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Abstract Understanding the causes of death mortality concerning aggregate trends is es-
sential for comprehending a country’s demographic health dynamics. Shifts in the leading
causes of mortality can reveal significant insights that influence comprehensive mortality
studies. This study examines changes in aggregate mortality and cause-specific mortality
in Malaysia, using data from 2000 to 2019 sourced from the Department of Statistics
Malaysia. The Lee-Carter (LC) mortality model is deployed to analyse aggregate mor-
tality and mortality by cause of death. The research compares the fitted LC parameters,
Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) values, and
forecasted mortality rates for aggregate and cause-specific mortality. Results show that
the time-varying indices exhibit diverse patterns, reflecting distinct trends for each cause
of death compared to aggregate mortality. Notably, cause-specific mortality forecasts tend
to be more pessimistic than aggregate forecasts, with marginally higher projected mortal-
ity rates. This comparative divergence arises due to the independent nature of each cause
of death, proportional variations over time, and the characteristics of the forecasts across
different age groups. These findings highlight the importance of cause-specific mortality
data in providing deeper insights into Malaysia’s mortality dynamics, which are critical
for informing public health strategies and policy interventions.

Keywords Aggregate mortality; causes of death mortality; forecasting; Lee-Carter;
Malaysia mortality.
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1 Introduction

Malaysia is confronting a significant demographic challenge. The decreasing mortality rates
among older people have underscored the critical importance of accurate mortality table pro-
jections [1]. Moreover, Malaysian mortality is anticipated to undergo an epidemiological tran-
sition [2] due to shifts in the demographic structure driven by changes in the leading causes of
death.
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Between 2010 and 2016, notable mortality pattern changes were observed. For instance,
HIV-related mortality decreased by over 50%, while deaths attributed to diabetes exhibited a
marked increase from 15.2% to 17.5% of total deaths in Malaysia between 2011 and 2015 [3].
According to [4], ischemic heart disease remains the primary cause of mortality in Malaysia,
with 115 deaths per 100,000 population recorded in 2019. Subsequent leading causes include
lower respiratory infections (74 deaths per 100,000) and stroke (68 deaths per 100,000) popu-
lation.

Multiple studies have identified a robust and reliable relationship between specific causes
of death and overall mortality trends. [5] revealed that mortality improvements in the United
States were primarily attributed to reduced deaths from major diseases and medical treatment
advancements. Similarly, [6] discovered that the decline in cancer-related mortality between
1970 and 2000 played a crucial role in the overall decrease in mortality rates in the United
States.

Investigating the link between causes of death and mortality has provided significant insights
into mortality pattern complexities. [7] found that each cause of death follows distinct historical
trajectories, resulting in varied changes. These trend variations are anticipated to influence
future mortality, particularly among older population segments, substantially. Researchers have
extensively utilised time-series data to model causes of death and analyse emerging trends, as
demonstrated in studies by [8–11]. Additionally, mortality forecasting using country-specific
causes of death data has been employed by researchers such as [12–14].

Understanding the role of cause-specific mortality in shaping mortality trends is essential for
accurate mortality modelling and forecasting. A robust human mortality model relies on this
comprehensive understanding to ensure precise estimations and predictions. Accurate mortality
forecasts provide substantial value to various stakeholders: they enable governments to maintain
sustainable pension provisions and assist insurers in setting appropriate policyholder premiums.
The information gleaned from the cause of death data enriches our knowledge of mortality
development, serving as a cornerstone for further advancements in understanding changes in
mortality. By analysing trends in causes of death, researchers can gain valuable insights into
future mortality rate patterns. This enhanced understanding allows for better preparation and
response to changes in population health dynamics.

The Lee-Carter (LC) model, introduced by Ronald D. Lee and Lawrence Carter in 1992
to model and forecast mortality in the United States [15], employs two primary elements; age
and year, in mortality projection. Since its inception, this model has been widely adopted and
extended by researchers globally to improve mortality rate forecasting.

Numerous researchers have utilised extrapolative methods, such as the LC model and its
extended versions, to study cause-specific mortality. These approaches typically assume the
independence of each cause of death. Research by [10,16,17] has focused on studying mortality
changes by examining historically grouped causes of death data. Some models incorporate
latent factors representing mortality rate trends across periods or cohorts, providing insights
into relationship explanations based on their variance [18]. The results from extrapolative
methods such as the LC model allow researchers to identify significant patterns and anomalies
exhibited by causes of death.

The LC method has encountered challenges, including long-term mortality rate convergence
[19–21] and identifiability problems [22–24]. These challenges impact the accuracy of long-term
mortality forecasts, particularly when multiple forecasts are combined [25]. Consequently,
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researchers have extended the LC model to incorporate cause of death information for more
comprehensive mortality pattern analysis. For instance, a study by [10] analysed 11 causes of
death influencing mortality progression, extending the classic LC paradigm to a multivariate
LC model to refine cause-specific mortality modelling.

This research presents the initial analyses of mortality modelling by adopting the LC model
[15] to forecast aggregate and cause-specific mortality in Malaysia. Aggregate mortality repre-
sents total mortality across all causes, while cause-specific mortality segregates the mortality
experienced by individual causes. The cumulative cause-specific mortality will provide a com-
prehensive overview of aggregate mortality trends. Subsequently, the forecasted mortality rates
from both aggregate approaches and by each cause of death are analysed for better estimation
and understanding of Malaysia’s forecast trends and nature.

2 Data

Causes of death are systematically recorded using the International Classification of Diseases
(ICD) [26], specifically the ICD-10 version. As a globally adopted system, the ICD is regularly
updated to reflect scientific and technological advancements, enabling more precise cause-of-
death classifications. Various data sources widely utilise this comprehensive system for coding
and classifying information from death certificates [27].

Recognising the potential variations in cause-of-death reporting, the WHO, in collaboration
with 10 international centres, developed ICD standards to ensure consistency and compara-
bility in global mortality statistics. Each cause of death receives a specific code, facilitating
standardised recording and analysis across different countries.

Research has demonstrated that excessive granularity in cause-of-death categorisation can
complicate accurate prediction. As highlighted by [16], focusing on a limited number of cause
groups that demonstrate sufficiently varied patterns to illuminate key challenges and potential
solutions is more effective while discussing mortality. Consequently, the current study carefully
references country-specific data to determine appropriate ICD groupings. The fundamental
challenge for most countries, however, is that cause of death data are often unavailable or
subject to substantial problems of comparability.

This research utilises Malaysian age, sex, population, and cause-specific death data by ICD-
10 code from 2000 to 2019, obtained from the Department of Statistical Malaysia (DOSM) [28].
It is important to note that the dataset is relatively constrained, representing the only available
recorded data from DOSM.

The DOSM data follows a detailed age group structure based on interval ages: 0, 1-5, 6-10,
11-15, 16-20, 21-25, 26-30, 31-35, 36-40, 41-45, 46-50, 51-55, 56-60, 61-65, 66-70, 71-75, 76-80,
81-85, 86-90, and 90+.

Following methodologies employed in previous studies [8,9], this research categorises causes
of death into 10 main categories that collectively account for more than 80% of total deaths.
Each category represents a compilation of related death classifications based on ICD-10 coding.
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Table 1: Causes of Death Categories.

Main Causes of Death Examples of Common Diseases
Circulatory Diseases Ischemic heart disease cerebrovascular disease
Respiratory Diseases Pneumonia, influenza, respiratory diseases (asthma, bronchitis, etc.)
Neoplasms (Cancer) Lung, colon, breast, prostate, and related cancer diseases
Infectious Diseases Gastroenteritis, tuberculosis, HIV, viral fever, bacterial diseases
Septicaemia Diseases Deaths due to septicaemia
Transport Accidents Deaths from vehicle-related accidents
All External injury Deaths due to injuries, excluding transport accidents
Diabetic Diseases Deaths related to diabetic
All Other diseases Mental health conditions, meningitis, Alzheimer’s, and other

unclassified conditions
Old Age Senility Deaths of individuals 65 and above

World Health Organization (https://www.who.int/standards/classifications/classification-
of-diseases)

3 Methods

3.1 Death Data Calculation

The death count data for each category is calculated using the following equation:

dt,x =
∑
allj

dt,x,j (1)

where,

• dd,t represents the total death count for all causes at age x in year t

• dt,x,j represents the death count for age x in year t due to cause j

The central death rates are computed as follows:

mt,x,j =
dt,x,j
Et,x

(2)

where,

• mt,x,j represents the central death rates for age x in year t due to cause j

• Et,x is derived from the number of survivors at the age x for time t
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3.2 Lee Carter Model

The Lee & Carter (1992) model specifies that a linear relationship between the natural log of
central mortality, age, and year:

ln(mx,t) = αx + βx · κt + εx,t (3)

where,

• mx,t: Central death rate at age x in year t

• αx: Average age of log-mortality

• βx: Sensitivity of the log-mortality to changes

• κt: Mortality index

• εx,t: Error term.

Singular Value Decomposition (SVD) is a mathematical technique for decomposing the
mortality data matrix into its principal components. This approach enables the identification
of key patterns and trends that might not be immediately apparent, thus enhancing the accuracy
and interpretability of the mortality forecasts and providing a more nuanced understanding of
mortality dynamics in Malaysia from 2000 to 2019 [15].

Parameters βx and κt are derived from the first left and right singular vectors:

κt = uts
ω∑

x=0

vx and βx =
vx∑ω
x=0 vx

(4)

where,

• vx is the first right singular vector of ages of the SVD

• ut is the first left singular vector of years

• s is the most prominent singular value

For multiple causes of death, the model is extended to:

ln(mcause j
x,t ) = αcause j

x + βcause j
x κcause j

t + εx,t (5)

where,

• mcause j
x,t is the central death rate with age x for a specific cause of death j in year t

• αcause j
x is the average age of log mortality for a specific cause of death j

• βcause j
x is the sensitivity of the log mortality to changes κcause j

t for a specific cause of
death j.
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The κcause j
t is the measure of mortality index for a specific cause of death j, and εx,t is

the error term. The mortality rates for aggregate and by causes of death can be forecasted by
predicting the values of κt. The κt is forecasted using an Auto-Regressive Integrated Moving
Average (ARIMA) model, specifically ARIMA (0,1,0), which corresponds to a random walk
with drift, is used. This specific ARIMA model can be expressed as:

κt = κt−1 + εt (6)

where,

• κt is the mortality index at the time t

• κt−1 is the mortality index at the time t− 1

• εt is a white noise error term with mean 0 and constant variance.

Using the forecasted values of the κt, the projected future mortality rates can be found using the
formula in (3) by reverting to the actual mortality. The log death rates need to be exponentiated
as:

mx,t = exp(αx + βx · κt + εx,t) (7)

and for cause-specific death is given as:

mcause j
x,t = exp(αcause j

x + βcause j
x κcause j

t + εx,t) (8)

The AIC and BIC compare models for aggregate and cause-specific data in analysing the
LC model fitting. These criteria help evaluate the trade-off between model complexity and
explanatory power, guiding the selection of the model. It can be defined as:

BIC = −2lnL+ klnN (9)

AIC = −2lnL+ 2k (10)

where,

• N : Number of samples

• L: Log-likelihood function

• k: Number of estimated parameters

All calculations were performed using R Studio software, utilising the demographic and
StMoMo packages.
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4 Results and Discussion

4.1 Aggregate and Causes of Mortality Analysis

The overall Malaysian mortality rates, as depicted in Figure 1, have generally increased steadily
over the years. The graph illustrates that the number of deaths per population unit has
increased incrementally. Specifically, by 2019, the mortality rate reached 0.00544, rising from
its initial value of 0.00434 in 2000.

Figure 1: Malaysian Overall Mortality Rates by Years.

While data is available from 2000 to 2019, only the years 2000, 2010, and 2019 are presented
in the figures. This selection was made to simplify the visualisation, allowing for a more explicit
comparison of key trends over time without compromising the overall insights provided by the
entire dataset. Specifically, Figure 2 shows the Malaysian mortality rates for 2000, 2010, and
2019, plotted against age. The mortality rates are very low at younger ages and increase sharply
with older ages, and these groups generally experience higher mortality rates due to age-related
health challenges. The trends in mortality for all three years show minimal difference for those
aged 65 and below. However, for ages 65 and above, the 2019 curve lies below the 2000 and
2010 curves, indicating mortality improvements for the older population as years pass. Notably,
the trend suggests that mortality rates may continue to increase.



Saiful Azril Ishak et al. / MATEMATIKA 41:1 (2025) 37–56 44

Figure 2: Malaysian Aggregate Mortality Rates for Years 2000, 2010, and 2019 by Age Groups.

Figure 3 displays the number of deaths by various causes over 2000, 2010, and 2019. Each
cause of death is represented by a colour-coded bar for each year. Notably, circulatory dis-
eases consistently contribute the highest number of deaths across all three years, followed in
frequency by respiratory and neoplasm diseases. The data also demonstrates a significant rise
in the number of deaths over the years across all causes, with particularly notable increases in
circulatory, respiratory, neoplasms, and other conditions. Furthermore, deaths due to diabetes
and septicaemia have also increased, reflecting persistent challenges in managing these condi-
tions. A critical observation is the increase in deaths due to old age over the years, which likely
indicates the growing proportion of elderly deaths within the population.

Figure 3: Number of Death by Causes for Years 2000, 2010, and 2019.

Figure 4 illustrates the average mortality rates across age groups in Malaysian populations
for various causes of death. Notably, all causes exhibit an upward trend in mortality rates
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with increasing age. Specifically, old age shows the most significant rise in mortality rates,
emphasising its prominence as a major cause of death among the elderly. Circulatory diseases
and neoplasms also demonstrate substantial mortality rate escalation, underscoring their critical
impact on older populations. Respiratory, infectious, and diabetes-related diseases show gradual
increases in mortality rates at older ages, though at lower levels compared to circulatory and
neoplasm diseases. Additionally, septicaemia displays a rising trend but remains relatively lower
than other major causes. Importantly, transport accidents and other external injuries have the
lowest mortality rates, with only slight increases in older age groups.

Figure 4: Malaysia Average Mortality Rates by Cause of Death.

4.2 Lee-Carter Parameter Estimation

The LC parameter estimation in Figure 5 provides insights into mortality trends across ages
and over time. In the LC model, the αx vs x parameter representing the baseline mortality
rate, increases with age, indicating that log mortality rates rise as individuals age. The βx vs x
parameter, showing age-specific sensitivity to overall mortality trends fluctuates but generally
remains above zero, suggesting that certain age groups are more susceptible to changes in
mortality trends, especially those between 40 and 80 years. The κt vs t parameter, tracking
the time-varying mortality index, shows a declining trend over the years. These parameters
provide a comprehensive view of mortality variations by age and temporal changes.
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Figure 5: Parameters for LC Fitted to Malaysia Population Data.

Figure 6 displays fitted mortality rates on a logarithmic scale across different ages. The
x-axis shows 0 to 90 years of age, and the y-axis represents the log death rate. Initially, the log
death rate is high at birth, sharply decreasing through early childhood and reaching a minimum
that reflects reduced neonatal risks. In contrast, low childhood mortality rates suggest effective
early healthcare interventions. A slight increase is observed in young adulthood, possibly due to
elevated mortality rates from transport accidents, followed by a steady rise through adulthood
with a significant increase post-age 60. The exponential rise in death rates from age 20 onwards
highlights the impact of age-related diseases. Consistent trends of fitted rates across various
cohorts indicate the consistency and robustness of these patterns.

Figure 6: LC Fitted Rates of Log Death Rate Against Age.

The LC parameter estimates for each cause of death, as shown in Figures 7, 8, and 9,
exhibit a high degree of consistency, particularly in the behaviour of αx against age (x). The αx
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parameter in the LC model represents the age-specific baseline mortality rate, capturing how the
underlying risk of mortality varies across different age groups and cause-specific mortality. The
estimates forαx generally increase with age across all diseases, reflecting the natural progression
of mortality risk with ageing. However, an exception is observed in non-disease-related causes
such as transport accidents and other external accidents, where theαx parameter begins to
decline at an earlier age of 20, possibly indicating a different risk pattern associated with these
sudden and accidental causes.

Similarly, the βx parameter estimation for each cause of death against age (x) shows an
upward trend curve. In the LC model, the βx parameter captures the age-specific response to
time-varying mortality trends, reflecting how different age groups are differentially affected by
changes in overall mortality. This indicates increasing sensitivity to mortality risks with age,
which is more pronounced in major diseases. For most diseases, the sensitivity rises signifi-
cantly at older ages, consistent with the growing prevalence and impact of age-related health
issues. However, exceptions include causes such as transport accidents, other external causes,
and diabetes, which exhibit distinct mortality patterns. For these causes, there is a notable
concentration of deaths occurring before age 60, which affects the overall parameter estimates
and highlights the unique demographic and epidemiological factors influencing mortality in
these categories.

In contrast, the κt parameter displays an upward movement against age (x) over time for
most causes, indicating a temporal increase in mortality rates associated with those conditions.
In the LC model, the κt parameter represents the time-varying component of mortality, cap-
turing overall temporal trends in mortality rates across different causes of death. Infectious
diseases showed a significant spike around 2018-2019, while causes such as circulatory diseases
and neoplasms steadily increased over the years. The consistent rise in κt values for key causes
such as circulatory diseases and neoplasms highlights their significant contribution to overall
mortality. However, exceptions are observed for septicaemia and old age senility. The down-
ward trend for septicaemia suggests improvements in mortality outcomes over time, likely due
to advancements in medical treatments and infection management. On the other hand, the pat-
tern for old age senility reflects its focus on deaths occurring exclusively at age 65 and above,
where trends are less affected by broader age groups and are more concentrated among the
elderly population. This analysis highlights the varying sensitivity of the LC model parameters
across different causes of death, emphasising the importance of age-specific and time-specific
factors in understanding mortality trends.
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Figure 7: LC Fitted for αx vs x.

Figure 8: LC Fitted for βx vs x.
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Figure 9: LC Fitted for κt vs t.

The AIC and BIC values are generated based on the LC model fitted for each cause of
death. Table 2 presents these values, which are used to compare the relative suitability of
the model across different causes. Lower AIC and BIC values indicate that the LC model
provides a better trade-off between complexity and explanatory adequacy for a particular cause.
Specifically, causes such as transport accidents, neoplasms, and infectious diseases have the
lowest AIC and BIC values (e.g., Transport Accidents: AIC = 3473.433, BIC = 3704.938),
suggesting that the LC model is relatively more appropriate for these causes compared to
others. In contrast, circulatory diseases, respiratory diseases, and diabetes have higher AIC
and BIC values, reflecting slightly more complex mortality trends. The mortality category has
the highest AIC (10278.3) and BIC (10509.81) values, indicating more complexity in modelling
overall mortality trends. Likewise, causes such as old age senility and all other diseases have
notably high AIC (7324.606, 7683.637) and BIC (7556.111, 7915.142) values, pointing to more
significant variability or irregular patterns in their mortality trends.
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Table 2: AIC and BIC for LC Model Fitted.

Cause of Death AIC BIC
Circulatory 6044.528 6276.033
Respiratory 4661.791 4893.296
Neoplasms 3786.761 4018.266
Infection Diseases 3796.975 4028.48
Septicaemia 3964.332 4195.837
Diabetes 5034.6877 5266.192
Transport Accidents 3473.4337 3704.938
All Other Diseases 7683.637 7915.142
Other External Injuries 3789.3277 4020.832
Old Age Senility 7324.606 7556.111
Aggregate 10278.3 10509.81

4.3 Aggregate Death and Causes of Death Mortality Forecasting

The LC parameter estimation analysis was applied to project mortality rates from 2000 to 2019,
examining overall and cause-specific trends. By aggregating mortality rates across different
causes of death, the analysis provides a comprehensive view of projected mortality patterns.
The forecasted mortality rates for each cause of death are summed together and serve as the
basis for comparing with forecasted aggregate mortality rates. Figure 10 presents the forecasted
aggregate mortality rates for different age groups for 2020, 2030, and 2039. The pattern suggests
a general decline in mortality rates over time, particularly for older individuals. However, for
the older age groups (60+ years), the mortality rates increase more steeply with age, showing
noticeable differences between the years. The mortality rates are highest in 2020, followed by
2030, and then 2039, reflecting a projected reduction in mortality rates over time for older age
groups.
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Figure 10: Forecasted Aggregate Mortality Rates.

Figure 11 displays the forecasted sum of each cause of death mortality rate by the different
age groups for the selected years of 2020, 2030, and 2039. At younger ages, between ages 0
and 40, the mortality rates are very low and show stable mortality rates across all three years.
For people in the age range of 40 to 60, mortality rates begin to rise, reflecting the onset of
age-related risks and causes of death. The three lines (2020, 2030, 2039) remain relatively
close together, indicating slight variation in the forecasted mortality rates for this age group.
Mortality rates rise sharply after age 60, with the steepest increases beyond age 70. These rising
mortality rates likely reflect the cumulative impact of chronic diseases, reduced physiological
resilience, and increased vulnerability to complex health conditions that typically emerge in
later life. The difference between years becomes more pronounced as people get older, with
higher mortality forecasted for 2030 and 2039. This suggests that improvements in healthcare,
technology, or preventive measures will have the most impact on older populations.
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Figure 11: Forecasted Mortality Rates by Causes of Death.

A deeper analysis shows that the forecasted values of the aggregate mortality rates are
slightly lower than those calculated by summating all causes of death. These discrepancies may
arise from variations in data collection methods, differences in how specific causes of death are
categorised, or the complex interactions between multiple health conditions in older popula-
tions. These findings are in line with Wilmoth (1994). These findings align with Wilmoth’s
(1994) seminal work, highlighting the nuanced differences between aggregate and cause-specific
mortality forecasting approaches. The cause-specific death forecasts produce more pessimistic
mortality rates as compared to aggregate deaths. The gap between the forecasted data is further
examined closely in Figure 12. The graph illustrates the average of 20-year forecasted mortality
rates by each age group for aggregate and cause-specific deaths from 2020 until 2039. Average
differences between the aggregate forecasted rates and the summation of all causes forecasted
rates are presented. As can be seen from the graph, the differences are becoming more apparent,
specifically for the age group 60 and above. This suggests that applying aggregate forecasted
mortality rates might underestimate the risk of death.
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Figure 12: Comparison Between Average Aggregate Against Average Sum of Causes of Mor-
tality Rates.

The calculated mortality difference between the average forecasted aggregate and the aver-
age forecasted sum of causes of death in Figure 13 for selected age groups shows there is no
difference for age groups between 0 and 60. However, the difference becomes noticeable for ages
more than 60 years.

Figure 13: Differences Between Average Aggregate and Average Sum of Causes of Mortality
Rates.

5 Conclusion

The mortality forecasts by cause of death are seen to be more pessimistic than by the aggregate
mortality. Specifically, the forecast mortality rates by cause of death are slightly higher than the
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aggregate mortality rates. This pessimism stems from the independence factor observed in each
cause of death, which has a hidden component unique to each cause. Notably, the forecasting
period affects the dispersion between cause-specific and aggregate mortality. As shown in Figure
12, for the short-term forecast, the cause of death trend is similar to the aggregate mortality
trend. Conversely, the gap between both forecasts becomes more expansive in the mortality
forecast 2039. Furthermore, the main cause of death attributes in any age group results in
higher mortality forecasts by cause of death compared to aggregate forecasts. The proportion
of the cause of death in the respective age groups also influences this outcome. If the cause of
death for a certain age group is significant, then the mortality forecast by cause of death shall
yield higher values for that age group. Importantly, this result is also aligned with existing
literature [10], [16], and [17].

It is also worth noting that the differences between cause-specific and aggregate mortality
forecast values are significant at older ages. The forecast trends for cause-specific and aggregate
mortality begin to diverge notably in the age groups above 60 years. This divergence may be
due to the increased sensitivity of causes of death at older ages, where distinct factors influence
the mortality trend. Specifically, the mortality trend becomes more dynamic when reflecting
cause-specific mortality at older ages. Generally, this suggests that any proportional changes
in causes of death, forecast characteristics, and age groups will lead to discrepancies between
cause-specific and aggregate mortality forecasts. However, precise analysis and evidence on this
are essential.

The LC model utilised in this analysis may present certain limitations, mainly due to its
assumption of linearity in age patterns. This assumption may fail to account for the non-
linearities and complex behaviours exhibited by the data. Further refinements are necessary to
enhance the reliability of forecasts and provide deeper insights into specific mortality trends.
This could involve revisiting and redefining the cause-of-death categories to improve model
accuracy. Additionally, exploring extensions of the LC model, such as the Cairns-Blake-Dowd
(CBD) model or cohort-based frameworks, may offer a more robust approach to capturing intri-
cate mortality trends. These extensions are better suited to accommodate non-linear patterns
and cohort-specific dynamics, potentially addressing the limitations of the standard LC model.
Moreover, future research could explore alternative ARIMA specifications for forecasting dif-
ferent causes of death. Since mortality trends may vary significantly across causes, tailoring
the ARIMA model parameters to capture the dynamics better could improve cause-specific
mortality forecasts’ accuracy.

Finally, this study is significant because it highlights the necessity for accurate, cause-specific
mortality forecasts to enhance public health strategies and resource allocation. By being aware
of these subtle disparities, policymakers and healthcare providers can more effectively target
initiatives to lower death rates and better prepare for future healthcare demands. This research
can inform targeted public health interventions, healthcare resource allocation, and long-term
strategic planning by providing nuanced insights into mortality trends.

Acknowledgements

The authors gratefully acknowledge the research grant awarded by the Research Management
Centre (RMC), Universiti Teknologi MARA (UiTM) through the Graduate Preparation and
Mentoring Long PhD (GPM LPhD) program under project code 600-RMC/GPM LPHD 5/3



Saiful Azril Ishak et al. / MATEMATIKA 41:1 (2025) 37–56 55

(073/2023). This research would not have been possible without the invaluable support from
the management, lecturers, staff, and students of the College of Computing, Informatics, and
Mathematics at UiTM, Shah Alam.

References

[1] Kamaruddin, H. S., and Ismail, N. Forecasting selected specific age mortality rate of
Malaysia by using Lee-Carter model. Journal of Physics: Conference Series. 2018. 974(1).

[2] Hamid, T. A. Population Ageing in Malaysia: A Mosaic of Issues, Challenges and
Prospects. Penerbit Universiti Putra Malaysia. 2015.

[3] Malaysian Healthcare Performance Unit. Malaysian Health at a Glance: 2018. Ministry of
Health Malaysia, Putrajaya. 2018.

[4] World Health Organization (WHO). Malaysia Country Overview. World Health Organi-
zation. 2024. https://icd.who.int/

[5] Ford, E. S., Ajani, U. A., Croft, J. B., Critchley, J. A., Labarthe, D. R., Kottke, T. E.,
Giles, W. H., and Capewell, S. Explaining the Decrease in U.S. Deaths from Coronary
Disease, 1980-2000. New England Journal of Medicine. 2007. 356(23): 2388-2398.

[6] Beltran-Sanchez, H., Preston, S. H., and Canudas-Romo, V. An integrated approach to
cause-of-death analysis: cause-deleted life tables and decompositions of life expectancy.
Demographic Research. 2008. 19: 1323.

[7] Ashley, T., Wylde, D., and Bahna-Nolan, M. Recent Trends in Mortality by Cause of
Death. Underwriting Issues & Innovation Seminar. 2019.

[8] Alai, D. H., Arnold (-Gaille), S., and Sherris, M. Modelling cause-of-death mortality and
the impact of cause-elimination. Annals of Actuarial Science. 2015. 9(1): 167-186.

[9] Arnold, S., and Sherris, M. Causes-of-Death Mortality: What Do We Know on Their
Dependence? North American Actuarial Journal. 2015. 19(2): 116-128.

[10] Boumezoued, A., Klein, A., Titon, E., Coulomb, J.-B., and Louvet, D. Modeling and
Forecasting Cause-of- Death Mortality. Society of Actuaries. Technical Report. 2019.

[11] Foreman, K. J., Marquez, A. N., Dolgert, K., Fukutaki, N., and Fullman. Forecasting
Life Expectancy, Years of Life Lost, and All-Cause and Cause-Specific Mortality for 250
Causes of Death: Reference and Alternative Scenarios for 2016-40 for 195 Countries and
Territories. The Lancet, 392. 2018. 10159:2052-2090.

[12] Cairns, A. J. G., Kallestrup-Lamb, M., Rosenskjold, C., Blake, D., and Dowd, K. Modelling
socio-economic differences in mortality using a new affluence index. In ASTIN Bulletin.
2019. Vol. 49, Issue 3: 555-590.

https://icd.who.int/


Saiful Azril Ishak et al. / MATEMATIKA 41:1 (2025) 37–56 56

[13] Dimitrova, D. S., Haberman, S., and Kaishev, V. K. Dependent competing risks: Cause
elimination and its impact on survival. Insurance: Mathematics and Economics. 2013.
53(2): 464-477.

[14] Shang, H. L., and Haberman, S. Forecasting multiple functional time series in a group
structure: an application to mortality. ASTIN Bulletin. 2020. 50(2): 357-379.

[15] Lee, R. D., and Carter, L. R. Modeling and forecasting U.S. mortality. Journal of the
American Statistical Association. 1992. 87(419): 659-671.

[16] Caselli, G., Vallin, J., and Marsili, M. How Useful Are the Causes of Death When Extrap-
olating Mortality Trends. An Update. In T. Bengtsson and N. Keilman (Eds.), Old and
New Perspectives on Mortality Forecasting. Springer International Publishing. 2019.

[17] Wilmoth, J. R. Are mortality projections always more pessimistic when disaggregated by
cause of death? Mathematical Population Studies. 1995. 5(4): 293-319.

[18] Niu, G., and Melenberg, B. Trends in Mortality Decrease and Economic Growth. Demog-
raphy. 2014. 51(5): 1755-1773.

[19] Lyu, P., de Waegenaere, A., and Melenberg, B. A Multi-population Approach to Forecast-
ing All-Cause Mortality Using Cause-of-Death Mortality Data. North American Actuarial
Journal. 2020. 0(0): 1-36.

[20] Shair, S.N. Three essays on Malaysian population ageing. Ph.D. Thesis. Macquarie Uni-
versity. 2017.

[21] Oeppen, J. Coherent forecasting of multiple-decrement life tables: a test using Japanese
cause of death data. Paper presented at the European Population Conference 2008,
Barcelona, Spain, July 9-12, 2008.

[22] Carriere, J. F. Dependent Decrement Theory. Society of Actuaries. 1994. Vol 46: 45-74.

[23] Enchev, V., Kleinow, T., and Cairns, A. J. G. Multi-population mortality models: fitting,
forecasting and comparisons. Scandinavian Actuarial Journal. 2017. (4): 319-342.

[24] Hunt, A., and Blake, D. Identifiability in age/period/cohort mortality models. Annals of
Actuarial Science. 2020. 14(2): 500-536.

[25] Hyndman, R. J., Ahmed, R. A., Athanasopoulos, G., and Shang, H. L. Optimal combi-
nation forecasts for hierarchical time series. Computational Statistics and Data Analysis.
2011. 55(9): 2579-2589.

[26] Center for Disease Control and Prevention. International Classification of Diseases 10th
Revision (ICD-10). CDC National Center for Chronic Disease Prevention and Health Pro-
motion. 2000. 10(10), 4.

[27] World Health Organization (WHO). The ICD-10 International Classification of Diseases
(ICD). World Health Organization. 2023. https://icd.who.int/

[28] Department of Statistics Malaysia. https://www.dosm.gov.my/

https://icd.who.int/
https://www.dosm.gov.my/

	Introduction
	Data
	Methods
	Death Data Calculation
	Lee Carter Model

	Results and Discussion
	Aggregate and Causes of Mortality Analysis
	Lee-Carter Parameter Estimation
	Aggregate Death and Causes of Death Mortality Forecasting

	Conclusion

