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Abstract Today’s local and global stock markets are confronted with numerous chal-
lenges, such as the difficulty in accurately predicting stock prices and extracting useful
features. While many researchers have successfully employed long short-term memory
(LSTM) models for stock price prediction, there is still room for improvement in enhanc-
ing their accuracy, particularly in capturing the impact of market volatility. This paper
proposed an LSTM with Average True Range (ATR) weighted input features to address
this limitation. By incorporating volatility-weighted features into the LSTM architecture,
the model adapts its learning process to reflect the varying impact of market volatility
on stock index prices. Specifically, ATR is used to construct input features that better
represent volatility, allowing the LSTM to more effectively capture fluctuations in market
conditions. Using Bursa Malaysia Kuala Lumpur Composite Index (KLCI) as dataset,
the proposed ATR-LSTM showed accuracy improvement in forecasting stock index prices
compared to classic stock price prediction models such as autoregressive integrated mov-
ing average (ARIMA), artificial neural network (ANN) and regular LSTM models. The
evaluation metrics of mean absolute error (MAE) and root mean square error (RMSE)
are used to validate this model. These findings highlight the importance of incorporating
volatility-driven signals in stock index forecasting models.

Keywords Average True Range; Bursa Malaysia; LSTM; Machine learning; Time series;
Volatility weighted LSTM.
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1 Introduction

The stock market is characterized by its dynamic nature, exhibiting significant levels of volatil-
ity, noise, and dynamic fluctuations in its time series [1]. This complexity creates significant
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challenges for accurate prediction. Traditional prediction techniques frequently encounter dif-
ficulties in capturing the complex patterns and non-linear correlations found in financial time
series data.

The LSTM model, a variation of the recurrent neural network (RNN), has become widely
recognized as an effective technique for predicting financial time series data. Its capability to
capture long-term dependencies and adapt to changing market conditions makes it especially
suitable for modelling the dynamic nature of stock market data. Leveraging its memory cell
structure, the LSTM model can effectively learn and exploit the temporal dynamics inherent
in financial time series, thereby enhancing forecasting accuracy and robustness.

However, despite advancements, challenges persist, particularly volatility clustering and
sudden spikes during turbulent market periods. This can present challenges for traditional
forecasting models as well as LSTM model, resulting in inaccurate predictions. Limited repre-
sentation of external factors presents another challenge. Standard LSTM architectures primar-
ily rely on historical price data for predictions, potentially overlooking essential external factors
that influence market behaviors [2]. Incorporating these factors, especially market volatility,
is crucial for a more comprehensive understanding of stock index movements [3].

Numerous studies have explored the importance of input features and the role of feature
selection in forecasting stock market movements. One approach combined sentiment analy-
sis with an emotion-enhanced convolutional neural network and denoising autoencoder models
alongside LSTM [4]. This method utilized information from news and social media to derive a
sentiment index, while the autoencoder reconstructed input data with added random noise to
extract meaningful representations from corrupted input. Another study employed multilingual
sentiment analysis by translating texts from non-English-speaking countries into English, inte-
grating unstructured data from social media with structured data such as trading information
and technical indicators for input into an LSTM network [5].

Moreover, other approaches have integrated news headlines and language model-generated
summaries to extract semantic information and representations [6]. Summarized news titles
are used to predict sentiment polarity, which is then input into the LSTM network along with
technical indicators. Technical indicators such as moving averages, oscillators, volatility indi-
cators, and volume indicators have also been incorporated as inputs in various studies [7–9].
Other works have introduced investor sentiment indices as new variables for stock price pre-
diction [10]. Besides that, one approach expanded LSTM input variables to include proxies
for investor attention alongside market data like price and volume [11]. Additionally, compos-
ite investor sentiment indices [12] have been proposed, comprising objective indicators such
as funds raised and monthly return rates, along with subjective measures like the consumer
confidence index.

Volatility often reflects market sentiment and the collective perception of investors. Integrat-
ing volatility into stock index forecasting allows for the identification of periods of heightened
uncertainty or market stress, which in turn provides insights into investor behavior and senti-
ment, helping anticipate potential market trends and shifts [13]. Market volatility is closely
connected to significant price movements. By integrating volatility into forecasting models,
these models can more effectively capture and adjust to rapid changes in market conditions.
These lead to more precise predictions, particularly during periods of increased volatility, which
are crucial for timely and effective decision-making [14]. Incorporating volatility is paramount
due to its multifaceted significance and profound impact on market dynamics [15]. Under-
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standing and integrating volatility into predictive models offers several crucial benefits that
contribute to more accurate, reliable, and insightful stock index forecasts.

While LSTM models have been widely applied in stock price prediction, a significant gap
persists in their ability to incorporate market volatility, a critical factor influencing stock in-
dex movements. Most existing studies focus primarily on historical price data, overlooking
volatility measures that could significantly enhance model accuracy. Although some research
has incorporated additional input features, such as market sentiment and trading volume, none
have utilized a direct measure of market volatility like the ATR. To address this limitation, this
study proposed a novel approach by integrating the ATR, a widely used measure of market
volatility, directly into the LSTM model as a volatility-weighted input feature.

This innovative ATR-LSTM model aims to improve predictive accuracy by capturing the dy-
namic relationship between market volatility and stock index movements. Hence, the objective
of this study is to develop and validate the ATR-LSTM model, demonstrating its superiority
in capturing the relationship between market volatility and stock index price movements. In
addition to addressing the primary objectives of this study, we benchmark the proposed ATR-
LSTM model against widely used forecasting models, such as ARIMA, ANN, and standard
LSTM. This comparison aims to validate the effectiveness of the ATR-LSTM model in captur-
ing stock index volatility and to provide insights into its relative strengths within the broader
context of stock market forecasting research. ARIMA has been a traditional choice for time
series forecasting due to its simplicity and interpretability, making it a standard baseline in
stock market prediction studies. On the other hand, ANN represents a class of machine learn-
ing models widely used for their ability to capture complex non-linear relationships in data.
Including these models provides a comprehensive performance comparison across traditional
statistical, machine learning, and advanced deep learning approaches

2 Methodology

2.1 Data Collection and Preparation

This study utilized the daily closing prices of the KLCI from January 2, 2018, to December
30, 2022, comprising a total of 1,206 observations obtained from the Yahoo Finance website.
The dataset was first preprocessed to ensure consistency and reliability. Since the KLCI is
not open daily, dates without values were retained as is, as no imputation was necessary.
Outlier detection was performed using the Interquartile Range (IQR) method on half-yearly
segments to account for potential drastic price fluctuations while preserving temporal integrity.
Normalization of the closing prices was conducted using Z-normalization to standardize the
data, ensuring compatibility with the LSTM model and facilitating convergence during training.

The dataset was divided into two segments: 80% for training and 20% for testing. This split
ratio is widely used in time-series forecasting studies as it provides sufficient data for model
training while reserving an adequate portion for evaluation. However, to ensure robustness and
reduce potential bias introduced by a single train-test split, a rolling cross-validation strategy
was also considered as an alternative test. This approach involves increasing the training set
while reserving a fixed testing window, enabling an assessment of model performance over
multiple temporal periods.
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2.2 Volatility Measure and Data Segmentation

ATR is a versatile volatility measure that assesses the average range of price movements over
a specific period [16]. Unlike traditional measures that only consider closing prices, ATR
incorporates both intraday price highs and lows, providing a more comprehensive view of market
volatility [17]. It is particularly valuable for setting stop-loss levels and determining the
potential range of price movements within a given trading session or timeframe.

ATR is calculated as the average of the true ranges over a specified period as follows:

ATR =

∑n
i=1 TRi

p
. (1)

where, TRi represents true range of each day i and p represents the number of periods.
To analyze market behavior across varying volatility conditions, the dataset was segmented

into half-year periods from 2018 to 2022. For each half-year period, the average ATR was
calculated to represent the overall volatility trend. This segmentation was selected to ensure
an adequate number of data points for training and testing predictive models while reflecting
meaningful market behavior over time. Volatility categories were assigned to each period based
on the quartiles of average ATR values, with thresholds determined by the 75th percentile
(high volatility), 50th percentile (medium volatility), and 25th percentile (low volatility). This
approach balances statistical rigor with practical interpretability, enabling a clear analysis of
model performance under different volatility regimes. The categorized periods form the basis
for further comparative analysis between the baseline and proposed models.

2.3 LSTM Model

The LSTM model is a specialized type of RNN, designed to effectively capture and learn from
sequential data [18]. LSTMs are particularly well-suited for tasks involving time series analysis,
natural language processing, and other applications where temporal dependencies are crucial
[19]. LSTMs incorporate unique memory cells that enable them to maintain information over
long periods. As depicted in Figure 1, the LSTM unit contains a cell, an input gate, an output
gate, and a forget gate.
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Figure 1: Structure of the LSTM cell.

The forget gate ft dictates the degree to which the previous cell state ct−1 is discarded,
computed as ft = σ(Wf ·[ht−1, xt]+bf ), using the sigmoid function. The input gate it determines
what new information is retained in the cell state, given by it = σ(Wi · [ht−1, xt] + bi), and the

candidate cell state C̃t is calculated using C̃t = tanh(Wc · [ht−1, xt] + bc), with hyperbolic
tangent function. The current cell state Ct is updated using the formula Ct = ft

⊙
Ct−1 +

it
⊙

C̃t. Finally, the output gate ot governs the output of the LSTM cell, calculated as ot =
σ(Wo

⊙
[ht−1, xt] + b0), and the hidden state ht is derived from ht = ot

⊙
tanh(Ct).

2.4 ATR-LSTM Model

Incorporating ATR as input to LSTM model requires creating a function that assigns weights
at different time steps based on their associated volatility [20,21]. Let Xt be the original time
series at time t and At be the corresponding ATR measures at time t. The ATR values are
used to adjust Xt by applying a weighting function based on volatility.

A function that assigns weights to different time steps based on their associated volatility
is defined as follows:

W = f(β · At). (2)

where, β represents hyperparameter controlling the sensitivity of the weighting to ATR.
At represents the ATR values at time t, and f is a function that maps volatility to weights
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Subsequently, the adjusted time series can be denoted as:

X∗
t = W ·Xt. (3)

where, X∗
t represents the modified series.

The resulting series is then fed into the LSTM model, represented by the equation:

ht = LSTM(X∗
t , ht−1). (4)

The process of incorporating ATR into the LSTM model through volatility-weighted
input features can be visualized in Figure 2.

2.5 Model Evaluation

The forecasting models were evaluated using two performance measures: Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE).

MAE =
1

n

n∑
i=1

|yi − ŷl|. (5)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷl)2. (6)

The total number of observations is represented by n, where yi denotes the actual observed
value and ŷl refers to the forecasted value. These performance metrics will be utilized to evaluate
the forecasted values generated by the LSTM model for the out-of-sample data.

3 Results and Discussion

3.1 Volatility Phases and Data Characteristics

To understand the dynamics of the KLCI under varying market conditions, the dataset was
segmented into volatility phases based on ATR trends. The ATR values for each half-year
period from 2018 to 2022 were calculated, and the average ATR for each period was used as a
representative measure of market volatility. These values were categorized into three distinct
volatility levels (high, medium, and low) based on quartile thresholds. The 75th percentile and
25th percentile of the average ATR values served as cutoffs, defining high and low volatility
periods, respectively, while values between these thresholds represented medium volatility. To
provide context, significant economic or political events were associated with each half-year
period to explain the observed volatility patterns. These events include market shocks, political
developments, or global financial trends influencing market behavior. Table 1 summarizes the
segmentation, highlighting the average ATR, corresponding volatility level, and key events
during each period.
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Figure 2: Workflow of the ATR-LSTM Model using Volatility-Weighted Input Features.
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Table 1: Volatility Analysis of KLCI: Average ATR and Significant Events by Half-Year Period
(20182022).

Year Period Average ATR Volatility Level Significant Event
2018 H1 9.40 High General election (GE14) causing market

uncertainty
2018 H2 8.28 Medium Transition to new government, economic

adjustments
2019 H1 6.60 Low Stable political landscape, modest market

growth
2019 H2 5.66 Low Trade tensions ease, market steadiness
2020 H1 13.83 High COVID-19 outbreak and global

economic shocks
2020 H2 11.66 High Recovery phase, political instability
2021 H1 9.08 Medium Vaccine rollout, intermittent market

optimism
2021 H2 7.53 Medium Recovery from pandemic-induced

market shocks
2022 H1 9.64 High Inflation concerns, geopolitical tensions
2022 H2 8.73 Medium Post-pandemic economic adjustments

The inclusion of significant events provides context for understanding the underlying drivers
of volatility. For instance, the high volatility in 2020 corresponds to the onset of the COVID-19
pandemic, which caused drastic market movements globally. Similarly, high volatility during
the first half of 2022 aligns with inflation concerns and geopolitical tensions.

The graph in Figure 3 below illustrates the ATR values over the study period (2018-2022)
for the KLCI, segmented into half-year periods. The ATR values are plotted on the y-axis,
while the x-axis represents the timeline from 2018 to 2022.

From the graph, it is evident that the ATR values fluctuate significantly across different
periods, reflecting the varying levels of market volatility. The spikes in ATR values, particularly
in 2020, correspond to significant economic and political events such as the outbreak of the
COVID-19 pandemic, which triggered a global market downturn. In contrast, periods with
lower ATR values, such as the second half of 2019 and 2021, indicate relatively stable market
conditions. These lower ATR values align with periods of economic recovery and political
stability, where the market experienced more gradual movements.
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Figure 3: Volatility Trends in KLCI: ATR Values Over Time (20182022).

3.2 Hyperparameter Optimization Strategies

The hyperparameters of the LSTM and ATR-LSTM models were optimized using a combination
of manual tuning and grid search to achieve superior performance during the training phase.
The process began with manually identifying a reasonable range for each hyperparameter based
on literature and initial experiments. A grid search was then applied within these ranges to
systematically evaluate combinations and their impact on model performance.

The following hyperparameters were fine-tuned:

• Number of Hidden Layers: Tested values included 1, 2, and 3 layers. The final choice of
2 layers balances model complexity and performance

• Number of Neurons per Layer: Ranges from 50 to 200 were explored. The optimal setting
was 100 neurons per layer.

• Dropout Rate: Values between 0.1 and 0.5 were considered to mitigate overfitting. A rate
of 0.2 was selected for its effectiveness in preventing overfitting without significant loss of
information.

• Timestep: A range of 5 to 20 timesteps was tested to capture temporal dependencies
effectively. A timestep of 10 demonstrated superior predictive accuracy.

• Batch Size: Explored values were 32, 64, and 128. A batch size of 64 was chosen for its
balance between computational efficiency and convergence.

• Epochs: Models were tested for 30 to 100 epochs. Convergence analysis determined that
50 epochs were sufficient for stable performance.
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• Activation Function: The hyperbolic tangent (tanh) activation function was chosen for
its ability to handle normalized data effectively.

• Recurrent Function: The sigmoid function was retained for its compatibility with the
tanh activation in capturing dependencies.

• Optimizer: The Adam optimizer was selected after testing alternatives (SGD and RM-
Sprop) due to its adaptive learning rate and robust convergence.

• Loss Function: The mean squared error (MSE) was used as the loss function for its
suitability in regression tasks.

The evaluation criteria for selecting the final hyperparameter settings were based on vali-
dation loss trends, with the configuration minimizing validation loss while avoiding overfitting
chosen for testing. Cross-validation was used to ensure robustness across different data splits,
further validating the selected hyperparameter configuration.

3.3 Model Performance on Testing Data

The predictive accuracy of the models was assessed using the testing dataset, which comprised
20% of the original data split. The evaluation metrics used were MAE and RMSE, providing a
comprehensive measure of model performance. These metrics were calculated for all models un-
der consideration, including standard LSTM, ATR-LSTM, and benchmark models like ARIMA
and ANN. The results are summarized in Table 2, showcasing how each model generalizes to
unseen data. The findings highlight the superior performance of the ATR-LSTM model, partic-
ularly in capturing complex patterns in the KLCI dataset, as reflected in its lower error values
compared to baseline models. The results of this study are consistent with previous research
that identified LSTM as the most effective model for predicting the KLCI, outperforming both
ANN and ARIMA in terms of predictive accuracy [22–24].

Table 2: Performance Metrics for Various Models on the Testing Dataset.

Model MAE RMSE
ARIMA (0,1,0) 9.05 11.83

ANN (3,1,1) 8.99 11.71
Regular LSTM 8.98 11.74

ATR-LSTM 8.94 9.21

Additionally, Figure 4 visualizes the actual vs. predicted closing prices for each model
on the testing data. This graph highlights the alignment between predicted and actual trends,
emphasizing the ATR-LSTM model’s ability to capture fluctuations in market movements more
accurately than the benchmarks.
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Figure 4: Comparison of Actual vs. Predicted Closing Prices for Different Models on the
Testing Dataset.

3.4 Model Performance Under Different Volatility Levels

To evaluate the robustness of the models under varying market conditions, their predictive
performance was analyzed across different volatility levels. The dataset was segmented into
half-year periods based on ATR values, as detailed earlier. Each segment was categorized into
low, medium, or high volatility levels to investigate the models performance under distinct
market scenarios. The results, including MAE and RMSE values for ARIMA, ANN, LSTM,
and ATR-LSTM models, are summarized in Table 3 and Table 4.

Table 3: MAE of All Models Under Different Volatility Levels.

Year Period Volatility ARIMA ANN LSTM ATR-LSTM
Level

2018 H1 High 14.8 12.6 10.3 9.2
2018 H2 Medium 13.7 11.8 9.6 8.4
2019 H1 Low 8.2 8.3 8.7 7.5
2019 H2 Low 8.4 8.5 8.9 7.6
2020 H1 High 15.4 13.1 10.7 9.5
2020 H2 High 15.0 12.8 10.5 9.3
2021 H1 Medium 13.2 11.5 9.2 8.0
2021 H2 Medium 13.4 11.6 9.4 8.2
2022 H1 High 15.7 13.4 11.1 9.7
2022 H2 Medium 13.9 12.0 9.8 8.5
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Table 4: RMSE of All Models Under Different Volatility Levels.

Year Period Volatility ARIMA ANN LSTM ATR-LSTM
Level

2018 H1 High 17.2 15.0 12.7 11.3
2018 H2 Medium 16.1 13.8 11.9 10.1
2019 H1 Low 10.6 10.4 10.7 9.2
2019 H2 Low 10.8 10.6 10.9 9.3
2020 H1 High 18.0 15.7 13.2 11.8
2020 H2 High 17.6 15.3 13.0 11.5
2021 H1 Medium 15.8 13.6 11.4 10.0
2021 H2 Medium 16.0 13.8 11.5 10.1
2022 H1 High 18.4 16.1 13.7 12.1
2022 H2 Medium 16.3 14.1 12.1 10.5

The findings highlight a significant disparity in model performance across volatility levels.
For low-volatility periods, ARIMA and ANN models performed relatively well, demonstrating
their effectiveness in stable market conditions. However, as volatility increased, the predictive
accuracy of these traditional models diminished, as evidenced by rising MAE and RMSE values.
Conversely, the ATR-LSTM model consistently delivered lower error rates, showcasing its ability
to adapt to fluctuating market conditions. The results also indicate that the ATR-LSTM model
particularly excelled during high-volatility periods. This improvement can be attributed to its
integration of ATR-based features, which provided it with the contextual information necessary
to model abrupt market changes.

Table 5 illustrates the directional accuracy (DA) achieved by ARIMA, ANN, LSTM, and
ATR-LSTM models under different volatility levels. DA measures the percentage of instances
where the model correctly predicts the direction of price movement (increase or decrease). This
metric provides critical insights into the practical applicability of the models, particularly in
scenarios where decision-making depends on accurate trend prediction

Table 5: Directional Accuracy (%) Across Volatility Level.

Year Period Volatility ARIMA ANN LSTM ATR-LSTM
Level

2018 H1 High 55.4 60.3 68.1 72.5
2018 H2 Medium 58.2 63.7 70.5 75.8
2019 H1 Low 60.1 65.4 73.2 78.6
2019 H2 Low 59.9 65 72.8 78.2
2020 H1 High 54.7 59.6 66.9 71.4
2020 H2 High 55.0 60.1 67.5 72
2021 H1 Medium 58.9 64.2 71.6 76.2
2021 H2 Medium 58.7 64.0 71.3 75.9
2022 H1 High 53.9 58.8 65.7 70.2
2022 H2 Medium 57.5 62.6 69.8 74.4
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The DA results in Table 5 highlight significant differences in the predictive capabilities
of the models under varying volatility conditions. ATR-LSTM consistently demonstrates the
highest DA, particularly under high and medium volatility levels, indicating its robustness in
capturing market dynamics. LSTM follows closely, outperforming both ARIMA and ANN
across all levels, showcasing its ability to adapt to nonlinear and temporal relationships in the
data. In contrast, ARIMA struggles with high volatility periods, achieving the lowest DA due
to its reliance on linear relationships and lag-based modeling. ANN performs moderately better
than ARIMA but still falls short of LSTM-based approaches, particularly under high volatility
conditions.

3.5 Model Validation and Diagnostic Analysis

To validate the ATR-LSTM model’s robustness, a rolling-window cross-validation was con-
ducted, dividing the dataset into training and testing periods incrementally. Performance met-
rics (MAE and RMSE) were calculated for each fold to ensure consistent predictive capability.
As shown in Table 6, the ATR-LSTM model achieved stable performance across folds, with low
variability in errors, indicating strong generalizability.

Table 6: Extended Cross-Validation Results for the ATR-LSTM model.

Fold Training Period Testing Period MAE RMSE
1 Jan 2018 Dec 2018 Jan 2019 Jun 2019 9.34 12.78
2 Jan 2018 Jun 2019 Jul 2019 Dec 2019 8.99 12.34
3 Jan 2018 Dec 2019 Jan 2020 Jun 2020 10.23 13.45
4 Jan 2018 Jun 2020 Jul 2020 Dec 2020 11.12 14.89
5 Jan 2018 Dec 2020 Jan 2021 Jun 2021 10.89 13.98
6 Jan 2018 Jun 2021 Jul 2021 Dec 2021 9.76 12.89
7 Jan 2018 Dec 2021 Jan 2022 Jun 2022 10.45 13.67
8 Jan 2018 Jun 2022 Jul 2022 Dec 2022 8.94 9.21

To further assess the model’s reliability, the residuals were analyzed for autocorrelation using
the Ljung-Box test. The p-values in Table 7 indicate no significant autocorrelation, suggesting
that the residuals are random and that the model effectively captures underlying temporal
patterns. Together, these results demonstrate the robustness and reliability of the ATR-LSTM
model for stock index forecasting.

Table 7: Ljung-Box Test Results for Residuals Autocorrelation Analysis of the ATR-LSTM
Model.

Lag Q-Statistics p-value
1 0.953 0.329
5 3.874 0.567
10 8.243 0.684

The incorporation of volatility weighting enables the model to assign greater importance
to periods of high volatility and adjust its forecasts accordingly. This adaptive mechanism is
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particularly crucial in volatile and uncertain market conditions, where traditional forecasting
models may struggle to capture the underlying trends and patterns [25]. By leveraging the
informational content embedded within market volatility, the proposed ATR-LSTM framework
offers a more nuanced and responsive approach to stock index forecasting, thereby enhancing
predictive accuracy and robustness.

4 Conclusion

In conclusion, this study has underscored the significance of integrating volatility as an input
feature in LSTM models for enhancing stock index forecasting. By leveraging the dynamic rela-
tionship between market volatility and asset prices, ATR-LSTM models can adaptively adjust
their forecasts to better capture the complexities of financial markets. Comprehensive empirical
analyses demonstrate the efficacy of volatility-based LSTM frameworks in enhancing predictive
accuracy and robustness, particularly under volatile market conditions. The findings also high-
lighted the potential of incorporating market volatility measures into machine learning-based
forecasting models to unlock new avenues for innovation and improve decision-making processes
in finance. Moving forward, further research in this direction could deepen the understanding
of market dynamics and pave the way for the development of more sophisticated forecasting
methodologies tailored to the complexities of modern financial markets.
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