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Abstract The conjugate gradient method is an important method in numerical opti-
mization, which uses the gradient information to construct the conjugate search direction,
ensures fast convergence, and aims to achieve fast minimization of the objective function.
In this paper, the author proposes a new conjugate gradient method (referred to as the
NMHS method) with a simple form and easy to implement and proves the sufficient de-
scent and global convergence of the algorithm under strong Wolfe-Powell line search. To
verify the numerical performance of the NMHS method, numerical experiments were con-
ducted on the algorithm, and the experimental results show that the NMHS method is
significantly better than the existing method in terms of convergence of the method, the
number of iterations required for convergence, and the CPU time consumed. Finally, the
NMHS method was applied in practice, and a regression analysis model was established to
predict the admission rate of Chinese master’s degree students. Through calculations, it
can be found that the NMHS method is superior to the Least Squares method and Trend
Line method in practical applications, and its prediction is more accurate than the Least
Squares method and Trend Line method.

Keywords Conjugate gradient method; global convergence; numerical experiments; suf-
ficient descent; strong Wolfe-Powell line search; regression analysis.

Mathematics Subject Classification 62P20; 62P25; 65Z05; 68T99.

1 Introduction

The conjugate gradient (CG) method, as an effective algorithm for solving unconstrained op-
timization problems, is favoured for its simple iteration format, small storage capacity, and
excellent numerical performance [1]. Unconstrained optimization problems are usually of the
following form:
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minf(x),∀x ∈ Rn, (1)

where the function f(x) : Rn → R is a real-valued function, which is continuous and differen-
tiable. For convenience, the gradient of f(x) was denoted by g(x) , defined yk = gk− gk−1. The
core of the CG method is to gradually approach the optimal solution of the problem through
the update strategy of the following iterative formula:

xk+1 = xk + αkdk. (2)

Where xk is kth current iterate point and αk > 0 is the step size, which is determined by
a certain type of line search. In this paper, the author mainly uses the Strong Wolfe-Powell
(SWP) inexact line search, which aims to find αk that satisfies these conditions.

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk, (3)

|g(xk + αkdk)
Tdk| ≤ σ|gTk dk|, (4)

where gk = ∇f(xk), δ, σ are constant and 0 < δ < σ < 1.
In Equation (2),dk is the th-step search direction, also known as the descent direction, which

is defined as follows

dk =

{
−gk for k = 0
−gk + βkdk−1 for k ≥ 1

(5)

where βk is the coefficient of CG. Different CG methods correspond to different choices of
CG coefficients βk. The classical CG formulas include the Hestenes-Stiefel (HS) method [2],
Fletcher-Reeves (FR) method [3], Polak-Ribiere-Polyak (PRP) method [4,5], Fletcher-Reevess
(CD) method [6], Liu-Storey (LS) method [7] and Dai-Yuan (DY) method [8]. The specific
forms are as follows:

βHSk =
gTk (gk − gk−1)
dTk−1(gk − gk−1)

, βPRPk =
gTk (gk − gk−1)
||gk−1||2

, βLSk =
gTk (gk − gk−1)
dTk−1gk−1

βFRk =
||gk||2

||gk−1||2
, βDYk =

||gk||2

dTk gk−1
, βCDk = − ||gk||

2

dTk gk−1
.

(6)

where || • || stands for the vectors’ Euclidean norm.
Among the six methods above, the HS, PRP, and LS methods have the advantages of fast

convergence speed and automatic correction to avoid jamming; however, their convergence is
poor, and they may not converge even under exact line search [9]. The advantage of the
FR, CD, and DY methods is strong convergence, but the convergence speed is slow and easily
jammed [10]. Powell [9] provided a counterexample to demonstrate that, even in the case of an
exact line search, a non-convex function might exist and that PRP, HS, and LS do not satisfy
the convergence properties [11]. Powell recommended using non-negative values for the PRP
formulas to guarantee global convergence. Gilbert and Nocedal [12] proposed another formula
that shows that the PRP method converges globally under exact and inexact line search, named
the PRP+ method, as shown below:
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βPRP
+

k = max {βPRPk , 0} (7)

Following this, researchers made various improvements to the above CG method. Wei et al.
[13] proposed the WYL method. The formula is:

βWY L
k =

gTk (gk − ||gk||
||gk−1||

gk−1)

||gk−1||2
. (8)

[14–16] respectively proved the global convergence of the WYL method under exact and
inexact line searches. Rivaie et al. [17] proposed the RMIL method with the formula:

βRML
k =

gTk (gk − gk−1)
||dk−1||2

(9)

Ghani et al. [18] proposed the HPRP method and validated the numerical experiments of
the HPRP method; the formula is defined as follows:

βHPRP =

 ‖gk‖2−
‖gk‖

‖gk−gk−1‖ |g
T
k gk−1|

‖gk−1‖2
, ‖gk‖2 > ‖gk‖

‖gk−gk−1‖

∣∣gTk gk−1∣∣ .
0, otherwise

(10)

Later, some researchers proposed formulas with parameters, such as the ISL and the VRMIL
methods proposed by Ishak et al. [19] and Wu et al. [20], respectively. Numerous new CG
formulas have emerged in recent years [20–22] to continuously enhance the running speed and
convergence of the CG method. However, these formulas are usually complex and challenging
to apply to real-world fields. Therefore, it is necessary to design a new CG method that is
simple, easy to understand, and has good running speed and convergence.

The structure of this paper is as follows. The proposed new algorithm, Algorithm 2.1, will
be discussed in the second section. The third section will demonstrate the global convergence
under SWP line search and the sufficient descent property of Algorithm 2.1. Section 4 contains
the algorithm’s numerical experiments and comparisons with other methods. In section 5, the
NMHS method will be applied to build a regression analysis model to predict the admission
rate of Chinese master’s degree students. The algorithm is finally summarized in Section 6.

2 New conjugate gradient method

As analysed in Section 1, the HS method has a fast convergence speed when solving partially
smooth objective functions. Still, it is prone to generate non-descent directions in non-smooth
or complex problems, which leads to poor convergence. The HPRP method improves the
stability of the direction generation through conditional screening and performs better in terms
of convergence, but its convergence speed is relatively slow. To combine the advantages of the
two methods and make the method applicable to more complex objective functions to ensure
convergence speed and convergence, a new and improved conjugate gradient method, called
the NMHS method, is proposed in this study where ‘N’ stands for ‘New’ and ‘M’ stands for
‘Modified’, i.e., the new modified HS method. The formula is:
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βNMHS
k =

 ‖gk‖2−
‖gk‖

‖gk−gk−1‖ |g
T
k gk−1|

dTk−1(gk−gk−1)
, if ‖gk‖2 > ‖gk‖

‖gk−gk−1‖

∣∣gTk gk−1∣∣ .
0, otherwise

(11)

The denominator of the NMHS method is the same as the denominator of the HS method, and
the convergence speed is accelerated by regulating the new conjugate direction using dTk−1(gk−
gk−1). The numerator of the NMHS method is the same as the numerator of the HPRP method,

using the conditional filtering condition ‖gk‖2 > ‖gk‖
‖gk−gk−1‖

∣∣gTk gk−1∣∣ to ensure that the generated

direction satisfies the descent condition, avoiding the non-descent direction due to the gradient
change magnitude being too small, which enhances the descent property of the algorithm. This
design can enhance the algorithm’s direction generation problem in nonlinear problems. The
NMHS method theoretically integrates the advantages of the HS and HPRP methods, avoids
the main defects, achieves a balance between dependability and convergence speed, and provides
a reliable and efficient solution for optimizing complex objective functions. The following is the
algorithm:

Algorithm 1 (NMHS method)

Step 1. Provide a starting point x0 ∈ R2, ε > 0 , and 0 < δ < 1/2, δ < σ < 1.
Set d0 = −g0, let k = 0.

Step 2. If satisfied ||gk|| ≤ ε ,then stop. If not, proceed to Step 3.
Step 3. Computing βk by Equation (11) and computing the search direction dk by

Equation (5).
Step 4. Computing αk using Equation (3) and Equation (4).
Step 5. Update new point xk+1 using Equation (2).
Step 6. Let k = k + 1 then return to Step 2.

3 Global Convergence Analysis of the NMHS method

To demonstrate the global convergence of the proposed method, the following assumptions need
to be made:
Assumption 1
A: The set K = x ∈ Rn|f(x) ≤ f(x0) also known as the level set is bounded.
B: Within a certain neighbourhood D of the set K , the function f(x) is continuously differ-
entiable, and its derivative satisfies the Lipschitz condition; that is, there is a constant L > 0
make

||g(x)− g(y)|| ≤ L||x− y||, for any x, y ∈ D (12)

In the proof of global convergence of the CG method, it is required that satisfies sufficient
descent, which takes the general form:

gTk dk ≤ −c||gk||2,∀k ∈ N (13)

Lemma 1. Let {xk} be created by Algorithm 1, βk is given by Equation (11), if αk is determined
by SWP search denoted by Equation (3) and Equation (4) with σ < 1/3, then Equation (13)
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holds.
Proof. When ‖gk‖2 ≤ ‖gk‖

‖gk−gk−1‖

∣∣gTk gk−1∣∣ , βNMHS
k = 0 , then gTk dk = −||gk||2, thus Equation

(13) holds.

‖gk‖2 ≤ ‖gk‖
‖gk−gk−1‖

∣∣gTk gk−1∣∣ can be shown by induction. If k = 0 , as gT1 d1 = −||g1||2 , then

Lemma 1 holds for k = 0 .
For k ≥ 1, Assume Equation (13) holds for k − 1,

0 ≤ βNMHS
k =

||gk||2 − ||gk||
||gk−gk−1|gTk gk−1

dTk−1(gk − gk−1)
≤ ||gk||2

dTk−1(gk − gk−1)
. (14)

According to the SWP condition, Equation (4) can be rewritten as

σgTk−1dk−1 ≤ gTk dk−1 ≤ −σgTk−1dk−1. (15)

Thus, it can derive the following inequality

− (1− σ)gTk−1dk−1 ≤ dTk−1(gk − gk−1) ≤ −(1 + σ)gTk−1dk−1. (16)

From Equation (5), multiplying both sides by gTk , obtain

gTk dk = −||gk||2 + βNMHS
k gTk dk−1 ≤ −||gk||2 +

||gk||2gTk dk−1
dTk−1(gk − gk−1)

. (17)

Divide both sides of Equation (17) by ||gk||2, then combine with Equation (15) and Equation
(16), yields

gTk dk
||gk||2

≤ −1 +
−σgTk−1dk−1

−(1− σ)gTk−1dk−1
= −1 +

σ

(1− σ)
< 0,when σ <

1

3
(18)

Let c = 1 − σ
1−σ , Equation (18) be written as gTk dk ≤ −c||gk||2, Indicating that this

conclusion holds for k. The proof is finished.
Lemma 2. If the step size αk satisfies the SWP line search Equation (3) and Equation (4)
with σ < 1/3 , then the conclusion can be obtained as follows.

0 ≤ βNMHS
k ≤ 1

1− 2σ

gTk dk
gTk−1dk−1

(19)

Proof. According to Equation (14) and Equation (16), obtain

0 ≤ βNMHS
k ≤ ||gk||2

dTk−1(gk − gk−1)
≤ ||gk||2

(σ − 1)gTk−1dk−1

Because c = 1− σ
1−2σ = 1−2σ

1−σ , Equation (18) can be written as

||gk||2 ≤ −
gTk dk
c

=
σ − 1

1− 2σ
gTk dk.

Thus, it can be obtained

0 ≤ βNMHS
k ≤ ||gk||2

(σ − 1)gTk−1dk−1
≤ 1

1− 2σ

gTk dk
gTk−1dk−1
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So, the proof is finished.
The following lemma, also known as the Zoutendijk condition, takes the following form.
Lemma 3. If Assumption 1 holds, take into consideration any CG method that takes the form
of Equation (2) and Equation (5), where dk satisfy gTk < 0 , and let αk satisfy the SWP line
search Equation (3) and Equation (4), then the following condition holds

∞∑
k=1

(
gTk dk

)2
‖dk‖2

<∞ (20)

This Lemma 3 has been proved by Dai & Yuan [8], and the author will not prove it again.
Theorem 1. Suppose that Assumption 1 holds. Be produced by Algorithm 1, which is given
by Equation (11); if αk satisfy the SWP line search Equation (3) and Equation (4), µ > 1, 0 <
δ < σ < 1/3, then

lim
k→+∞

‖gk‖ = 0

Proof. This Theorem 1 can be proved by contradiction. In other words, if the result of Theorem
1 is false, then there exists a constant ε > 0, such that.

||gk|| ≥ ε,∀k ≥ 1.

From Equation (5), by squaring both sides, obtain

||dk||2 = ||gk||2− 2βNMHS
k gTk dk−1 + (βNMHS

k )2||dk−1||2 = (βNMHS
k )2)||dk−1||2− 2gTk dk−1− ||gk||2.

Dividing both sides by (gTk dk)
2 and combining Equation (19) to obtain

‖dk‖2

(gTk dk)
2 ≤

‖dk−1‖2

(1− 2σ)2
(
gTk−1dk−1

)2 − 2

gTk dk
− ‖gk‖2

(gTk dk)
2

=
‖dk−1‖2

(1− 2σ)2
(
gTk−1dk−1

)2 − ( 1

‖gk‖
+
‖gk‖
gTk dk

)2

+
1

‖gk‖2
≤ ‖dk−1‖2

(1− 2σ)2
(
gTk−1dk−1

)2 +
1

‖gk‖2
.

Repeat the above process and combine it with ||d1||2/(gT1 d1)2 = 1/||g1||2 , the yields

‖dk‖2

(gTk dk)
2 ≤

‖dk−1‖2

(1− 2σ)2
(
gTk−1dk−1

)2 +
1

||gk||2
≤ 1

(1− 2σ)4
||dk−2||2

(gTk−2dk−2)
2

+
1

(1− 2σ)2
1

||gk−1||2
+

1

||gk||2

≤ ... ≤ 1

(1− 2σ)2k−2
1

||g1||2
+

1

(1− 2σ)2k−4
1

||g2||2
+ ...+

1

(1− 2σ)2
1

||gk||2
+

1

||gk||2
.

Because of ||gk||2 > ε2 , obtain

||dk||2

(gTk dk)
2
≤ 1

ε2

k−1∑
i=0

1

(1− 2σ)2i
=

(
1− 1

(1− 2σ)2k

)
/ε2
(

1− 1

(1− 2σ)2

)
.
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Thus,
(gTk dk)

2

||dk||2
≥ ε2

(
1− 1

(1− 2σ)2

)
/

(
1− 1

(1− 2σ)2k

)
Therefore,

∞∑
k=1

(gTk dk)
2

||dk||2
=∞.

This result contradicts the formula Equation (20). Therefore, the proof is finished.

4 Numerical experiments

In this section, numerical experiments were conducted using the proposed NMHS method.
To comprehensively evaluate the algorithm’s performance, 20 unconstrained optimization test
functions have been selected for numerical experiments. These test functions are all derived
from Andrei [23], covering different types and difficulty problems. Each test function selects
four different test points. According to the characteristics of the test function, select different
test dimensions, from the lowest 2 dimensions to the highest 10,000 dimensions. Test functions
and related information are displayed in Table 1.

Table 1: Functions and Related Information.

No Test Functions Test Dimensions Initial Points
1 Booth 2 2,6,15,25
2 Six Hump Camel 2 -2,7,15,25
3 Three Hump Camel 2 -5,2,10,41
4 Treccani 2 -1,5,10,20
5 NONSCOMP function 2 6,16,26,36
6 Zettl 2 3,12,20,30
7 Extended Wood 4 -1,5,10,20
8 Extended quadratic penalty QP1 2,4,10 3,10,20,40
9 Raydan 1 function 4,20,100 4,14,30,40
10 Extended Freudenstein & Roth 2,500,1000 3,10,20,40
11 Hager 2,4,10,100 3,8,20,30
12 Extended Tridiagonal 1 4,20,100,1000,10000 6,15,30,60
13 Fletcher 2,10,100,500, 1000 12,22,32,62
14 Diagonal 4 2, 500, 1000, 5000, 10000 4,10,40,90
15 Extended Beale 2, 500, 1000, 5000, 10000 -4,1,2,4
16 Shallow 2, 500, 2000, 6000, 10000 3,6,30,60
17 Extended White & Holst 2, 500, 2000, 6000, 10000 -2,4,12,16
18 Extended DENSCHNB 2, 500, 2000, 6000, 10000 2,8,16,20
19 Extended Himmelblau 4, 500, 2000, 6000, 10000 2,10,25,30
20 Extended Rosenbrock 4, 500, 2000, 6000, 10000 3,8,15,20

For the experimental environment, a computer equipped with an Intel i5-1155G7 + 16GB
RAM was used, ensuring the algorithm had enough computing power and storage space. In



Sijun Tao et al. / MATEMATIKA 41:1 (2025) 135–150 142

terms of software platform, and chose MatlabR2023b programming, which has powerful nu-
merical computing capabilities and provides excellent convenience for implementing and testing
algorithms. To evaluate the NMHS method’s operational efficacy, the NMHS method with the
HS, HPRP, PRP, and FR methods were compared. To test accurately, set ε = 10−6 . When
||gk|| ≤ ε, the iteration is stopped; at the same time, it is stipulated that the iteration ends
when the total number of iterations reaches 10,000. Using SWP line search and applying the
performance curves of Dolan and More [24] to compare the numerical performance of the four
methods, NMHS, HS, TPRP, and FR. That is, compare the number of iterations and CPU
running time of the 20 test functions in Table 1 under four different methods. Figure 1 and
Figure 2 represent the iteration times and CPU time performance profiles of these four methods,
respectively.

Figure 1: Performance Profile for the Number of Iterations
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Figure 2: Performance Profile for the CPU Times

As is well known, the left side of the performance profile figure gives the percentage of test
problems solved using the fastest method, and the right side of the figure shows the percentage
of test problems successfully solved by each method. From the curves on the left side of Figure
1 and Figure 2, it can be seen that the HS method has the fastest test speed, and the curve is
at the highest position, followed by the NMHS method and the HPRP method, and the slowest
method is the FR method. From the right curve, it can be found that the NMHS method
performs the best and may solve every test problem. The HPRP method comes in second and
can resolve 98% of test problems. The next is the FR method, which can solve 94% of the test
problems, and the HS method has the poorest convergence and can only solve 86% of the test
problems. Figure 1 and Figure 2 show that in terms of overall test performance, the NMHS
method can solve all test problems and has a faster test speed. Therefore, the NMHS method
is superior to the other methods.

5 Application of the NMHS method to regression analysis

This study applies the NMHS method in regression analysis to solve real world problem in data
modeling. Table 2 shows the number and proportion of Chinese university students enrolled and
admitted to master’s degrees in the last 16 years (https://www.dxsbb.com/news/133463.html).
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Table 2: China Master’s Degree Application and Admission Information.

No Year Number of applicants Number of admissions Admission rate
(in 10,000) (in 10,000)

1 2008 120 38.67 32.23%
2 2009 124.6 44.9 36.04%
3 2010 140.6 47.44 33.74%
4 2011 151.1 49.46 32.73%
5 2012 165.6 52.13 31.48%
6 2013 176 54.09 30.73%
7 2014 172 54.87 31.90%
8 2015 164.9 57.06 34.60%
9 2016 177 58.98 33.32%
10 2017 201 72.22 35.93%
11 2018 238 76.25 32.04%
12 2019 290 81.13 27.98%
13 2020 341 99.05 29.05%
14 2021 377 106.2 28.17%
15 2022 457 110.35 24.15%
16 2023 474 124.2 26.20%

As shown in Table 2, despite the fluctuations in the number of students enrolled and ad-
mitted to master’s degrees from year to year, there is a correlation between the two from a
statistical point of view. Our main goal is to establish the relationship between the proportion
of master’s degree students admitted and the year, i.e., to find a regression equation that de-
scribes the variation of the proportion of admissions with the years. From the data in Table 2,
it can be observed that there may be some linear or non-linear functional relationship between
the proportion of master’s degree students admitted in different years and the year. For this
reason, this paper conducted regression analyses on the data in Table 2 using the Trend Line
method, the Least Squares method, and the NMHS method to predict the admission rate of
Chinese master’s degree students in future years. The calculation excluded the data from 2023,
which was used to calculate the relative error between the predicted and actual values to test
the accuracy of the algorithms.

5.1 Trend Line method

The year and admission rate data presented in Table 2 are analyzed using Microsoft Excel.
The trend line method is employed to construct both linear and quadratic regression models,
resulting in the following equations, respectively

y = −0.0047403571x+ 9.8678796429, (21)

y = −0.0008019958x2 + 3.2273027101x− 3246.40054, (22)

where x represents the year and y is the admission rate. Figure 3 presents a graphical represen-
tation of the models, showing the trend in the admission ratio for Master’s programs in China
from 2008 to 2022.
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Figure 3: Admission Ratio of Master’s in China (2008-2022).

5.2 Application of the Least Squares method and the NMHS method

Assuming the linear and quadratic approximation functions under the Least Squares method
are y = α0+α1x and y = α0+α1x+α2x

2, respectively, the Least Squares method is then applied
to the data in Table 2, resulting in the following linear and quadratic regression functions.

y = 35.3982857143− 0.4740357143x, (23)

y = 31.7625714286 + 0.809157563x− 0.0801995798x2. (24)

Transforming the above two regression functions into an unconstrained minimization problem
gives

minf(a) =
n∑
i=1

[yi − (a0 + a1xi)]
2, (25)

minf(a) =
n∑
i=1

[yi − (a0 + a1xi + a2x
2
i )]

2, (26)

where xi denotes the serial number, which takes the value of xi = 1, 2, ..., 15 , and yi denotes
the master’s admission rate for the corresponding year. To calculate the relative error be-
tween the predicted and actual values, we excluded the 2023 data from the calculation. Once
the data points are selected, these data are substituted into Equations (25) and (26), respec-
tively, and solved using Matlab2023b software to obtain the mathematical models for the two
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unconstrained minimization problems:

f(a0, a1) = 15a20 + 240a0a1 − 948.18a0 + 1240a21 − 7319.98a1 + 15128.6915 (27)

f(a0, a1, a2) = 15a20 + 240a0a1 + 240a0a2 − 948.18a0 + 1240a21 + 28800a1a2

− 7319.98a1 + 178312a22 − 73473.82a2 + 15128.6915
(28)

For the minimum value functions Equations (27) and (28) of unconstrained optimization,
four different initial points are arbitrarily selected and solved using the NMHS method under
SWP line search. The solution results are obtained as shown in Table 3.

Table 3: NMHS method for solving linear and quadratic regression models.

Regression Model Initial Point Iterations CPU Value of Variable
Linear (-8,-8) 2 0.00015 [35.39828571426852

-0.474035714446821]
Linear (3,3) 2 0.00014 [35.39828571428290

-0.474035714268453]
Linear (18,18) 3 0.00018 [35.39828571428362

-0.474035714285593]
Linear (26,26) 3 0.00015 [35.39828571428462

-0.474035714290037]
Quadratic (-6,-6,-6) 6 0.00027 [31.76257140821985,

0.809157568349284,
-0.080199580120367]

Quadratic (3,3,3) 6 0.00044 [31.76257136625478,
0.809157579328706,
-0.080199580715205]

Quadratic (18,18,18) 6 0.00024 [31.76257137289269,
0.809157577592752,
-0.080199580621181]

Quadratic (24,24,24) 6 0.00021 [31.76257142487385,
0.809157563988443,
-0.080199579884083]

The linear and quadratic regression functions under the NMHS method are obtained by
taking the average of the solution results for each initial point in Table 3, respectively. The
two functions obtained are:

y = 35.3982857143− 0.4740357143x, (29)

y = 31.7625713931 + 0.8091575723x− 0.0801995803x2 (30)
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5.3 Error Analysis

Error analysis is used to evaluate the accuracy of the Trend Line, Least Squares and NMHS
methods by predicting the admission rate for Masters’s student in 2023by using each model. The
relative error is then calculated by comparing the predicted values with the actual admission
rate with the formula as follows.

relative error =
|exact value - predictive value|

|exact value|
(31)

According to Equations (21), (22), (23), (28), and (29), the predicted values and relative
errors of 2023 acceptance rates under linear and quadratic line searches for each of the three
methods can be calculated as shown in Table 4 below.

Table 4: Prediction values and relative errors of three methods

Method
Regression Exact Value Predictive Relative Error
Model (%) value (%)

NMHS
Linear 26.20 27.8137 0.0615916031
Quadratic 26.20 24.1781 0.0771717557

Least Squares
Linear 26.20 27.8137 0.0615916031
Quadratic 26.20 24.1780 0.0771755725

Trend Line
Linear 26.20 27.8137 0.0615916031
Quadratic 26.20 24.1773 0.0772022901

From Table 4 above, it can be seen that all three methods have linear models with more
minor relative errors than the quadratic model; the linear models of the three methods are
the same, and the quadratic model of the NMHS method is slightly better than the Least
Squares method, and the Trend Line method has a more significant relative error than the
NMHS method and the Least Squares method. Overall, the NMHS method’s relative error is
lower than the other two methods’ relative error, and the method has more accurate predicted
values.

6 Conclusion

Inspired by the HS and HPRP methods, this paper proposes a NMHS method that is simple
in form and easy to implement. The paper proves the sufficient descent of the method and
the global convergence under SWP inexact line search. The method’s effectiveness is verified
by numerical experiments, which show that the new method has better convergence and faster
convergence than other methods, and the overall performance is better than other methods.
Finally, the algorithm is applied in practice to establish a regression analysis model to predict
the admission ratio of Chinese master’s degree students. Through computational comparison, it
can be found that the NMHS method is better than the Least Squares and Trend Line methods
in practical application.
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