MATEMATIKA, MJIAM, Volume 41, Number 2, 151-166
© Penerbit UTM Press. All rights reserved

A Volatility-Responsive LSTM Approach for Predicting KLCI
Closing Prices Using Dynamic Optimizer Switching

1.2Abang Mohammad Hudzaifah Abang Shakawi* and 2Ani Shabri

1Department of Mathematical Sciences, Universiti Teknologi Malaysia,
81310 UTM Johor Bahru, Malaysia

2Centre for Pre-University Studies Universiti Malaysia Sarawak,
94300, Sarawak, Malaysia

*Corresponding author: asamhudzaifah@unimas.my

Article history

Received: 12 June 2024

Received in revised form: 15 March 2025
Accepted: 30 May 2025

Published on line: 1 August 2025

Abstract In financial time series forecasting, the ability of models to adapt to chang-
ing market conditions is critical for improving prediction accuracy. This study explores
a novel approach to optimizing Long Short-Term Memory (LSTM) models by dynami-
cally adjusting optimizers based on market volatility, specifically using the Average True
Range (ATR) as a volatility indicator. Traditional optimizers like Adaptive Moment Es-
timation (Adam), Root Mean Squared Propagation (RMSprop), and Stochastic Gradient
Descent (SGD) each offer distinct advantages under different market conditions; however,
their effectiveness is limited when applied uniformly throughout the training process. To
address this limitation, a dynamic optimization strategy was proposed, that switches be-
tween optimizers during the training process based on ATR values, enhancing the model’s
adaptability. This method was applied to predict the Kuala Lumpur Composite Index
(KLCI) closing prices, showing improved prediction performance over conventional mod-
els that rely on a single optimizer. This adaptive approach offers a robust solution for
stock index prediction in volatile markets, contributing to the broader field of financial
forecasting through the integration of volatility-driven learning techniques.

Keywords Bursa Malaysia; Dynamic Optimizer Switching; LSTM; Machine learning;
Time series; Volatility-Responsive LSTM.

Mathematics Subject Classification 37M10, 62P20, 68T99, 91B&4.

1 Introduction

Financial markets are characterized by their dynamic and volatile nature, posing significant
challenges for accurate prediction and analysis [1]. The Kuala Lumpur Composite Index
(KLCI), representing the performance of the Malaysian stock market, is no exception. Tra-
ditional statistical models often struggle to capture the non-linear patterns and abrupt changes
present in financial time series data. To address these limitations, machine learning approaches,

41:2 (2025) 151-166 | www.matematika.utm.my | eISSN 0127-9602 |

Abang Mohammad Hudzaifah Abang Shakawi and Ani Shabri / MATEMATIKA 41:2 (2025) 151-166 152

particularly Long Short-Term Memory (LSTM) networks, have garnered substantial attention
due to their proficiency in modelling sequential data and capturing long-term dependencies [2].

LSTM networks, a specialized form of recurrent neural networks (RNN), are particularly
adept at handling sequential data with long-term dependencies, making them well-suited for
financial time series forecasting [3]. Unlike traditional neural networks, which struggle with
vanishing or exploding gradients over extended sequences, LSTMs utilize a unique architecture
that includes memory cells and gating mechanisms. These mechanisms enable LSTMs to re-
tain and prioritize important information over multiple time steps, allowing them to capture
underlying patterns in stock prices or other time-dependent data.

Within these networks, optimization plays a pivotal role, governing how effectively the
model converges toward an optimal solution. Optimizers in machine learning can generally
be categorized into two main types: metaheuristic optimizers and gradient-based optimizers.
Metaheuristic optimizers, such as Particle Swarm Optimization (PSO) and Genetic Algorithms
(GA), explored the solution space through population-based approaches that mimic natural
processes and does not rely on gradient information [4]. They employ mechanisms such as
mutation, crossover, and swarm intelligence to explore and exploit the solution space, often
making them suitable for highly non-convex problems or those with numerous local optima [5].
These methods are particularly useful for optimizing complex, non-convex problems, but they
tend to be computationally intensive and can require significant time to converge to optimal
solutions.

In contrast, gradient-based optimizers, such as Adaptive Moment Estimation (Adam), Root
Mean Squared Propagation (RMSprop), and Stochastic Gradient Descent (SGD), utilize gra-
dient information to update model parameters iteratively [6]. They are particularly efficient
for large datasets and high-dimensional parameter spaces, making them the preferred choice
for training neural networks, including LSTM models. These optimizers are designed to con-
verge quickly to local minima by leveraging the gradient of the loss function, facilitating the
fine-tuning of model weights [7].

A variety of gradient optimizers exist beyond the commonly used Adam [8], SGD [9], and
RMSprop [10], each offering unique methods to enhance convergence and generalization. Ada-
Grad, short for Adaptive Gradient Algorithm, tailors learning rates for individual parameters
based on historical gradient information, favoring larger updates for infrequent parameters,
which proves useful in LSTM tasks like NLP where certain tokens occur more often than
others [11]. While beneficial for sparse and high-dimensional data, AdaGrads rapid decay in
learning rate may lead to slower training.

AdaDelta, an extension of AdaGrad, addresses AdaGrads rate decay by retaining a history
of gradients within a sliding window [12]. This adaptation allows learning rates to adjust dy-
namically without a global setting, beneficial for nonstationary data, although it requires extra
memory to store past gradients. Nadam (Nesterov-accelerated Adam) combines Adam’s adap-
tivity with Nesterov momentum, leading to faster convergence, especially in complex LSTM
models [13]. While computationally intensive, Nadam’s efficiency is often offset by its acceler-
ation of convergence.

AMSGrad modifies Adam’s update rules to correct its convergence in noisy gradient environ-
ments, ensuring stable learning by maintaining a maximum of past squared gradients [14]. This
optimizer offers more stability, albeit sometimes at the expense of speed compared to Adam.
AdaBound introduces bounds to learning rates, effectively blending adaptive methods with

Abang Mohammad Hudzaifah Abang Shakawi and Ani Shabri / MATEMATIKA 41:2 (2025) 151-166 153

SGD [15]. Initially behaving like Adam, it gradually transitions to SGD, creating smoother
convergence at the cost of added tuning for the transition phase. Radam [16], a modified
Adam, includes a rectification term to stabilize early-stage training, useful for LSTMs facing
high gradient variance, while Yogi [17] and NovoGrad [18] enhance gradient handling for nonsta-
tionary and large-scale data, respectively. Ranger combines Radam’s stability and Lookahead’s
exploratory updates, offering accelerated, stable learning, particularly for NLP [19]. Several
optimizers like SGDW [20], AdaMax [21], and Fromage [22] modify weight decay or adapt
norms to enhance stability and generalization, each with unique strengths suited to varying
LSTM model scales and data sparsity.

Beyond individual optimizers, some techniques incorporate switching mechanisms, adjusting
strategies during training to address specific training phases. Dynamic switching optimizers
take this concept a step further by combining the strengths of multiple optimizers within a
single training session. Methods like SWAT'S (Switching from Adam to SGD) allows a model to
transition from one optimization technique to another based on training progression, adapting
to different stages of the learning process [23]. Early-stage training, which typically benefits
from adaptive optimizers like Adam, often prioritizes fast convergence, while later stages may
require simpler optimizers like SGD for better generalization. By allowing for an adaptive
switch between optimizers, dynamic switching can harness the strengths of various optimization
strategies, adjusting to changing data patterns and training dynamics [24].

In scenarios involving frequent shifts in data patterns, such as financial markets or other
time-series data, optimizers that can adapt to certain conditions become especially valuable.
State-sensitive optimization techniques adjust learning rates or optimization strategies based
on data fluctuations, aiming to stabilize the training process. For instance, optimizers like
AdaSecant [25] use gradient variance as a signal to adapt their behavior, reducing the learning
rate during periods of high volatility or switching to a simpler optimizer when fluctuations are
detected. These state-driven approaches aim to improve convergence stability and ensure more
consistent performance in environments where data patterns are prone to sudden shifts.

However, while both dynamic switching and state-sensitive optimizers have shown promise
in handling complex datasets, there remains a gap in integrating volatility sensitivity directly
into adaptive LSTM models [26]. Current techniques often apply these optimizers in isolation
or within standard architectures, overlooking the potential benefits of directly aligning LSTM
model parameters with volatility-driven optimizer behaviours. This research gap suggests an
opportunity for developing a volatility-driven approach to LSTM optimization, where model ad-
justments are dynamically informed by volatility measures, offering more robust and responsive
model performance in unpredictable data environments.

Market volatility, reflected in fluctuations in asset prices, significantly impacts the perfor-
mance of predictive models. High-volatility periods often lead to more rapid price changes,
requiring models to adjust their learning strategies accordingly. Conversely, low-volatility peri-
ods demand a more conservative approach to avoid overfitting. This makes predicting financial
market behaviour particularly challenging due to the unpredictable nature of volatility and the
non-linear patterns in the data. Volatility is also a key reflection of market sentiment, captur-
ing the collective perception of investors during periods of uncertainty or stress. Incorporating
volatility into stock index forecasting models helps to identify these critical periods, providing
deeper insights into investor behaviour and market sentiment, which can anticipate potential
market trends and shifts [27]. As volatility often accompanies significant price movements,

Abang Mohammad Hudzaifah Abang Shakawi and Ani Shabri / MATEMATIKA 41:2 (2025) 151-166 154

integrating it into forecasting models allows for better adaptation to sudden changes in market
conditions. This leads to more accurate predictions, especially during volatile periods, which
are crucial for making timely and effective decisions [28].

Hence, this study introduced a dynamic optimizer-switching strategy for LSTM models
based on volatility patterns, as measured by the Average True Range (ATR). ATR is a valu-
able tool for capturing dynamics of market volatility, providing a quantitative measure of price
fluctuations over time. By leveraging ATR values at each training epoch, this approach dy-
namically adjusts the model’s optimizer to better suit the current volatility regime, enhancing
the model’s ability to learn effectively under different market conditions. This method aims to
improve the prediction accuracy of LSTMs, particularly in volatile financial environments, and
is tested on the Kuala Lumpur Composite Index (KLCI) closing price data.

2 Methodology

2.1 Data Collection and Preparation

This study utilized the daily closing prices of the KLCI from January 2, 2018, to January 31,
2023, comprising a total of 1,225 observations obtained from the Yahoo Finance website. The
dataset was divided into two segments: the training set, spanning from January 2, 2018, to
June 29, 2022 (90% of the data), and the testing set, covering the period from June 30, 2022,
to January 31, 2023 (10% of the data).

2.2 Average True Range

ATR is a flexible measure of volatility that quantifies the average magnitude of price fluctuations
over a given timeframe [29]. Unlike traditional measures that only consider closing prices,
ATR incorporates both intraday price highs and lows, providing a more comprehensive view
of market volatility [30]. It is particularly valuable for setting stop-loss levels and determining
the potential range of price movements within a given trading session or timeframe.

The ATR is calculated as the mean of the absolute differences between consecutive daily
closing prices over a specified period as follows:

" TR,

_ Zi:l
ATR = == (1)

where
e TR, represents true range of each day i, and

e p represents the number of periods.

2.3 LSTM Model

The LSTM model represents a variation of RNN that incorporates a sequence of iterative
computational components. LSTMs are particularly well-suited for tasks involving time series
analysis, natural language processing, and other applications where temporal dependencies are
crucial [31]. LSTMs incorporate unique memory cells that enable them to maintain information

Abang Mohammad Hudzaifah Abang Shakawi and Ani Shabri / MATEMATIKA 41:2 (2025) 151-166 155

over long periods. As illustrated in Figure 1, an LSTM unit consists of a memory cell, an input
gate, an output gate, and a forget gate, which function collaboratively to process and preserve
information over temporal periods [32].

4 @

c(t-1) .

= clt)

forget gate:| inpul gane:
fi i

e T[]

] [

hit-1) [/f

xit)

Figure 1: Architecture of the LSTM unit

The forget gate f; dictates the degree to which the previous cell state ¢;_; is discarded,
computed as f; = o (W - [hy—_1,2¢] + by). The input gate i; determines what new information
is retained in the cell state, given by i, = o (W, - [hy_1, 2¢] + b;), and the candidate cell state ¢ is
calculated using ¢ = tanh (W, - [hy_1, 24| + b.), with hyperbolic tangent function. The current
cell state C is updated using the formula C; = f; ©® ¢;_1 + iy © ¢. Finally, the output gate
O; governs the output of the LSTM cell, calculated as Oy = o (Wo - [hi—1, 24| + bo), and the
hidden state h; is derived from h; = O, ® tanh (¢;). Here, Wy, W,;, W, and Wy represents the
weight matrices that connect the input to the respective gates while by, b;, b, and bo represents
the bias terms that are added to the respective gates to adjust the activations, helping the
LSTM model account for inherent shifts in the data and improve the gating mechanism’s
flexibility. The Hadamard product, ® is an element-wise multiplication, allowing the model
to selectively control the flow of information. The o (sigma) symbol represents the sigmoid
activation function, which is used in the input, forget, and output gates to control the flow of
information by producing values between 0 and 1, determining how much information should
be passed through or discarded.

2.4 Optimizers
2.4.1 SGD Optimizer

SGD updates model parameters using a single or a few randomly chosen data samples, unlike
the traditional gradient descent which uses the full dataset for each update [9]. This approach
reduces computation time and introduces stochasticity, which can help the optimizer escape
local minima in the error surface. SGD updates the models parameters by applying the gradient
of the loss function with respect to the weights. The formula for the weight update at time

Abang Mohammad Hudzaifah Abang Shakawi and Ani Shabri / MATEMATIKA 41:2 (2025) 151-166 156

step t is:
w1 = wy — VL (wy), (2)

where
e w; represents the weight at time ¢,
e 1) represents the learning rate, and

e VL (w;) represents the gradient of the loss function with respect to the weight.

2.4.2 RMSprop Optimizer

RMSprop adapts the learning rate for each parameter based on recent gradients, where it
divides the learning rate by the root of the average of recent squared gradients, rather than
accumulating the squares of all previous gradients [33]. This helps prevent the learning rate
from shrinking too quickly, allowing the optimizer to continue learning over longer periods. The
update rule is:

Wiyt = Wy L VL (w), (3)
E[VL(w)?] +e

where
e w; represents the weight at time ¢,
e 7 represents the learning rate,
e VL (w;) represents the gradient of the loss function with respect to the weight,
o ¥ [VL (wt)ﬂ represents the moving average of squared gradients, and

e ¢ represents a small constant to prevent division by zero.

2.4.3 Adam Optimizer

Adam is a combination of RMSprop and momentum, using both first and second moments of
the gradients to adapt the learning rate [8]. This dual mechanism helps the optimizer adjust
learning rates based on the magnitude of past gradients, leading to more stable convergence.
The update rule is:

my = fimy_y + (1 — B1) VL (wy) , (4)
v = Bovy—1 + (1 = B2) VL (wt)Q ; (5)
L L
mt_l—ﬁ{ Ut 1_ 57 (6)
nmy
f— _— 7
W1 Wy @t+€a ()

where

e w; represents the weight at time ¢,

Abang Mohammad Hudzaifah Abang Shakawi and Ani Shabri / MATEMATIKA 41:2 (2025) 151-166 157

e 1) represents the learning rate,

e ¢ represents a small constant to prevent division by zero,

e m,; and v, represents the first and second moments (means) of the gradients, and

e 31 and f3; represents hyperparameters controlling the decay rates of the moment estimates.

This study utilized the daily closing prices of the KLCI from January 2, 2018, to January 31,
2023, comprising a total of 1,225 observations obtained from the Yahoo Finance website. The
dataset was divided into two segments: the training set, spanning from January 2, 2018, to
June 29, 2022 (90% of the data), and the testing set, covering the period from June 30, 2022,
to January 31, 2023 (10% of the data).

2.5 LSTM Model with ATR-Based Dynamic Optimizer Switching Mechanism

The adaptive optimizer function selects an appropriate optimizer for each epoch by analyzing
the ATR values in the context of recent data. Initial hyperparameters such as learning rate,
optimizer, and batch size are set, with the optimizer chosen adaptively during training based
on ATR values. The ATR values are computed at each epoch over a sliding window of the most
recent data points. Based on the ATR value, the optimizer is dynamically changed according
to the following rules:

e High Volatility (ATR > a): The optimizer is switched to RMSprop, which is known for
handling noisy, non-stationary data effectively.

e Low Volatility (ATR < b): The optimizer is switched to SGD, which performs well in
stable market conditions by reducing overfitting.

e Moderate Volatility (b < ATR < a): The optimizer defaults to Adam, which adapts well
to various situations with its balance of speed and stability.

This dynamic optimizer-switching strategy can be mathematically expressed as:

RMSprop if ATR; > a
Opt, = { Adam if b<ATR, <a (8)
SGD if ATR; < b

where

e Opt, represents the optimizer selected for epoch t based on the ATR value at the start of
the epoch

The following pseudocode in Figure 2 illustrates the adaptive switching strategy implemented
in this studys optimization process. It details how the model dynamically selects between
different optimizers such as Adam, RMSprop, and SGD based on predefined conditions that
reflect training phase requirements.

Abang Mohammad Hudzaifah Abang Shakawi and Ani Shabri / MATEMATIKA 41:2 (2025) 151-166 158

Algorithm 1 ATR-Based Dynamic Optimizer Switching for LSTM Training

Require: T: Total epochs, N: Total data points, ATR Values, Thresholds for volatility
1: for epochs e =1 to T do
2: Calculate dynamic window size W « | N/T |

3: Calculate mean ATR over current window:
1 eW
ATR = > ATR;
i=(e—1)W+1
4: if ATR, = High threshold then
5: Select optimizer: RMSprop
6: else if ATR, = Low threshold then
7: Select optimizer: SGD
8: else
9: Select optimizer: Adam
10: end if
11: Recompile model with chosen optimizer
12: Train model on training data for one epoch
13: Track training and validation loss
14: end for

15: return Trained LSTM model, performance metrics

Figure 2: Pseudocode for Dynamic Optimizer Switching in LSTM

2.6 Model Evaluations

The forecasting models were evaluated using two performance measures: Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE).

1 & .
MAE = ~ > |y — il (9)
=1
1 n
— _ . 11)2
RMSE - > (i — i) (10)

=1

The true value is represented by y; while g; denotes the estimated value. A smaller MAE and
RMSE indicate a more accurate prediction model.

3 Results and Discussion

3.1 Volatility Analysis and Market Movement

The analysis of the ATR values alongside the closing price reveals important insights into the
relationship between volatility and stock price behaviour. As shown in Figure 3, the closing price

Abang Mohammad Hudzaifah Abang Shakawi and Ani Shabri / MATEMATIKA 41:2 (2025) 151-166 159

(blue line) fluctuates throughout the period, with a sharp decline observed around early 2020,
likely corresponding to the global market crash due to the COVID-19 pandemic. In contrast, the
ATR values (red line), which measure market volatility, remain relatively low during periods of
stability but show a significant spike during this market downturn. This indicates that volatility
increases when the market experiences large price movements, particularly during periods of
uncertainty. After the sharp rise in ATR during early 2020, the volatility values gradually
decrease, reflecting market stabilization. This reinforces the rationale for incorporating ATR-
based dynamic optimizer switching for LSTM training, as it allows the model to better account
for volatility-driven market shifts.

2,000

1.500

21.000

S0

FMMM—\

0

20 18-01-02 2019-01-02 2020-01-02 2021-01-02 2022-01-02 2023-01-31
[};lll\'

Figure 3: Comparison of ATR Values and KLCI Prices from January 2018 to January 2023

3.2 Hyperparameter Setting on LSTM Model

The hyperparameter values were empirically tuned through an iterative process in order to
achieve optimal model performance during the training phase. Following multiple experimental
iterations, the hyperparameter settings for both the LSTM model incorporating an ATR-based
dynamic optimizer switching mechanism and the standard LSTM model include a single hidden
layer with 200 neurons. A dropout rate of 0.2 is applied to prevent overfitting. The models
use a timestep of 20, a batch size of 64, and are trained for 50 epochs. The activation function
employed is the hyperbolic tangent (tanh), while the recurrent function is the sigmoid function.
The tanh function helps the model learn complex, non-linear patterns in stock market data
by mapping inputs to a range of [—1,1]. This makes it well-suited for capturing the inherent
volatility and fluctuations in financial time series data. The mean squared error serves as the
loss function. Three separate standard LSTM models are used in this study, each employing
a different optimizer: Adam, SGD, and RMSprop. These models will serve as benchmarks to
compare against the LSTM model that employs an ATR-based dynamic optimizer switching
mechanism.

Abang Mohammad Hudzaifah Abang Shakawi and Ani Shabri / MATEMATIKA 41:2 (2025) 151-166 160

3.3 Performance Comparison

The ATR-based dynamic optimizer LSTM was compared against the standard LSTM model
to gauge its predictive power and adaptability across different datasets. The results indicate
that the dynamic optimizer switching mechanism consistently yielded lower MAE and RMSE
values across training and testing dataset, as presented in Table 1.

Table 1: Forecasting performance of Dynamic Optimizer LSTM and other models

Model Training Datasets Testing Datasets
MAE RMSE MAE RMSE
LSTM-SGD 16.25 23.26 13.65 18.08
LSTM-Adam 9.61 12.74 8.46 11.96
LSTM-RMSprop 9.30 12.67 9.36 12.45
ATR Dynamic LSTM 9.02 12.17 8.25 11.66

Figure 4 shows the comparison of actual versus predicted values on the training dataset
across the four optimizers: Adam, SGD, RMSprop, and the ATR-~based dynamic optimizer. In
this figure, each line represents the predictions made by a specific optimizer, plotted against
the actual values to illustrate their alignment under different market conditions. The Adam
optimizer’s predicted line closely follows actual values in volatile phases due to its adaptive
nature, while SGD’s line appears smoother however exhibiting lagging in more volatile seg-
ments. RMSprop, balancing between stability and adaptation, typically shows intermediate
tracking accuracy. Finally, the ATR-based dynamic optimizer switches between aggressive and
conservative settings based on volatility, aiming to enhance prediction accuracy by aligning the
model’s responsiveness with the current market environment. This dynamic approach was able
to capture both stable and volatile patterns in the training data, aiming for a balanced and
flexible prediction trend across market regimes.

Figure 5 illustrates the comparison of actual versus predicted values on the testing dataset
across the four optimizers: Adam, SGD, RMSprop, and the ATR-based dynamic optimizer.
In this figure, the ATR-based dynamic optimizer outperforms the other three by maintaining
closer alignment with actual values across both stable and volatile market conditions, thanks to
its ability to adapt based on volatility. In contrast, SGD shows the weakest performance, with
its predictions noticeably lagging and failing to capture rapid market shifts due to its fixed, con-
servative learning rate. RMSprop performs better than SGD, adapting moderately to changes
but still struggling in high-volatility periods. Adam, while superior to SGD and RMSprop
due to its adaptive learning rate, often shows over-responsiveness in volatile regions, leading
to fluctuations that occasionally misalign with actual values. By comparison, the ATR-based
dynamic optimizer adjusts effectively between aggressive and conservative settings, producing
a more accurate and steady prediction line that closely follows actual trends, demonstrating a
clear advantage in handling unpredictable market patterns.

Abang Mohammad Hudzaifah Abang Shakawi and Ani Shabri / MATEMATIKA 41:2 (2025) 151-166 161

1,908 —_— Actual
— LSTM-Adam

1,800

1,700

1.G(M)

Price

150K

1. 40W)

13040

1,200

H18-02-01 2019-02-01 H020-02-01 2021-02-01 2022.02-01
Date

(a)

1,900 — Actual
— LSTM-5GD

00

—_—

00

1,600

Price

R

A0n

00

200

2018-02-01 2019-02-01 2020-02-01 2021-02-01 2022-02-01
Date

(b)

Abang Mohammad Hudzaifah Abang Shakawi and Ani Shabri / MATEMATIKA 41:2 (2025) 151-166 162

1,900 —_— Actual
— LSTM-RMSProp

1,200

1,700

1,600

Price

1,500

1,400

1,300

1,200

M18-02-01 2019-02-01 2020-02-01 W21-02-01 2022-02-01
Diate

()

1,900 —_— Actual
— ATR-Based Dynamic Optimizer
1800

1,700

1,600

Price

1,500

1,400

1,300

1,200

2018-02-01 2010-02-01 2020-02-01 H21-02-01 2022-02-01
Date

(d)

Figure 4: Actual vs. Predicted Values on Training Dataset Across Optimizers: (a) Adam, (b)
SGD, (¢) RMSprop, and (d) ATR-Based Dynamic Switching

Abang Mohammad Hudzaifah Abang Shakawi and Ani Shabri / MATEMATIKA 41:2 (2025) 151-166 163

1,520

1,504)

1.480

1,460

Price

1. 440

1,420

— Actual

_— LSTM-Adam

—— ATR-Based Dynamic Optimizer

— LSTM-SGD
LSTM-RMSProp

1400

1,380

1,360

2023-06-30 2220730 22.08-30 2022-00-30 2023-10-30 H23-11-30 2022-12-30
Date

Figure 5: Actual vs. Predicted Values on Testing Dataset Across Optimizers: Adam, SGD,
RMSprop, and ATR-Based Dynamic Switching

The KLCI index experienced a drastic drop in 2022, driven by external factors such as
political upheaval and the economic recovery phase [34], as shown in Figure 5. This decline is
effectively managed by the dynamic adjustment mechanism, which adapts the model’s hyper-
parameters based on market conditions. During sharp market drops, the mechanism adjusts
to more aggressive settings, enabling the model to respond quickly to sudden changes, while in
stable periods, it uses conservative settings to avoid overreacting to minor fluctuations. This
adaptability enhances the model’s predictive accuracy and robustness, highlighting the strength
of a volatility-driven approach in capturing and responding to significant market shifts.

4 Conclusion

In conclusion, this study demonstrates the effectiveness of a volatility-driven approach in en-
hancing LSTM model performance for stock index prediction. By incorporating dynamic ad-
justments based on market volatility, the model achieves a balanced responsiveness, adapting
its hyperparameters to align with both stable and volatile conditions. The ATR-based dy-
namic optimizer switching, in particular, shows notable improvements in prediction accuracy
compared to traditional optimizers like Adam, SGD, and RMSprop. The ability of the dynamic
optimizer to shift between conservative and aggressive settings ensures better alignment with
market trends, especially during drastic index movements, as seen in the KLCI’s fluctuations in
2022. These findings underscore the value of incorporating market-driven adjustments in pre-
dictive models, offering a robust framework for more reliable stock index forecasting in varying
economic environments. Future research may explore extending this approach to other finan-
cial indices and examining additional volatility measures to further optimize model adaptability
and performance.

Abang Mohammad Hudzaifah Abang Shakawi and Ani Shabri / MATEMATIKA 41:2 (2025) 151-166 164

Acknowledgments

The authors would like to thank the Ministry of Higher Education Malaysia and Universiti
Malaysia Sarawak for financial support of a PhD candidate and for supporting the publication
fees..

References

1]

2]

[11]

[12]

Idrees, S. M., Alam, M. A. and Agarwal, P. A prediction approach for stock market
volatility based on time series data. IEEE Access. 2019. 7: 17287-17298.

Houdt, V. G., Mosquera, C. and Népoles, G. A review on the long short-term memory
model. Artificial Intelligence Review. 2020. 53(8): 5929-5955.

Bharadiya, J. P. Exploring the use of recurrent neural networks for time series forecasting.
International Journal of Innovative Science and Research Technology. 2023. 8(5): 2023-
2027.

Tang, J., Liu, G. and Pan, Q. A review on representative swarm intelligence algorithms
for solving optimization problems: Applications and trends. IEEE/CAA Journal of Auto-
matica Sinica. 2021. 8(10): 1627-1643.

Palle, R. R. Evolutionary Optimization Techniques in Al: Investigating Evolutionary
Optimization Techniques and Their Application in Solving Optimization Problems in Al.
Journal of Artificial Intelligence Research. 2023. 3(1): 1-13.

Mehmood, F., Ahmad, S. and Whangbo, T. K. An efficient optimization technique for
training deep neural networks. Mathematics. 2023. 11(6): 1360.

Karthick, K. Comprehensive Overview of Optimization Techniques in Machine Learning
Training. Control Systems and Optimization Letters. 2024. 2(1): 23-27.

Kingma, D. and Ba, J. Adam: A Method for Stochastic Optimization. Proceedings of
the 3rd International Conference on Learning Representations (ICLR 2015) Ithaca, NY.
2015. 1-15.

Robbins, H. and Monro, S. A Stochastic Approximation Method. The Annals of Mathe-
matical Statistics. 1951. 22(3): 400-407

Tieleman, T. and Hinton, G. Divide the gradient by a running average of its recent
magnitude. Coursera: Neural networks for machine learning. 2017.

Duchi, J., Hazan, E. and Singer, Y. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research. 2011. 12(7): 2121-21509.

Zeiler, M. D. ADADELTA: an adaptive learning rate method. arXiv preprint
arXw:1212.5701. 2012.

Abang Mohammad Hudzaifah Abang Shakawi and Ani Shabri / MATEMATIKA 41:2 (2025) 151-166 165

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

Dozat, T. Incorporating nesterov momentum into adam. Proceedings of the jth Interna-
tional Conference on Learning Representations (ICLR 2016) San Juan, Puerto Rico. 2016.
1-4.

Tran, P. T. On the convergence proof of amsgrad and a new version. [EFEE Access. 2019.
7, 61706-61716.

Savarese, P. On the convergence of adabound and its connection to sgd. arXww preprint
arXiv:1908.04457 2019.

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J. and Han, J. Proceedings of the Sth
International Conference on Learning Representations (ICLR 2020) Virtual. 2020, 1-13.

Zaheer, M., Reddi, S., Sachan, D., Kale, S. and Kumar, S. Adaptive methods for nonconvex
optimization. Advances in neural information processing systems. 2018. 31.

Ginsburg, B., Castonguay, P., Hrinchuk, O., Kuchaiev, O., Lavrukhin, V., Leary, R. and
Cohen, J. M. Stochastic gradient methods with layer-wise adaptive moments for training

of deep networks. Proceedings of the S8th International Conference on Learning Represen-
tations (ICLR 2020) Virtual. 2020, 1-13.

Jiang, J. R. and Lin, Y. T. Deep learning anomaly classification using multi-attention
residual blocks for industrial control systems. Sensors. 2022. 22(23): 9084.

Loshchilov, I. and Hutter, F. Decoupled weight decay regularization. Proceedings of
the 8th International Conference on Learning Representations (ICLR 2019) New Orleans,
Lowisiana. 2019, 1-13.

Wang, F., Wang, H., Zhou, X. and Fu, R. A driving fatigue feature detection method
based on multifractal theory. IEEE Sensors J. 2022. 22(19): 19046-19059.

Bernstein, J., Vahdat, A., Yue, Y. and Liu, M. Y. On the distance between two neural
networks and the stability of learning. Advances in Neural Information Processing Systems.
2020. 33: 21370-21381.

Keskar, N. S. and Socher, R. Improving generalization performance by switching from
adam to sgd. arXiw preprint arXiw:1712.07628. 2017.

Arnold, M., Fink, S. J., Grove, D., Hind, M. and Sweeney, P. F. A survey of adaptive
optimization in virtual machines. Proceedings of the IEEE. 2005. 93(2): 449-466.

Gulcehre, C., Moczulski, M. and Bengio, Y. Adasecant: robust adaptive secant method for
stochastic gradient. Proceedings of the International Joint Conference on Neural Networks

(IJCNN) Anchorage, Alaska. 2017, 1-13.

Yao, Y., Zhao, Y. and Li, Y. A volatility model based on adaptive expectations: An im-
provement on the rational expectations model. International Review of Financial Analysis.
2022. 82, 102202.

Abang Mohammad Hudzaifah Abang Shakawi and Ani Shabri / MATEMATIKA 41:2 (2025) 151-166 166

[27]

28]

[29]

[30]

[31]

32]

[33]

[34]

Hao, X., Ma, Y. and Pan, D. Geopolitical risk and the predictability of spillovers between
exchange, commodity and stock markets. Journal of Multinational Financial Management.
2024. 73, 100843.

Zhang, F., Zhang, Y., Xu, Y. and Chen, Y. Dynamic relationship between volume and
volatility in the Chinese stock market: evidence from the MS-VAR model. Data Science
and Management. 2024. 7(1), 17-24.

Wilder, J. W. New concepts in technical trading systems. Greensboro, NC: Trend
Research. 1978.

Atkins, A., Niranjan, M. and Gerding, E. Financial news predicts stock market volatility
better than close price. The Journal of Finance and Data Science. 2018. 4(2): 120-137.

Mienye, I. D., Swart, T. G. and Obaido, G. Recurrent Neural Networks: A Comprehensive
Review of Architectures, Variants, and Applications. Information. 2024. 15(9): 1-34.

Hochreiter, S. and Schmidhuber, J. Long Short-Term Memory. Neural Computation. 1997.
9(8): 1735-1780.

Tieleman, T. and Hinton, G. Divide the Gradient by a Running Average of Its Recent
Magnitude. Coursera: Neural networks for machine learning. 2012.

Shakawi, A. M. H. A. and Shabri, A. Improving Prediction of Bursa Malaysia Stock Index
Using Time Series and Deep Learning Hybrid Model. In: Saeed, F., Mohammed, F., Fazea,
Y. (eds) Advances in Intelligent Computing Techniques and Applications. Lecture Notes
on Data Engineering and Communications Technologies 2024. 210. Springer, Cham.

