 0 99 6.48812E-6 3.98711E-2
VSSBBDF 110 8 118 8.11971E-7 5.21691E-2



Hazizah Mohd Ijam et al. / MATEMATIKA 40:1 (2024) 27– 47 43

Table 8: Approximate solutions for Problem 3

y1(t) y2(t) y3(t)

t ρ−ASDIBBDF ode15s ρ−ASDIBBDF ode15s ρ−ASDIBBDF ode15s

0 1 1 2 2 3 3
20 2.76058E+1 2.76940E+1 9.92734E-1 9.92435E-1 5.50050E+0 5.50457E+0
40 1.00058E+0 1.00057E+0 1.73568E+3 1.73516E+3 2.07151E+3 2.07106E+3
60 1.00075E+0 1.00087E+0 1.14456E+3 1.14423E+3 8.37285E+1 8.36955E+1
80 1.00144E+0 1.00145E+0 6.86466E+2 6.86263E+2 4.30660E+0 4.30685E+0
100 1.00244E+0 1.00244E+0 4.09248E+2 4.09127E+2 1.13415E+0 1.13405E+0
120 1.00411E+0 1.00411E+0 2.43882E+2 2.43810E+2 1.00881E+0 1.00880E+0
140 1.00689E+0 1.00692E+0 1.45331E+2 1.45292E+2 1.00616E+0 1.00618E+0
160 1.01165E+0 1.01176E+0 8.66045E+1 8.65971E+1 1.01004E+0 1.01007E+0
180 1.01974E+0 1.01976E+0 5.16080E+1 5.16073E+1 1.01696E+0 1.01693E+0
200 1.03360E+0 1.03362E+0 3.07530E+1 3.07528E+1 1.02883E+0 1.02884E+0
220 1.05771E+0 1.05778E+0 1.83247E+1 1.83272E+1 1.04937E+0 1.04931E+0
240 1.10082E+0 1.10078E+0 1.09175E+1 1.09201E+1 1.08581E+0 1.08586E+0
260 1.18173E+0 1.18173E+0 6.50156E+0 6.50320E+0 1.15320E+0 1.15318E+0
280 1.34885E+0 1.34878E+0 3.86561E+0 3.86663E+0 1.28841E+0 1.28833E+0
300 1.77972E+0 1.77907E+0 2.28185E+0 2.28291E+0 1.61375E+0 1.61331E+0
320 4.93887E+0 4.93348E+0 1.25096E+0 1.25143E+0 3.20493E+0 3.20311E+0
340 1.00056E+0 1.00056E+0 1.76765E+3 1.76788E+3 3.28356E+3 3.28917E+3
360 1.00081E+0 1.00081E+0 1.22876E+3 1.22859E+3 1.32463E+2 1.32369E+2
380 1.00135E+0 1.00135E+0 7.38859E+3 7.39127E+3 6.23734E+0 6.25253E+0
400 1.00227E+0 1.00227E+0 4.40577E+3 4.40733E+3 1.21118E+0 1.21162E+0

Figure 4: The accuracy and efficiency curves for Problem 1



Hazizah Mohd Ijam et al. / MATEMATIKA 40:1 (2024) 27– 47 44

Figure 5: The accuracy and efficiency curves for Problem 2

Figure 6: Graph profiles for Problem 3
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Tables 6 and 7 present the numerical results of Problems 1 and 2, respectively. The
ρ−ASDIBBDF exhibits impressive values of MAXE and TIME for each TOL when compared
to VSBBDF and VSSBBDF. However, the results of Problem 1 exhibit a competitive MAXE
when the TOL decreases, while still remaining within the specified tolerance limit. It can
also be noted that the ρ−ASDIBBDF reaches the specified tolerance that indicates that the
implemented algorithms have excellent performance.

When the MAXE are plotted against the TOL and TIME using logarithmic scales for both
axes, all graphs in Figures 4−5 display a uniform-like error plotting, where the ρ−ASDIBBDF
are in the lowest value of coordinate for a specific abscissa. As is evident from the performance
graphs in Figures 4−5, it means the proposed method is stable in nature, accurate and efficient
relative to the other methods of comparison.

From Table 8, it is indeed apparent that the approximations by the proposed method to the
solutions of Problem 3 obtained by ode15s are very well agreed. The graph profiles in Figure
6 have proven the capability of the developed method on solving first order stiff IVPs arise in
application systems of real-world problems in different level of stiffness.

6 Conclusion

Conclusively, this study presents an adaptive step 2−point ρ−type block method based on
BDF in a diagonally implicit structure that is zero−stable, A0−stable and A(α)−stable. The
relevant proof that the method satisfies the condition of the stability properties is also provided.
The performance of the proposed method is excellent, as evidenced by the small maximum error
recorded in the numerical results for the imposed tolerance. This experiment adds to a growing
corpus of research showing that ρ−ASDIBBDF is significant in serving as an accurate numerical
method and as an alternative solver for the physical systems of stiff ODEs. This underscores
its potential applications across various industrial contexts.
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