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Abstract In this paper, we focus on Ornstein-Uhlenbeck (OU) process with stochastic
speed of mean reversion to model the temperature variations. The OU model may explains
well the temperature’s behaviour, but some empirical studies evidenced the problem of
the constant mean reversion rate. Thus, this study suggests to represent the speed of
mean reversion as an OU-type stochastic process driven by an independent pure-jump
increasing Lévy process. The analytical solution of the process is defined under Skorohod
integral and the change of the (log) OU process is defined under normal inverse Gaus-
sian family of distribution. Next, we price the cumulative average temperature (CAT)
futures analytically using the spot-forward relationship framework. In addition, we also
provide numerical pricing of the CAT futures using Monte-Carlo simulation method. The
empirical findings in this study are based on the temperature data collected in Subang,
Malaysia.

Keywords Mean reversion; OU process; Levy process; futures price; normal inverse
Gaussian; incubation period.
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1 Introduction

Temperature is naturally a non-storable commodity. We cannot store and sell it later in the
usual way. Thus, there is no trading for temperature in the spot but in the derivatives market.
Temperature evolves dynamically in a seasonal pattern, but its change is subjected to random
forces which cannot be easily predicted. In addition, temperature has its long term average
level, or more intuitively it is a mean reverting process. Temperature may increases to a certain
degree over certain period of time, but it will later reverts back to the average level. Similarly,
it shall turns to its mean level after negatively deviates. The time it takes for temperature
to arrive at its long term mean level is arbitrary. It does not necessarily moves in a periodic
pattern and its dynamics is totally depending on how fast is the rate of reversal. This rate is
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sometimes called the speed of mean reversion which measures how fast for any mean reverting
process to revert back to the average level.

To manage risks associated with temperature fluctuations, weather derivatives have been
developed as financial instruments such as discussed by Alaton et al. [1]. Pricing these deriva-
tives requires accurate modeling of temperature dynamics, capturing key statistical properties
such as seasonality, mean reversion, and stochastic fluctuations. Various studies have explored
different modeling approaches, with early research focusing on mean-reverting stochastic pro-
cesses by Benth and Ŝaltytė Benth [9], while more recent advancements incorporate multifactor
models [15] and continuous-time autoregressive moving average (CARMA) models (Darus and
Taib [12]. Additionally, studies such as Benth and Ŝaltytė Benth [10] have explored fractional
Brownian motion, while Groll and Meyer-Brandis [14] investigated Hawkes processes to better
capture extreme events in temperature dynamics. A fundamental component of these models
is mean reversion. This mean reversion plays a crucial role in describing how temperature
fluctuates around a long-term average. The OU process is widely used to model this behavior,
as it provides a mathematical framework for capturing mean-reverting dynamics.

Let us introduce B as a Brownian motion which has a Gaussian stationary distribution and
σ > 0 is a constant parameter. In an OU process X, given in a form of stochastic differential
equation

dX(t) = −αX(t)dt+ σdB(t), (1)

the speed of mean reversion of the process is normally represented by a parameter α. This
process assumes that the speed of mean reversion is constant over time. However, this looks
contradictory with the nature of temperature since its mean reversion rate is much depending
on its current state or obviously not constant. This is supported by the findings in Zapranis and
Alexandridis [17] where the mean reversion rate of daily average temperature of Paris changes
considerably over time. A similar study in electricity spot market by Barlow et al. [2] found
large uncertainty in the estimation of mean reversion rate. We conclude that the constant
speed of mean reversion in many stochastic processes is not well-suited for capturing real-world
dynamics. Since the mean reversion rate changes over time, we may explain its dynamics by:
(1) time-dependent function or (2) stochastic process.

In this study, we enrich Equation (1) by changing the constancy assumption of α to the
dynamical structure described by a stochastic process. However, the challenge is to determine
appropriate model or process that best describes the mean reversion behaviour. We may
simply refer to any stationary process for the stochastic speed of mean reversion due to the
mean-reverting property of the rate. Following Benth and Khedher [6], we choose to describe α
dynamics using the OU process driven by an independent pure-jump Lévy process or sometimes
called subordinator. We suppose α follows an inverse Gaussian process so that α takes only
positive value.

Our ultimate goal is the formulation of futures price using the spot-forward relationship
framework. In particular, we price the temperature futures based on the Cumulative Average
Temperature (CAT) index, that is the index for the weather derivatives traded at the Chicago
Mercantile Exchange (CME). Such index is used as underlying in the summer season for cities
in Canada, Europe and Asia (refer to Benth and Ŝaltytė Benth [9]). We have used an Esscher
transform for the dynamics of the speed of mean reversion to ensure that the pricing process
becomes martingale after discounting. Under such transformations, the constant called the
market price of risk alters the dynamics of OU process and mean reversion rates.
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The remaining of the paper is structured as follows. The temperature data is discussed
in Section 2. We have analyzed historical temperatures of Subang, Malaysia which is not so
reliable in the derivatives pricing purpose. However, we have at least show that our proposed
model is applicable in pricing temperature derivatives. Our proposed model of OU-type with
stochastic speed of mean reversion is introduced in Section 3. In Section 4, we present the
formulation of temperatures futures. The Monte-Carlo simulation is discussed together with
the effect of changing the parameter. Finally, some conclusions are offered in Section 5.

2 The Temperature Data

We use historical daily average temperatures (DATs) data measured in degree of Celsius (◦C).
The data are collected from Subang station, Malaysia within the period of 1 January 1997 until
9 June 2016. A total number of 7100 data is recorded but that amount has been reduced to
7095 after the record on 29 February for every leap year have been removed. We do this to
synchronize the number of days in each year, which equal 365 days. There are no missing data
in the record. Figure 1 plot the time series of the daily average temperature data.
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Figure 1: DATs in Subang for period starting 1 January 2011 to 9 June 2016

We see a clear seasonal pattern in the time series. Throughout the time series, we can see
a seasonal pattern. Temperature moves in a regular cycle within small range of fluctuation.
As reported in Table 1, the lowest and highest temperatures are 23.1 and 31.5 respectively.
Estimated mean of temperature is 27.88 and volatility equals 1.15 which indicates a small
variation of temperature.

The dynamics of temperature shall be explained using the OU process together with the
presence of seasonality effect. Thus, we decompose the temperature T (t) for time t ≥ 0 to the
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Table 1: Descriptive statistics of DATs

Min Max Q1 Med Q3 Mean Std.
23.10 31.50 27.10 27.90 28.70 27.88 1.15

deterministic seasonal function Λ(t) and stochastic process X(t) given as

T (t) = Λ(t) +X(t). (2)

The seasonality pattern is explained by

Λ(t) = a0 + a1t+ a2 sin
2π(t− a3)

365
, (3)

which captures the linear trend and seasonal variation. We fitted temperatures data with
seasonality function Λ(t) and the parameters are estimated using nonlinear least squares method
as given in Table 2. The average level of temperature is given by a0, which equals 27.68. The

Table 2: Estimated parameters for seasonal mean function

a0 a1 a2 a3
27.6828 0.0001 0.6659 58.4473

slope of linear trend a1 is close to zero, indicating a very small positive increment of temperature
dynamics. We also observe small variation of temperature based on the amplitude parameter
a2, and is deviating approximately 0.7◦C from the mean level a0. While a3 is a phase shift
parameter that adjusts the seasonal cycle to align with the actual temperature patte rn, its
value indicates a shift of approximately 58 days. The DATs together with fitted seasonal mean
function are plotted in Figure 2. The figure of the last five years is presented to illustrate the
fitted seasonal pattern with DATs more clearly.
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Figure 2: DATs in Subang with fitted seasonal function

The yellow curve represents the fitted seasonal mean function, which models the periodic sea-
sonal pattern, while the gray curve shows the actual recorded DATs in Subang, Malaysia. The
close alignment between the two curves indicates that the seasonal mean function effectively
captures the underlying seasonal trends in the temperature data.

3 Specification of the Pricing Model

Let (Ω,F ,P) be a complete probability space equipped with a filtration {Ft}t≥0. For one
dimensional Lévy process L(t), we define the OU process {X(t)}0≤t≤T as a solution of

dX(t) = −α(t)X(t)dt+ σdL(t), (4)

where σ is a constant volatility and α(t) is a stochastic process describing the mean reversion
level. The speed of mean reversion measures how fast the process X(t) reverts back to the
long-term mean level. A high value of α(t) indicates a fast reverting and on the contrary, a
low α(t) value meaning slow reverting level. Thus, we restrict the α(t) to have only positive
value, contrasted to the suggestion by Benth and Khedher [6] that the mean reversion may
take negative values as well. By allowing the mean reversion rates to behave stochastically, the
specification of such stochastic process becomes more complicated. One may simply choose any
stationary process for its dynamics. In this paper, we define α(t) to be the OU process given
by

dα(t) = −βα(t)dt+ η dZ(t), (5)

where Z(t) is an independent pure-jump increasing Lévy process or sometimes called a subordi-
nator. We have in this process a constant parameter β > 0 which represent the mean reverting
rate of the mean reversion process.
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Specification of Equation (4) and (5) implies that the filtration Ft≥0 are generated by the
Lévy processes L and Z. Based on the Remark 3.13 in Benth and Khedher [6], the solution of
Equation (4) under Malliavin derivative in the direction of B is given by

X(s) = X(t) exp

(
−
∫ s

t

α(u)du

)
+

∫ s

t

σ exp

(
−
∫ s

v

α(u)du

)
δB(v),

where
∫ s
t
Y δB(v) is defined under Skorohod integral. Furthermore, we have∫ s

t

α(u)du = β−1
(
1− e−β(s−t)

)
+

∫ s

t

β−1
(
1− e−β(s−u)

)
dZ(u),

by assuming that α is integrable on [t, s] for s <∞ and

E
[
exp

(
2

∫ s

t

α(u)du

)]
<∞.

The choice of Z(t) being subordinator is such that the process has only positive increments
and no drift, and hence α(t) is defined as positive stochastic process for which the speed of
mean reversion makes sense. Following Taib [16], we let α(t) follow the inverse Gaussian law,
therefore the increments of Equation (4) would approximately be NIG(α̃, β̃, δ̃, µ̃) distributed.
Briefly, the NIG is a class of generalized hyperbolic distributions with density functions given
by

f(x; α̃, β̃, δ̃, µ̃) = k exp(β̃(x− µ̃))
K1(α̃

√
δ̃2 + (x− µ̃)2)√

δ̃2 + (x− µ̃)2
,

where k = δ̃α̃ exp(δ̃

√
α̃2 − β̃2)/π and K1(x) is the modified Bessel function of the third kind

with index 1. Parameters α̃ and β̃ measure the tail heaviness and skewness respectively. The
δ̃ is a scale parameter and µ̃ is a location parameter of the distribution. Reader is encouraged
to read Barndorff-Nielsen [3] or Benth et al. [9] for more detail on the NIG distribution.

The stochastic process can be classified as NIG Lévy process if L(1) is distributed according
to the NIG distribution. The Lévy measure of L(t) is given by (see Barndorff-Nielsen and
Shephard [4])

l(dz) =
α̃δ̃

π|z|
eβ̃zK1(α̃|z|)dz, (6)

and the cumulant function is

φ(λ) = iλµ̃+ δ̃(

√
α̃2 − β̃2 −

√
α̃2 − (β̃ + iλ)2). (7)

For the purpose of derivatives pricing, we have to translate the real world measure P into
the risk neutral measure Q. Since the models are driven by class of Lévy processes (which
in particular Brownian motion for the OU process Equation 4), we rely on the Girsanov and
Esscher transformations. To specify the risk neutral probability measure Q for stochastic speed
of mean reversion, we require an exponential integrability condition on the Lévy as follows. The
following Lemma take from Benth and Šaltytė-Benth [8], ensure the finite moment condition
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exists.

Condition 1 (Benth and Šaltytė-Benth [8])
There exist a constant k > 0 such that the Lévy measure satisfies the integrability condition∫ ∞

1

ekz`(dz) <∞.

Lemma 1 If g : [0, t] 7→ R is bounded and measurable function and Condition 1 holds for
k := sups∈[0,t] |g(s)|, then

E
[
exp

(∫ t

0

g(u)dL(u)

)]
= exp

(∫ t

0

φ(g(u))du

)
,

given that φ(u) = ψ(−iλ).

Proof See Benth and Šaltytė-Benth [8].
We introduce πZ(t) to be the density process of a measure Q ∼ P defined under Radon-

Nikodym derivatives as
dQ
dP

= πZ(t), (8)

where
πZ(t) = exp (θZ(t)− φZ(θ) t) , (9)

for a constant market price of risk, θ.

4 The Price of Temperature Derivatives

We consider the Cumulative Average Temperature (CAT) index in pricing the temperature
futures. The CAT index is a measurement of cumulative amount of temperatures for a certain
period [τ1, τ2]. It can be simply defined as

CAT(τ1, τ2) =

∫ τ2

τ1

T (t)dt. (10)

Temperature futures can be entered at any time t ≤ τ1 with delivery or settlement at time τ2.
We pay nothing to enter the contract which implies that

e−r(τ2−t)EQ
[∫ τ2

τ1

T (s)ds− F (t, τ1, τ2) | Ft
]

= 0, (11)

from the arbitrage pricing theory (see Duffie [13]). Hence, the price of CAT futures for any
0 ≤ t ≤ τ1 ≤ τ2 ≤ ∞ is given as

F (t, τ1, τ2) = EQ
[∫ τ2

τ1

T (s)ds | Ft
]
, (12)

where r is a constant risk-free rate of the return and EQ[·] is the expectation operator with
respect to the pricing measure Q. Note that in this derivation, we set the driving factor L be
the Brownian motion B.
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Proposition 1 The price of a CAT futures at time t for contract with delivery at time 0 ≤
t ≤ τ1 is given as

F (t, τ1, τ2) =

∫ τ2

τ1

Λ(s)ds

−
∫ τ2

τ1

X(t) exp

(
−κ(s− t) +

∫ s

t

{φZ2(θZ2 + κ(s− u))− φZ2(θZ2)}du
)
ds.

where κ(x) = β−1
(
1− e−βx

)
.

Proof From Equation (12) and Fubini’s theorem, we have

EQ
[∫ τ2

τ1

T (s)ds | Ft
]

=

∫ τ2

τ1

Λ(s)ds+

∫ τ2

τ1

EQ [X(s) | Ft] ds. (13)

Referring to Remark 3.13 in Benth and Khedher [6], the second term in Equation (13) can be
written as

EQ [X(s) | Ft] =Xt exp
(
−β−1

(
1− e−β(s−t)

))
× EQ

[
− exp

(∫ s

t

β−1
(
1− e−β(s−u)

)
dZ(u)

)
| Ft
]
.

Appealing Bayes’ formula to the conditional expectation, we have

EQ
[
− exp

(∫ s

t

β−1
(
1− e−β(s−u)

)
dZ(u)

)
| Ft
]

= E
[
− exp

(∫ s

t

β−1
(
1− e−β(s−u)

)
dZ(u)

)
πZ(s)

πZ(t)
| Ft
]

= − exp

(
−
∫ s

t

φZ(θZ)du

)
E
[
exp

(∫ s

t

{
θZ + β−1

(
1− e−β(s−u)

)}
dZ(u)

)]
= − exp

(
−
∫ s

t

φZ(θZ)du

)[
exp

(∫ s

t

φ− Z
(
θZ + β−1

(
1− e−β(s−u)

))
du

)]
= − exp

(∫ s

t

{
φZ
(
θZ + β−1

(
1− e−β(s−u)

))
− φZ(θZ)

}
du

)
.

Hence, the proposition follows.

4.1 Pricing of Temperature Futures

Temperature can be classified as non-storable commodity which does not require us to have an
equivalent martingale measure. It can just be an equivalent measure which implies that there
is more than one choice for Q. In the sequel, we omit the Q in the associated expectation EQ.

Now, we want to solve Equation (12) using Monte Carlo simulation method. Initially, we
discretize Equation (4) together with Equation (5) using Euler scheme

X(t+ 1) = e−α(t)X(t) + e−α(t)σ(t)∆B(t),

α(t+ 1) = e−βα(t) + e−β∆Z(t).
(14)
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We model the deseasonalized temperature X(t) = T (t) − Λ(t) by an autoregressive process,
AR(1) given by

x(t) = β̂x(t− 1) + ε(t),

where X(t) ≈ x(t), β̂ is a constant and ε is i.i.d residuals. By fitting X(t) with AR(1), we
obtain the value of β̂ equal 0.6029. This β̂ value indicates that the speed of mean reversion
of the deseasonalized temperature is rather fast. This is considered fast because it determines
how quickly the temperature deviations return to their long-term average. A higher value of
β̂ leads to a shorter half-life, which means that the process corrects itself more quickly after a
disturbance. Referring to Clewlow and Strickland [11], we calculate the half life of temperature
with mean reversion β̂ for OU process driven by Brownian motion using

τα =
ln(2)

α
.

By converting the discrete speed of mean reversion β̂ into continuous mean reversion rate, we
find α = − ln(β̂) = 0.51. Therefore, the estimated half life of temperature is equal 1.37 which
can be translated as on average it takes 1 day and 9 hours for the deseasonalized temperature
to revert half way back to its long term mean level.

In Figure 3, we show the histogram of residuals from the regression.
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Figure 3: Histogram of residuals

We let α(t) be IG(δ, γ) distributed. By letting α(t) ∼ IG(δ, γ) and assuming ε ∼ N(0, 1),
then ∆X(t) becomes approximately NIG(α̃, β̃, δ̃, µ̃) distributed. We take the residuals after
removing the AR(1) effect to be fitted with NIG distribution. The estimates of NIG are given
in Table 3.
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Table 3: Estimated parameters for NIG-fitted distribution

α̃ β̃ µ̃ δ̃
2.3763 0.6000 4.6326 -0.2736

To obtain the price of temperatures futures, one should have an expectation of the cumu-
lative average temperatures for a certain coverage period, i.e. [τ1, τ2]. Such expectation can
be numerically solved by having paths of simulated temperatures, where certain number of
realizations of temperatures can be obtained. This is precisely done by simulating X(t), and by
adding Λ(t), we finally have the simulated temperatures at certain time t. However, simulation
of X(t) requires step-by-step procedures where one need to run simulations of mean reversion
rate α(t), and later those simulated values will be used in simulating X(t). In all simulations,
we set the number of simulations, n = 1000, meaning that the procedures are repeated for 1000
times.

We use second equation in (14) to simulate the mean reversion rates. Since this process is not
observable and the parameters of the model cannot be directly obtained, we do the simulation
of speed of mean reversion α(t) using parameters reported in Table 3. The simulation provides
us with the values of α(t) that omit the positive values of the rates. The simulation start
by generating n random numbers from inverse Gaussian distribution, IG(δ, γ). By setting
α(0) = 0.51 (estimated α from fitting AR(1)) and parameter β̂ equals 0.6029, we do the
simulations for t = 1, ..., 183 days (this is approximately covers 6 months period). Next, we
generate n random numbers from the standard normal distribution, N(0, 1), and with the
simulated α(t), we simulate X(t) starting from X(0) = 0 with σ = 0.5551 (value obtained from
fitting the residuals with normal distribution).

In Figure 4, we present the simulated paths of α(t) and X(t). It is obvious that the simulated
data of α(t) show positive values and X(t) may takes negative values as well due to the negative
random numbers generated from standard normal distribution. There exists time when α(t)
value is small which reflects the slow speed of mean reversion towards its long term mean, and
in the contrary, a high α(t) value represents a fast mean reversion rate.
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Figure 4: Time series of simulated (a) mean reversion rates, α(t) and (b) X(t).

Looking at the trends and patterns observed in the simulation results, the mean reversion
rate, α(t), fluctuates over time but always remains positive. This is to ensure that temperature
deviations consistently revert to the mean. A higher value of α(t) indicates a faster return to
equilibrium, while a lower value suggests a slower adjustment.

The simulated temperatures for May 2016 to June 2016 are plotted in Figure 5.
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(b) Price of temperature futures

Figure 5: Time series of simulated (a) DATs and (b) price of temperature futures.
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To price the CAT futures, we discretize 12 and the settlement can be simply defined as

F (t, τ1, τ2) =
k

τ2 − τ1
× CAT(τ1, τ2), (15)

where k is the money factor. For this pricing purpose, we set k = 20 (just for illustration). We
take May 1, 2016 as the date of engaging in the contract. The contract period is specified to be
June 2016. Based on our simulated temperatures, we sum the temperatures value from 1 June
2016 until 30 June 2016 which reflects the contract period for one month. We have obtained
the price of temperature futures on 1 May 2016 for that particular period which equals 580.50.
This is the price that should be paid if one want to buy the contract on 1 May 2016 for coverage
in June 2016. We also plotted the price for 2 May 2016 until 31 May 2016 in Figure 5.

5 Conclusion

In this paper, we have introduced the OU process with the presence of stochastic speed of
mean reversion driven by the Lévy process. We have specified the driving process for the mean
reversion to be independent pure jump increasing Lévy process or subordinators to ensure its
positivity. Since OU process is given in terms of stochastic differential equation, the challenge
is to find its analytical solution which is possible by appealing to Malliavin calculus and solving
the differential equation under Skorohod integral.

We have analyzed the time series of Subang’s temperature data. It is hard to calibrate
the parameters of the OU process that defines the speed of mean reversion since the mean
reversion levels are not naturally observed. To ease the computation, we assume that speed of
mean reversion follows the NIG distribution. This assumption may not be accurate in defining
the mean reversion level empirically, but it helps us with numerical simulation of temperatures.

We have used our model to numerically price the temperature futures. The purpose of
the pricing is just to show the applicability of the model even though there is no temperature
derivatives traded for the selected data. We have first simulated the mean reversion rates and
the OU process thereafter. Finally, we obtained the simulated temperatures and later find the
price of temperature futures. However, there are still open questions left for future study. One
may looks further on the stationary of the OU process for the case when volatility and speed of
mean reversion are considered as stochastic processes simultaneously. The analytical solution
of the stochastic differential equation for such process may also be investigated.
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