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Abstract Electricity load forecasting is crucial to modern energy management, planning
and distribution in a highly developed country. Therefore, accurate electricity load pre-
diction plays a vital role in maintaining optimal energy production and minimizing oper-
ational costs. This paper discussed an enhanced electricity load forecasting method based
on a conventional statistical time series model with a combination method based on the
Empirical Mode Decomposition (EMD) and Group Method of Data Handling (GMDH)
model, namely EMD-GMDH. This study also presents a comparison between the pro-
posed model of EMD-GMDH and a reconstruction of the Intrinsic Mode Function (IMFs)
of decomposition integrated with Fourier residual modification, referred to as FM-EMD-
GMDH. The Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) criteria
were employed to measure the accuracy of each proposed model. From the empirical
simulation, results reveal that the FM-EMD-GMDH model gained the best performance
and better accuracy compared to other predictive models. Hence, it is concluded that the
combination and reconstruction in the proposed model contribute to higher forecasting
accuracy and performance.

Keywords Empirical Mode Decomposition; Group Method of Data Handling; Fourier
Residual Modification; Forecasting; Time Series.

Mathematics Subject Classification 37M10, 62M10, 68T05.

1 Introduction

Electricity forecasting is a critical component of modern energy management, encompassing
the prediction of future electricity demand to ensure power supply and distribution stabil-
ity and efficiency. It involves predicting the amount of electrical power that consumers will
demand over a specific period. This involves estimating future electricity demand based on
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various factors such as historical consumption patterns, weather conditions, economic activ-
ities, population growth and technological changes. Notably, accurate prediction contributes
to preventing blackouts, managing proper peak loads, and facilitating coordination with the
demand for economic growth. Additionally, accurate electricity load estimation is essential for
balancing and optimizing the operation of power plants and minimizing costs associated with
energy production. Hence, accurate load forecast supports the efficient allocation of resources,
helping to avoid both energy shortages and excessed that could lead to waste or higher rest.

To date, various methods have been developed and introduced to measure electricity load
forecasting, including time series analysis and also regression methods. Time series statistical
approaches have been broadly utilized in numerous fields such as wind forecasting [1], water
demand forecasting [2], gold price forecasting [3] and other numerous fields as well. Over
the past decade, most research has been conducted using a linear technique such as the Box-
Jenkin approach [4], exponential smoothing [5], and regression methods [6]. The aforementioned
statistical approaches offer simplicity and straightforward implementation. Their mathematical
foundations are well-established, making the results and findings easy to interpret. However, the
primary limitation of these approaches is their inability to capture and forecast the nonlinear
patterns in the dataset accurately. This is especially true in the electricity load time series
dataset due to the influence of factors such as weather conditions, economic growth, and social
conditions.

To address these limitations, an increasing number of researchers have employed Artificial
Intelligence (AI) methodologies in forecasting to overcome the downsides and constraints of
traditional statistical forecasting methods. A wide range of AI-driven models are capable of
identifying complex patterns and trends of datasets. It has been applied in order to improve
the performance and accuracy in time series forecasting issues such as Artificial Neural Net-
works (ANN) [7], Support Vector Machine [8] and recently, Group Method of Data Handling
(GMDH) [9]. Promising results have revealed that the GMDH offer better forecasting perfor-
mance and accuracy [10]. Moreover, current researchers have demonstrated an increased interest
in a combination technique in prediction that contributes towards more reliability and enhances
the prediction precisely by integrating with a data pre-processing technique such as Empirical
Mode Decomposition (EMD). For instance, such combination models are like ARIMA-ANN [11],
EMD-SVM [12], SVR-ANN [13], ARIMA-GMDH model [14], and EMD-ARIMA [15]. Hence,
this study proposes an enhanced electricity load forecasting model together with a comprehen-
sive analysis of a statistical time series Autoregressive Integrated Moving Average (ARIMA)
model, combining the method EMD-GMDH model with the modified EMD-GMDH model by
introducing a Fourier residual modification approach, aiming to decrease the residual and im-
prove prediction accuracy. This paper is set as follows. Section 2 introduces the concepts and
procedures of the methodologies. Next, Section 3 discussed the framework of modified com-
bined models, followed by the findings and empirical results. Finally, the last section includes
recommendations and conclusions.

2 Methodologies

This section outlines the technique, methodologies and mathematical models including the
equations related in this study.
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2.1 Autoregressive Integrated Moving Average (ARIMA) Model

In time series analysis, the Box-Jenkins method, named after statisticians George Box and
Gwilym Jenkins, employs ARIMA models to identify the best fit for time series forecasting [16].
The ARIMA model consists of three crucial steps: model identification, parameter estimation
and diagnostic testing. In the first step, the Autocorrelation (ACF) and Partial Autocorrelation
(PACF) are utilized to determine the stationary and seasonal or nonseasonal in order to identify
the ARIMA model. Then, in the second step, the parameters of the model are predicted after
the tentative model is determined. Finally, the third step is to examine the adequacy of the
fitted model using the Ljung-Box test. Hence, the ARIMA model is built up by three terms,
which are p, d, and q. The order of Autoregressive is denoted by p, the order of Moving Average
(MA) is denoted by q, and the number of differencing is denoted by d. The ARIMA model
(p, d, q) model can be expressed as follows:(

1−
p∑

i=1

φiB
i

)
(1−B)dyt =

(
1−

q∑
i=1

θiB
i

)
εt, (1)

where B is the backshift operator and εt is the error.

2.2 Group Method of Data Handling

GMDH stands for Group Method of Data Handling and was introduced by Ivakhnenko [17]
with the ultimate objective to solve higher-order regression polynomials. GMDH represent a
pioneering approach in the field of machine learning and AI methods. It is a heuristic method
and is particularly notable for its self-organize and optimize model structures, making it highly
suitable for complex, nonlinear and multi-dimensional data [18]. In addition, it generates
models by combining various polynomial functions of the input variables, effectively discovering
and representing the underlying patterns within the data. In addition, a GMDH able to identify
a complex system without following the input-output relationships path. The relationship is
typically by a complex series known as Kolmogorov-Gabor polynomials [17], such as:

y = a0 +
K∑
i=1

aixi +
K∑
i=1

K∑
j=1

aijxixj +
K∑
i=1

K∑
j=1

K∑
l=1

aijkxixjxl + . . . (2)

where x denotes the input of the system, K represents the number of inputs, and a is the
coefficients of the weights of the terms. In the GMDH, the Kolmogorov-Gabor polynomials are
predicted using the second-order polynomial in the form of

ŷ = a0 + a1xi + a2xj + a3xixj + a4x
2
i + a5x

2
j , (3)

where ŷ is the forecasted output. In this research, the algorithm framework for the GMDH
model is as follows:

• Step 1: Selection of the input variables, x = {x1, x2, . . . , xM} where M is the summation
number of inputs. The data are classified into the training dataset, which is used to
develop a GMDH model, while the testing dataset is used to evaluate the predicted
GMDH model.
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• Step 2: The number of groupings for each layer is designed using L = K(K−1)
2

. The
traditional GMDH model is built up by using polynomial methods, where regression is
used to obtain the coefficient values as in Eq 3.

• Step 3: The partial description coefficient is predicted, and the Least Squares Method
is used to find the partial description coefficient vectors.

• Step 4: The stopping criteria are confirmed by evaluating whether the current layer
outperforms the previous layer. The GMDH model is ultimately obtained.

2.3 Empirical Mode Decomposition

EMD is a completely data-driven and adaptive technique used for analyzing nonlinear and non-
stationary time series data. The fundamental principle of EMD is to decompose a given time
series into a finite set of Intrinsic Mode Functions (IMFs) and a residual, representing various
underlying oscillatory modes present in the data [19]. Based on [20], every IMF must fulfil the
following two conditions, which are (i) each IMFs extreme points and zero crossing must differ
by not more than 1. (ii) at every point, the envelope created by the local maxima and minima
has a mean value of zero. The EMDs algorithm can be explained as follows:

1. Each local maxima and minima in data series y(t) for t = 1, 2, . . . are identified.

2. Spline interpolation is used to link each local extrema in order to obtain the upper and
lower envelopes, yU(t) and yL(t), respectively.

3. The average upper and lower are estimated using the following formula:

m(t) =
[yL(t)− yU(t)]

2
(4)

4. Compute the difference between y(t) and m(t) where z(t) = y(t)−m(t) to obtain details.

5. Verify that z(t) satisfies the condition of IMF. When z(t) meets the condition, IMF is
produced, and y(t) is then substituted with the residue. Nevertheless, if z(t) fails to meet
the conditions, y(t) will be replaced with z(t).

6. Step 1 through Step 5 should be repeated until the last residue, rn (t) turns into a mono-
tone function, and there is no more IMF to be extracted.

As the final step, the original time series y(t) can be represented as the sum of all the IMF
components plus one residual component by applying the aforementioned algorithm as below.

y(t) =
n∑

t=1

zi(t) + rn(t). (5)
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2.4 Fourier Residual Modification

The excellent performance of the Fourier residual modification resulted in a low number of Root
Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Square Error (MSE),
which contributes to the improvement of Grey Model GM (1, 1) forecasting accuracy [21].
Consequently, in order to compare the forecasting accuracy of the GMDH and ARIMA models,
this potential methodology approach should be investigated. A Fourier residual modification
was explained in the steps as follows.

• Step 1: Create a forecasting model.

• Step 2: From the forecast series, ŷ(0), a residual series ε(0) is defined as:

ε(0) =
{
ε
(0)
2 , ε

(0)
3 , . . . , ε

(0)
k , . . . , ε(0)n

}
, (6)

where
ε
(0)
k = y

(0)
k − ŷ

(0)
k . (7)

• Step 3: Expressed in the Fourier Series, ε
(0)
k is defined as

ε
(0)
k =

1
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where D =
n− 1

2
− 1. The residual series can be expressed as

ε(0) = P · C,

where
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1

2
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)
.

The matrix Pk is given as:
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, (9)

C =
[
a0, a1, b1, a2, b2, . . . , aD, bD

]T
.

The parameters a0, a1, b1, b2, . . . , aD, bD can be obtained using the Ordinary Least Squares
(OLS) method, yielding the equation:
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C = (P TP )−1P T
[
ε(0)
]T
. (10)

The predicted residuals ε̂
(0)
k can be obtained by applying the following expression:

ε̂
(0)
k =

1

2
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[
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n− 1

)
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(
2ikπ
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)]
. (11)

• Step 4: Complete the Residual Modification

Finally, the predicted series x̂(0) attained from the forecasting model and the predicted
series x̃(0) of the revised model are determined by

x̃(0) =
{
x̃
(0)
1 , x̃

(0)
2 , . . . , x̃

(0)
k , . . . , x̃(0)n

}
, (12)

where x̃
(0)
1 = x̂

(0)
1 ,

x̃
(0)
k = x̂

(0)
k + ε̂

(0)
k .

3 The Architecture of the Proposed Model

In this study, the architecture of the Fourier-modified EMD-GMDH model is proposed. The
methodologies framework model can be categorized into four stages: the decomposition stage,
reconstruction stage, individual forecasting stage, and ensemble forecasting stage. Firstly, the
EMD technique is employed in the original dataset in order to decompose into a number of IMFs
and a residual. At the same time, ACF is utilized to divide the IMFs into two components,
namely stochastic and deterministic. The IMF will be categorized as stochastic once the ACF is
less than a threshold value of |0.95| and deterministic otherwise. Moving to the reconstruction
stage, each stochastic IMF is modelled independently; a distinct model is selected for each
stochastic IMF, and all of the models forecasts are used for the final forecasting ensemble.
Meanwhile, each and every deterministic IMF would be overseen as a single component. The
GMDH model will be estimated for each stochastic IMF and the deterministic component. In
the individual forecasting phase, all the components will be added together, and the Fourier
residual modification is calculated. Lastly, the final proposed model forecast output is denoted
by the FM-EMD-GMDH model. The entire framework of the proposed model is depicted in
Figure 1.



Nur Rafiqah Abdul Razif and Ani Shabri / MATEMATIKA 41:1 (2025) 1–15 7

Figure 1: The framework of proposed model

3.1 Forecast Assessment Criteria

Forecast assessment criteria are essential benchmarks applied to evaluate the accuracy and
reliability of the predictive models. The best model can be identified by evaluating and finding
the smallest possible error values in the training and testing data series. The performance
assessment of each model can be measured based on Root Mean Square Error (RMSE), Mean
Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE). The formula for the
measurement is provided in Eqs 13, 14 and 15, respectively.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (13)

MAPE =
100

n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ (14)

MAE =
1

n

n∑
i=1

|yi − ŷi| (15)
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4 Result and Discussion

4.1 Dataset

This study uses monthly electricity consumption dataset (in GWh) for four countries located
in Southeast Asia namely Malaysia, Thailand, Singapore and Myanmar. All the dataset were
obtained from various sources such as Single Buyer Department, CEIC Data platform and also
from the official ministry website of the country.

4.1.1 Malaysia

A plot of Malaysias electricity consumption from January 2011 to December 2022 is depicted
in Figure 2. Malaysia, a rapid developing nation in Southeast Asia, has seen significant growth
in both its economy and population over the past few decades. This progress has been ac-
companied by a substantial increase in electricity consumption, driven by industrial expansion,
urbanization, and rising living standards. As Malaysia continues to modernize, understanding
the dynamics of electricity consumption becomes crucial for ensuring sustainable development.

Figure 2: Electricity Consumption in Malaysia from 2011 to 2022

4.1.2 Thailand

A plot of Thailands electricity consumption from 2002 to 2021 is presented in Figure 3. Thai-
land, a major country in Southeast Asia, has seen a lot of growth in recent years, with more
factories, businesses, and people moving into cities. This growth has led to a big increase in
electricity use, as more energy is needed to power homes, industries, and everyday life. As the
country progresses, its electricity consumption has surged, reflecting the increased demand from
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both the industrial sector and a growing population. Thailand’s energy landscape is shaped
by a mix of traditional and renewable sources, with ongoing efforts to balance energy security,
affordability, and environmental sustainability.

Figure 3: Electricity Consumption in Thailand from 2002 to 2021

4.1.3 Singapore

A plot of Singapores electricity consumption from 1996 to 2021 is shown in Figure 4. Singapore,
known for its rapid development and high standard of living, has seen a steady rise in electric-
ity consumption over the years. As a densely populated city-state with a thriving economy,
the demand for energy has grown alongside its industrial, commercial, and residential needs.
However, Singapore faces unique challenges due to its limited land and natural resources, which
make energy efficiency and sustainability crucial.

4.1.4 Sri Lanka

A plot of Sri Lankas electricity consumption from 1995 to 2019 is presented in Figure 5. Sri
Lanka, an island nation known for its lush landscapes and vibrant culture, is experiencing
a growing demand for electricity as it continues to develop its economy and improve living
standards. With increasing urbanization and industrial activity, the countrys electricity con-
sumption has risen significantly. Sri Lanka relies on a mix of energy sources, including hydro,
coal, and renewables, to meet its needs. However, it faces challenges such as managing en-
ergy production and distribution while striving for sustainability and reducing dependency on
imported fuels.
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Figure 4: Electricity Consumption in Singapore from 1996 to 2021

Figure 5: Electricity Consumption in Sri Lanka from 1995 to 2019
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5 Empirical Result

In this study, five models were developed, which are ARIMA, GMDH, EMD-GMDH, Modified
EMD-GMDH or, in short, M-EMD-GMDH and the proposed model Fourier Modified EMD-
GMDH denoted by FM-EMD-GMDH to create a one-step-ahead prediction for the load demand
forecasting. This work utilized the real historical monthly data from January 1998 to December
2021 from four Southeast Asia countries: Malaysia, Singapore, Thailand, and Sri Lanka. The
time series dataset is separated into two parts, of which 90% is for the training set while the
remaining 10% is for the testing set. The simulation work in this study is executed using R
software and MATLAB 2014a software. The comparisons of the forecast evaluation statistics
for five models in terms of RMSE, MAE and MAPE for both training set and testing set are
described in Tables 1, 2, 3 and 4 for Malaysia, Thailand, Singapore and Sri Lanka, respectively.

Table 1: Forecast evaluation statistics values of the dataset in Malaysia

Model
Training Testing

RMSE MAE MAPE RMSE MAE MAPE

ARIMA 523.79 389.52 3.21 467.79 349.01 2.43

GMDH 461.66 344.27 2.76 550.77 478.00 3.28

EMD-GMDH 297.78 245.77 2.06 386.65 314.04 2.17

M-EMD-GMDH 335.10 296.11 2.69 404.37 316.90 2.58

FM-EMD-GMDH 192.49 158.87 1.45 248.73 226.9 1.86

Table 2: Forecast evaluation statistics values of the dataset in Thailand

Model
Training Testing

RMSE MAE MAPE RMSE MAE MAPE

ARIMA 594.75 444.17 3.49 958.48 761.58 4.93

GMDH 372.46 281.90 2.21 673.34 492.58 3.20

EMD-GMDH 332.51 247.98 2.03 516.67 405.77 2.54

M-EMD-GMDH 315.20 229.44 1.88 477.52 359.65 2.36

FM-EMD-GMDH 216.36 160.81 1.35 342.71 253.44 1.68
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Table 3: Forecast evaluation statistics values of the dataset in Singapore

Model
Training Testing

RMSE MAE MAPE RMSE MAE MAPE

ARIMA 967.78 748.53 4.70 1000.16 880.84 2.89

GMDH 971.15 786.20 4.59 1083.29 984.08 3.23

EMD-GMDH 556.87 439.20 2.95 488.63 391.45 1.27

M-EMD-GMDH 556.70 439.45 2.95 485.61 394.51 1.28

FM-EMD-GMDH 430.67 333.49 2.27 263.16 208.13 0.67

Table 4: Forecast evaluation statistics values of the dataset in Sri Lanka

Model
Training Testing

RMSE MAE MAPE RMSE MAE MAPE

ARIMA 207.87 161.69 0.06 244.32 202.25 0.04

GMDH 208.26 165.16 0.06 250.45 211.19 0.05

EMD-GMDH 117.63 98.83 0.04 100.47 84.17 0.02

M-EMD-GMDH 117.81 99.07 0.04 101.45 85.58 0.02

FM-EMD-GMDH 79.05 64.20 0.02 104.72 81.16 0.01

The results of the forecasting of the electricity consumption for the four countries that were
studied in this work are tabulated accordingly to the forecasting models are presented in Tables
1-4. It has been observed that the proposed model, FM-EMD-GMDH model, for every country,
is benchmarked with other single models, such as ARIMA and GMDH, compared with a hybrid
model, which is a hybrid EMD-GMDH model and M-EMD-GMDH where reconstruction of the
IMFs to be separated into stochastic or deterministic. The statistic performance criteria are
evaluated for all models in the study. Table 1 presents the computation results of training and
testing for the forecasting electricity consumption in Malaysia. Clearly, the FM-EMD-GMDH
model produced the lowest MAPE value for both training and testing which was 1.45% and
1.86% respectively. On the other hand, ARIMA model obtained the highest MAPE value of
3.21%, showing that this model is less least effective in forecasting the electricity consumption
for dataset in Malaysia.

Table 2 presents the forecast evaluation statistics values of the dataset in Thailand. Model
FM-EMD-GMDH obtained the smallest MAPE value for both training and testing set with
1.35% and 1.68% respectively. However, ARIMA model produced the highest value of MAPE
compare to the other predictive models. The proposed model FM-EMD-GMDH constantly
shows the best model in forecasting electricity consumption based on the two datasets evaluated.
Moving to Table 3, it presents forecasting results from Singapore whereby the FM-EMD-GMDH
model produced the lowest RMSE, MAE and MAPE at 216.36, 160.81 and 13.35% respectively.
However, there was a large difference in the MAPE of the ARIMA model compared to the other
three models. ARIMA model produced the highest MAPE for both training and testing set.
This shows that ARIMA model is less accurate in forecasting electricity consumption in this



Nur Rafiqah Abdul Razif and Ani Shabri / MATEMATIKA 41:1 (2025) 1–15 13

study.
Table 4 presents the forecast evaluation statistics of the dataset in Sri Lanka. Based on

the table, the proposed model FM-EMD-GMDH consistently produced the smallest value of
MAPE for both training and testing at 2% and 1% respectively. However, GMDH model
produced a slightly highest value of RMSE and MAE compared to ARIMA model for both
set. Both ARIMA and GMDH model obtained the same value of MAPE at 6%. Overall, in
every country, the proposed FM-EMD-GMDH model exhibited a promising result with the
lowest value of RMSE, MAE and MAPE compared to the other models. This indicate that
FM-EMD-GMDH model was the most accurate, reliable and preferred model in forecasting
electricity consumption.

6 Conclusions

Overall, this paper aims to discuss and improve the accuracy of electricity load forecasting
by introducing the Fourier residual modification approach. The proposed model, namely MF-
EMD-GMDH, begins with decomposition from the original data into several numbers of IMFs
and a residual, which then undergo a reconstruction phase, either stochastic or deterministic.
At the same time, a GMDH model is employed in each part, and finally, in the ensemble phase,
a Fourier residual modification is introduced. To measure the performance of the proposed
approach, real-world load time series data were considered in order to compare the performance
with other single and hybrid models such as ARIMA, GMDH, EMD-GMDH and M-EMD-
GMDH model. The experimental results reveal that the proposed model is considered the best
due to the smallest result in RMSE, MAE, and MAPE, and it achieved a high rank compared
to other models. Hence, this work contributes by providing an effective potential approach for
better prediction accuracy and is also expected to help predict electricity load demand in power
system management.
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