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Abstract In this paper, we proposed an analytical solution for generalized fractional
order integro-differential equations with non-local boundary conditions via shifted Gegen-
bauer polynomials as an approximating polynomial using the Galerkin method and collo-
cation techniques involving operational matrix that make use of the Liouville-Caputo oper-
ator of differentiation in combination with Gegenbauer polynomials. Shifted Gegenbauer
polynomial properties were exploited to transform fractional order integro-differential
equation and its non-local boundary conditions into an algebraic system of equations.

Shifted Gegenbauer polynomial C
(α)
m (x) was used in order to generate and generalize the

results of some other orthogonal polynomials by varying the value of parameter α. The
accuracy and effectiveness of the proposed method are tested on some selected examples
from the literature. We observed that, when the exact solution is in polynomial form,
the approximate solution gives a closed form solution, and non-polynomial exact solution,
also give better results compared to the existing results in the literature.

Keywords Caputo fractional derivative; Gegenbauer polynomial; Fractional integro-
differential equation; collocation method; Galerkin method

Mathematics Subject Classification 34A08, 34K28, 41A10, 45J05, 76M22.

1 Introduction

Fractional calculus represent strong tools in applied Mathematics to study a myriad of prob-
lems emanate from different fields of studies, such as science, engineering, Physics which gives
rise to a progressive results in Mathematical Physics [1], hydrology, biophysics, finance, statis-
tical mechanics, control theory, cosmology, bio-engineering. [2] presents synopsis of fractional
calculus tools for characterising respiratory mechanics.
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With the attraction of fractional calculus, researchers are giving attention to the studies of
fractional differential equations and fractional order integro-differential equations (FOIEs). In
the recent years, different approaches have been developed to solve FOIEs some of these meth-
ods are, [3] employed improved tau method to investigate the accuracy of multi-dimensional
fractional Rayleigh-Stokes problem, [4] employed Taylor expansion method to find an approx-
imate solution to FOIEs, [5] proposed Euler wavelet operational matrix method to solve non-
linear Volterra integro-differential equations, [6, 7] investigate the accuracy of fractional linear
Volterra and Fredholm integro-differential equations using Laguerre polynomials as an approx-
imating polynomials, [8] adopted Adomian decomposition method (ADM) to find an approx-
imate solution to FIOEs. [9] employed Vieta-lucas polynomial as basis functions in obtaining
the approximate solution of generalized fractional-order integro-differential equation, [10,11] in-
vestigate the convergence of the Jacobi spectral collocation method for the solution of FOIEs,
collocation method with convergence for the generalized fractional integro-differential equa-
tion was studied in [12], [13] employed legendre wavelets method to solve FOIEs with weakly
singular kernel, spline collocation method was used to solve fractional weakly singular integro-
differential equations in [14]. Two-dimensional non-linear Volterra-Fredholm integro-differential
equations was investigated using variational Adomian decomposition method in [15], [16] pro-
posed modified Laplace decomposition method for solving fractional Volterra-Fredholm integro-
differential equations, [17] developed adaptive huber method for weakly singular fractional
intrgro-differential equations, analysis of the error involve in 1D Fredholm integro-differential
equations was studied in [18] using Volterra-transformation method [19] proposed a method
based on Laplace transform for finding an approximate solution to Fredholm-type integro-
differential equation with Atangana-Baleanu fractional derivative in Caputo sense, [20] pro-
posed that the unknown function Sαf(x) be written as a linear combination of new hybrid
fractional function consisting of block-pulse functions and Fibonacci, then used collocation in
the Newton-Cotes nodes to transform the integro-differential equation to algebraic equations
which was solved using Newtons iterative method, [21] adopted pade approximation technique
to solve fractional integro-differential equation with non-local boundary conditions. The main
focus in this paper is to find the solution of generalized FOIEs via shifted Gegenbauer poly-
nomials as an approximating polynomial using Galerkin method and collocation method, since
Gegenbauer approach generalize the results of some commonly used orthogonal polynomials
such as Legendre polynomial Pn(x), shifted Chebyshev polynomials of certain kinds, shifted
Jacobi polynomials Pα,β

n (x) with α = β.

This paper is organized as follows. In Section 2, we give preliminaries of the proposed
method, which include statement of the problem in 2.1, review of Gegenbauer polynomials
are presented in 2.2 and Caputo fractional differentiation operator are presented in 2.3. We
formulate the scheme for the proposed method in Section 3 for both Gegenbauer-Galerkin
and Gegenbauer-collocaltion methods. In Section 4, numerical examples are presented with
computational results and graphical representation to show the effectiveness and the accuracy
of the proposed methods. Discussion of results and concluding remarks are given in the last
two sections of the paper.
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2 Preliminaries

2.1 Statement of the problem

In this paper, the problem under consideration is FOIEs of the form:

Dδy(x) = G(x)y(x) + f(x) + ν1

∫ x

0

k1(x, t)y(t)dt+ ν2

∫ 1

0

k2(x, t)y(t)dt, (1)

such that k − 1 < δ ≤ k, a ≤ x ≤ b, k ∈ N, together with non-local boundary conditions given
by:

k∑
j=1

(
αijy

(j−1)(a) + γijy
(j−1)(b)

)
+ ρi

∫ b

a

Si(x)y(x)dx = ki, i = 1, 2, . . . , k, (2)

where Si(x) is a continuous function, G(x), f(x), k1(x, t), k2(x, t) are holomorphic functions,
ν1, ν2, αij, γij, ρi and ki are constants, Dδ is the fractional derivative operator of order δ and
y(x) is the unknown function. If ν1 = 0 or ν2 = 0, Eq. (1) is becomes fractional Fredholm or
Volterra integro-differential equation, respectively. Here, we try to solve FOIEs by transforming
the equation into system of algebraic equations using Galerkin method and collocation methods
via Gegenbauer polynomials as an approximation.

2.2 Shifted Gegenbauer polynomials

Gegenbauer polynomials C
(α)
m (u), u ∈ [−1, 1] with respect to the weight function

ω(u) = (1− u2)(α− 1
2

) is defined as:

C(α)
m (u) =

m∑
n=0

(−1)nΓ(2α + 2m− n)Γ(α + 1
2
)

(m− n)!Γ(2α)Γ(n+ 1)Γ(m− n+ α + 1
2
)
um−n. (3)

and the recurrence relation is:

C
(α)
m+1(u) =

1

m+ 1

[
2(m+ α)uC(α)

m (u)− (m+ 2α− 1)C
(α)
m−2(u)

]
,m ≥ 1, (4)

where C
(α)
0 (u) = 1, C

(α)
1 (u) = 2αu.

The corresponding shifted Gegenbauer polynomial C
(α)∗
m (u), u ∈ [a, b] is derived using the

transformation x = 2u−(a+b)
b−a as:

C
(α)∗
m+1(u) =

1

m+ 1

[
2(m+ α)

(
2u− (a+ b)

b− a

)
C(α)∗
m (u)− (m+ 2α− 1)C

(α)∗
m−1(u)

]
,m ≥ 1 (5)

where C
(α)∗
0 (u) = 1, C

(α)∗
1 (u) = 2α

(
2u−(a+b)

b−a

)
.

The analytic form corresponding to Eq. (5) in the interval u ∈ [0, 1] is given as:

C(α)∗
m (u) =

m∑
n=0

(−1)nΓ(2α + 2m− n)Γ(α + 1
2
)

(m− n)!Γ(n+ 1)Γ(m− n+ α + 1
2
)Γ(2α)

um−n, (6)
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with the following orthogonality condition:

〈C(α)∗
m (u), C(α)∗

n (u)〉 =

∫ 1

0

(
u− u2

)(α− 1
2

)
C(α)∗
m (u)C(α)∗

n (u)du =


0, for m 6= n

π21−4αΓ(n+2α)

n![Γ(α)]2(n+α)
, for m = n

.

(7)
See [22,23] for more details.

2.3 Caputo fractional differentiation operator

The Caputo fractional differentiation operator Dδ, of order δ is defined as follows:

Dδg(u) =
1

Γ(n− δ)

∫ u

0

g(i)(u)

(u− t)δ+1−idt, δ > 0, i− 1 < δ < i, i ∈ N, (8)

with the linearity property:

Dδ(σf(u) + ςg(u)) = σDδf(u) + ςDδg(u), (9)

where, σ and ς are constants. The following results are obtained:

Dδun =

0, for n ∈ N0 , n < dδe

Γ(n+1)
Γ(n+1−δ)u

n−δ, for n ∈ N0 , n ≥ dδe
, (10)

where dδe is the smallest integer greater than or equal to δ.

Theorem 2.1 Let C
(α)∗
m (u), u ∈ [0, 1] be a Gegenbauer polynomial of order m, then the Caputo

fractional derivative of C
(α)∗
m (u) in terms of Gegenbauer polynomials is:

Dδ
(
C(α)∗
m (u)

)
=

m−dδe∑
n=0

(−1)nΓ(2α + 2m− n)Γ(α + 1
2
)

Γ(n+ 1)Γ(m− n+ α + 1
2
)Γ(2α)Γ(m+ 1− n− δ)

um−n−δ. (11)

See [23,24] for the proof.

Theorem 2.2 Let the fractional derivative of S(u) of order N be expressed in terms of Gegen-
bauer polynomials, that’s

Dδ (SN(u)) =
N∑
m=0

µmD
δ
(
C(α)∗
m (u)

)
, (12)

then

Dδ (SN(u)) =
N∑

m=dδe

m−dδe∑
n=0

µmHm,nu
m−n−δ, (13)

where

Hm,n =
(−1)nΓ(2α + 2m− n)Γ(α + 1

2
)

Γ(n+ 1)Γ(m− n+ α + 1
2
)Γ(2α)Γ(m+ 1− n− δ)

. (14)
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Proof

Applying theorem 2.1 to Eq. (12), we obtain

Dδ(SN(u)) =
N∑

m=dδe

m−dδe∑
n=0

µm
(−1)nΓ(2α + 2m− n)Γ(α + 1

2
)

Γ(n+ 1)Γ(m− n+ α + 1
2
)Γ(2α)Γ(m+ 1− n− δ)

um−n−δ. (15)

After simplification, Eq. (15) becomes:

Dδ(SN(u)) =
N∑

m=dδe

m−dδe∑
n=0

µmHm,nu
m−n−δ, (16)

where

Hm,n =
(−1)nΓ(2α + 2m− n)Γ(α + 1

2
)

Γ(n+ 1)Γ(m− n+ α + 1
2
)Γ(2α)Γ(m+ 1− n− δ)

. (17)

3 Formulation of the Scheme

In this section, we give the technique involved in the formulation of the proposed methods for
both the Gegenbauer-Galerkin method and Gegenbauer-collocation method as follows:

3.1 Gegenbauer-Galerkin method

Considering Eq. (1) together with the non-local boundary conditions given in Eq. (2), the
approximate solution yN(x) corresponding to the exact solution y(x) using Galerkin’s method
are derived as follows:

yN(x) =
N∑
m=0

µmC
(α)∗
m (x). (18)

Substituting Eq. (18) in Eq. (1), then apply theorem 2.1 to the fractional part, we obtain

N∑
m=dδe

m−dδe∑
n=0

µmHm,nx
m−n−δ =G(x)

N∑
m=0

µmC
(α)∗
m (x) + f(x) + ν1

∫ x

0

k1(x, t)
N∑
m=0

µmC
(α)∗
m (t)dt

+ ν2

∫ 1

0

k2(x, t)
N∑
m=0

µmC
(α)∗
m (t)dt.

(19)

Multiply both sides of Eq. (19) by the shifted Gegenbauer polynomials C
(α)∗
j (x), j = dδe, dδe+

1, . . . , N, then integrate the resulting equation in the interval [a, b], we obtain:∫ b

a

 N∑
m=dδe

m−dδe∑
n=0

µmHm,nx
m−n−δ −G(x)

N∑
m=0

µmC
(α)∗
m (x)− ν1

∫ x

0

k1(x, t)
N∑
m=0

µmC
(α)∗
m (t)dt

−ν2

∫ 1

0

k2(x, t)
N∑
m=0

µmC
(α)∗
m (t)dt

]
C

(α)∗
j (x)dx =

∫ b

a

f(x)C
(α)∗
j (x)dx.

(20)
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Putting Eq. (20) in matrix form, we have:

Υ = µχ, (21)

where Υ is a (N −dδe+ 1)× (N + 1) matrix, µ and χ are column matrices of (N + 1)× 1. The
remaining equations are derived from the non-local boundary conditions, that’s:

k∑
j=1

(
αij

[
N∑
m=0

µm
dj−1

dxj−1
C(α)∗
m (x)

]
x=a

+ γij

[
N∑
m=0

µm
dj−1

dxj−1
C(α)∗
m (x)

]
x=b

)

+ ρi

∫ b

a

Si(x)
N∑
m=0

µmC
(α)∗
m (x)dx = ki, i = 1, 2, . . . , k,

(22)

to have (N + 1) equations.

3.2 Gegenbauer-collocation method

Collocating Eq. (19) at x = xj, j = 0, 1, . . . , (N+1−dδe) using the zeros of shifted Gegenbauer
polynomial CN + 1− dδe(α)∗(x), we obtain:

N∑
m=dδe

m−dδe∑
n=0

µmHm,nx
m−n−δ
j =G(xj)

N∑
m=0

µmC
(α)∗
m (xj) + f(xj) + ν1

∫ xj

0

k1(x, t)
N∑
m=0

µmC
(α)∗
m (t)dt

+ ν2

∫ 1

0

k2(xj, t)
N∑
m=0

µmC
(α)∗
m (t)dt,

(23)
with non-local boundary conditions giving in Eq. (22) we obtain (N + 1) algebraic equations
with (N + 1) unknowns, which will be then be solved to obtain the µm,m = 0, 1, . . . , N and
subsequently the approximate solution yN(x).

3.3 Convergence and Stability Analysis

Theorem 3.1 Assume y,v ∈ s if (s, ‖ . ‖) is a Banach Space Ψ: s → s satisfying

‖ Ψy −Ψv ≤ L ‖ y −Ψv ‖ +χ ‖ y − v ‖ (24)

where L ≥ 0, 0 ≤ χ ≤ 1. Suppose that Ψ has fixed point. Then Ψ is Picard Ψ-stable

Lemma 3.2 If the function f(x) is continuous function then, a FOIE Eq.(1) is equivalent to
the integral equation

y(x) = ki +
1

Γ(δ)

∫ x

0

(x− s)δ−1 [G(s)y(s) + f(s)] ds+
ν1

Γ(δ)

∫ x

0

(x− s)δ−1

(∫ s

0

k1(x,w)y(w)dw

)
ds

+
ν2

Γ(δ)

∫ 1

0

(x− s)δ−1

(∫ s

0

k2(x,w)y(w)dw

)
ds, for x ∈ [0, 1].

(25)
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For m, n ∈ N if

Ψym = ν1

∫ x

0

k1(x, t)ym(t)dt+ ν2

∫ 1

0

k2(x, t)ym(t)dt+G(x)ym(x)and

Ψyn = ν1

∫ x

0

k1(x, t)yn(t)dt+ ν2

∫ 1

0

k2(x, t)yn(t)dt+G(x)yn(x),

(26)

then,

‖ Ψym −Ψyn ‖ =‖ ν1

∫ x

0

k1(x, t)ym(t)dt+ ν2

∫ 1

0

k2(x, t)ym(t)dt+G(x)ym(x)

− ν1

∫ x

0

k1(x, t)yn(t)dt− ν2

∫ 1

0

k2(x, t)yn(t)dt−G(x)ym(x) ‖

≤ |ν1|
[∫ x

0

∫ x

0

k2
1(x, s)dsdx

]1

2 ‖ ym(x)− yn(x) ‖

≤ |ν2|
[∫ 1

0

∫ 1

0

k2
2(x, s)dsdx

]1

2 ‖ ym(x)− yn(x) ‖ +G(x) ‖ ym(x)− yn(x) ‖

.

(27)

Therefore if |ν1| <
1

ξ1

and |ν2| <
1

ξ2

, where

ξ1 =

[∫ x

0

∫ x

0

k2
1(x, s)dsdx

]1

2
, and

ξ2 =

[∫ 1

0

∫ 1

0

k2
2(x, s)dsdx

]1

2
,

(28)

then, the mapping Ψ has a fixed point. In particular , for L = 0 and

χ = |ν1|
[∫ x

0

∫ x

0

k2
1(x, s)dsdx

]1

2 + |ν2|
[∫ 1

0

∫ 1

0

k2
2(x, s)dsdx

]1

2
+G(x).

Then, Theorem 3.1 hold for mapping Ψ and hence it is Ψ- stable

Definition 1 The function y, v ∈ C1[0, 1],R satisfying the lipschitz conditions if there exist
real constant η > 0 such that

|y(x)− v(x)| ≤ η|y − v| (29)

Theorem 3.3 Assume

Ty(x) = G(x)y(x) + f(x) + ν1

∫ x

0

k1(x, t)y(t)dt, and

Ty(x) = G(x)y(x) + f(x) + ν2

∫ 1

0

k2(x, t)y(t)dt,

(30)

then Eq. (1) converges if and only if the two hypothesis are satisfied
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(i) 〈Ty(x)− Tv(x), y(t)− v(t)〉 ≤ α|y(x)− v(x)|2

(ii) for α > 0∀ y, v ∈ C[0, 1] there exist a constant C(ϕ) > 0 such that

‖ y ‖≤ ϕ ‖ v ‖≤ ϕ,

we have
〈T (y)− T (v), w〉 ≤ Cϕ ‖ y − v ‖‖ w ‖,

for every w ∈ [0, 1]

Proof

Applying to Eq. (1), we obtain:

T (y)− T (v) =G(x)y(x)−G(x)v(x) + ν1

∫ x

0

k1(x, t)[y(t)− v(t)]dt

+ ν2

∫ 1

0

k2(x, t)[y(t)− v(t)]dt.

(31)

The inner product corresponding to Eq. (31) is given by:

〈T (y)− T (v), (y − v)〉 =〈G(x)y(x)−G(x)v(x) + ν1

∫ x

0

k1(x, t)[y(x)− v(x)]dt

+ ν2

∫ 1

0

k2(x, t)[y(x)− v(x)]dt, (y − v)〉.
(32)

Hence, by using the Schwartz inequality and Eq.(29), we have

〈T (y)− T (v)〉 ≤(ξ ‖ y − v ‖ + sup
0≤x≤1

k1(x, t)η ‖ y − v ‖)(‖ y − v ‖)

+ |ν2| sup
0≤x≤1

k2(x, t)η ‖ y − v ‖ (‖ y − v ‖).

This implies,
(T (y)− T (v), (y − v)) ≤ k ‖ y − v ‖2 .

On the other hand,

〈T (y)− T (v), w〉 =〈G(x)y(x)−G(x)v(x) + ν1

∫ x

0

k1(x, t)[y(t)− v(t)]dt

+ ν2

∫ 1

0

k2(x, t)[y(t)− v(t)]dt, w〉.
(33)

Again we have,
〈T (y)− T (v), w〉 ≤ C(ϕ) ‖ y − v ‖‖ w ‖ .
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4 Numerical Examples

The implementation of the proposed method is presented here, by solving some selected exam-
ples from the literature with polynomial and non-polynomial exact solutions. We compute the
maximum absolute error χN for each problem considered and compare with the existing one in
the literature, where:

χN = max
0≤i≤100

|y(xi)− yN(xi)| , xi = a+ ih. (34)

Example 4.1

Consider the following FOIE [21,25].

D
1
2y(x) +

x2

3
exy(x) =

√
x

Γ(1.5)
− 1

2
x2 + ex

∫ x

0

ty(t)dt+

∫ 1

0

x2y(t)dt, (35)

with non-local condition:

y(0) + y(1)− 3

∫ 1

0

ty(t)dt = 0, (36)

and exact solution y(x) = x.

Applying the procedure explained in section 3, by seeking an approximate solution of the form
(18), then substitute in Eq. (35), we obtain equation of the form (19), that’s:

N∑
m=dδe

m−dδe∑
n=0

µmHm,nx
m−n−δ +

x2

3
ex

(
N∑
m=0

µmC
(α)∗
m (x)

)
=

√
x

Γ(1.5)
− 1

2
x2

+ ex
∫ x

0

t

(
N∑
m=0

µmC
(α)∗
m (t)

)
dt+

∫ 1

0

x2

(
N∑
m=0

µmC
(α)∗
m (t)

)
dt

(37)

where δ = 1
2
, µm, m = 0, 1, . . . , N are unknowns to be determined, N is the degree of approxi-

mation. Hm,n is given in Eq. (17).

Now for the Gegengauer-Galerkin method, we multiply Eq. (37) by C
(α)∗
j (x), j = dδe, dδe +

1, . . . , N , then integrate the resulting equation in the interval [0, 1], we obtain:

∫ 1

0

 N∑
m=dδe

m−dδe∑
n=0

µmHm,nx
m−n−δ +

x2

3
ex

(
N∑
m=0

µmC
(α)∗
m (x)

)
− ex

∫ x

0

t

(
N∑
m=0

µmC
(α)∗
m (t)

)
dt

−
∫ 1

0

x2

(
N∑
m=0

µmC
(α)∗
m (t)

)
dt

]
C

(α)∗
j (x)dx =

∫ 1

0

[ √
x

Γ(1.5)
− 1

2
x2

]
C

(α)∗
j (x)dx.

(38)
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To obtain the µm,m = 0, 1, . . . , N , we solve Eq. (38) together with the attached condition (36),
that’s:

y(0) + y(1)− 3

∫ 1

0

ty(t)dt = 0 =
N∑
m=0

µmC
(α)∗
m (0) +

N∑
m=0

µmC
(α)∗
m (1)− 3

∫ 1

0

t

(
N∑
m=0

µmC
(α)∗
m (t)

)
dt

⇒
N∑
m=0

µm
(−1)mΓ(m+ 2α)

m!Γ(2α)
+

N∑
m=0

µm
Γ(m+ 2α)

m!Γ(2α)
− 3

∫ 1

0

t

(
N∑
m=0

µmC
(α)∗
m (t)

)
dt = 0.

(39)
Again, for the Gegenbauer-collocation method, we collocate Eq. (37) at x = xj, j = 0, 1, . . . (N+

1− dδe) using the roots of shifted Gegenbauer polynomial C
(α)∗
N+1−dδe(x) and we obtain:

N∑
m=dδe

m−dδe∑
n=0

µmHm,nx
m−n−δ
j +

x2

3
exj

(
N∑
m=0

µmC
(α)∗
m (xj)

)
=

√
xj

Γ(1.5)
− 1

2
x2
j

+ exj
∫ xj

0

t

(
N∑
m=0

µmC
(α)∗
m (t)

)
dt+

∫ 1

0

x2
j

(
N∑
m=0

µmC
(α)∗
m (t)

)
dt.

(40)

Eq. (40) together with the non-local boundary condition (39) gives (N + 1) unique equations,
which we then solved to obtain the unknowns µm,m = 0, 1, . . . , N , then substituted in Eq. (18)
to obtain the approximate solution.

This example was solved in [21] and obtained their approximate solution using Pade approx-
imations with maximum absolute error of 8.69 × 10−5. Also [25] used Bernstein polynomials
as an approximating polynomial and obtained 4.90 × 10−11 as their maximum absolute error
but in our proposed method, we obtain exact solution using both Gegenbauer-Galerkin method
and Gegenbauer-collocation method. Figure 1 shows the exact solution and its corresponding
approximate at N = 4.

Figure 1: The exact and approximate solutions at various values of α for Example 4.1
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Example 4.2

Consider the following problem [25].

D
1
3y(x)−

∫ x

0

x2 exp(xt)y(t)dt =
3

2

x
2
3

Γ
(

2
3

) − 1 + exp(x2)− x2 exp(x2), (41)

subject to non-local boundary condition

y(0) + 2y(1) + 3

∫ 1

0

ty(t)dt = 3, (42)

with the exact solution y(x) = x.

The problem here was solved using the approach explained in section 3. The same example was
solved by [25] using Bernstein approximation and obtained 3.31 × 10−7 as maximum absolute
error while we obtain exact solution using both Gegenbauer-Galerkin method and Gegenbauer-
collocation method. Figure 2 shows the relationship between proposed method and the exact
solution.

Figure 2: The exact and approximate solutions at various values of α for Example 4.2

Example 4.3

Consider the following FOIE [25].

D
1
2y(x) +

∫ x

0

ty(t)dt+

∫ 1

0

t2y(t)dt = (erf(
√
x) + x− 1) exp(x) + exp(1)− 1,

y(0)−
∫ 1

0

ty(t)dt = 0,

(43)

The exact solution is y(x) = exp(x).
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Table 1: Absolute errors for Example 4.3 using α = 2

x PM (α = 2) [25]

0 4.67× 10−6 1.82× 10−5

0.2 3.72× 10−4 1.05× 10−4

0.4 3.36× 10−5 2.91× 10−5

0.6 4.85× 10−4 2.85× 10−5

0.8 3.21× 10−5 1.50× 10−5

1.0 2.79× 10−6 4.20× 10−6

The results obtained in Example 4.3 using the proposed methods (PM) are in good agree-
ment with the results obtained in [25], as the two give the same degree of accuracy in the their
maximum absolute errors, as shown in Table 1. Figure 3 shows the exact and its corresponding
approximate solution.

Figure 3: The exact and approximate solutions at various values of α for Example 4.3

Example 4.4

Consider the following FOIE: (see [7, 26])

D
1
2y(x) = f(x)−

∫ 1

0

xty(t)dt,

y(0) = 0,

(44)

where

f(x) =
8x3/2

3
− 2x1/2

√
π

+
x

12
.

The exact solution is y(x) = x2 − x.
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[26] got an approximate solution with the maximum absolute error of 4.10×10−5 and 1.10×10−4

using standard least squares method and the perturbed least squares method, respectively. In
our proposed method, we obtain exact solution and [7] obtained exact solution. Figure 4 display
the graph of exact solution and its corresponding approximant.

Figure 4: Relationship between the exact and approximate solutions at various values of α for
Example 4.4

Example 4.5

Consider the following FOIE (see [6]).

D
√

3y(x) =
2

Γ(3−
√

3)
x2−

√
3 + 2 sin(x)− 2x+

∫ x

0

cos(x− t)y(t)dt,

subject to y(0) = 0, y′(0) = 0,

with the exact solution y(x) = x2.

The exact solution was obtained using the proposed method (PM) which is in good agreement
with the result reported in [6]. Figure 5 displays the exact and its corresponding approximate
at various values of α.

Example 4.6

Consider the following FOIE with weakly singular kernel [27]:

D
1
4y(x)− 1

2

∫ x

0

y(t)

(x− t) 1
2

dt− 1

3

∫ 1

0

(x− t)y(t)dt = f(x)

y(0) = 0, with exact solution y(x) = x2 + x3

and f(x) =
Γ(3)

Γ
(

11
4

)x 7
4 +

Γ(4)

Γ
(

15
4

)x 11
4 −
√
πΓ(3)

2Γ
(

7
2

) x 5
2 − 7

36
x+

3

20

Table 2 is the absolute errors at α = 1 and α = 2 as it compares with the results obtained
in [27]. Figure 6 is the corresponding figure.



K. Issa et al. / MATEMATIKA 40:3 (2024) 113–129 126

Figure 5: The exact and approximate solutions at various values of α for Example 4.5

Table 2: Absolute errors for Example 4.3 using α = 2

x α = 1 α = 2 [27]

0 0 0 1.44× 10−4

1
6

4.13× 10−5 4.10× 10−5 2.26× 10−4

1
3

2.71× 10−4 2.67× 10−4 5.98× 10−4

1
2

6.89× 10−4 6.81× 10−4 1.13× 10−3

2
3

1.13× 10−3 1.10× 10−3 1.50× 10−3

5
6

1.21× 10−3 1.17× 10−3 2.21× 10−3

Figure 6: The exact and approximate solutions at various values of α for Example 4.6
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5 Discussion of Results

Table 1 and Table 2 depict the maximum absolute errors obtained, for Example 4.3 and Example
4.6, respectively. We observed that the results obtained from this example are in good agree-
ment with the results obtained in the literature (such as Laguerre polynomials and Bernstein
polynomials as approximations), as both give the same degree of accuracy in their maximum
absolute error. In Examples 4.1, 4.2, 4.4, and 4.5, we obtained an exact solution that either
gave better results or was in good agreement with the results obtained in the literature as
explained in each example. We observed that the approximate solutions to all the examples
with polynomial exact solutions produced the exact results except Example 4.6 with weakly
singular kernel, although good approximation was still produced. Figures 1 until Figure 6 are
the plots of the exact solution and their corresponding approximate solutions.

6 Conclusion

In this paper, we proposed Gegenbauer-Galerkin method and Gegenbauer-collocation method
for solving fractional integro-differential equations using shifted Gegenbauer polynomial as an
approximation. We used the two methods separately to transform the integro-differential equa-
tions into a system of algebraic linear equations and the fractional part of the integro-differential
equation was removed using Caputo properties and the derived theorems. The equations were
solved together with the non-local boundary conditions to obtain the unknown coefficients
µm,m = 0, 1, . . . , N and subsequently, the approximate solutions at various values of α re-
flecting in the Gegenbauer polynomials. For experiment, we used α = 1, 2, 3 for the shifted
Gegenbauer polynomials C

(α)
i (x), i ≥ 0. The methods are implemented on some selected exam-

ples from the literature. We obtained the exact solutions in examples with polynomial exact
solution and better results to the example with non polynomial exact solution. Obviously, from
the numerical results, the proposed methods is effective, robust because it generate results of
some other orthogonal polynomials like Legendre polynomial Pi(x) when α = 1

2
, second kind

Chebyshev polynomial Ui(x) when α = 1 and so on. From the tables of results and figures, the
proposed methods are effective and accurate.
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