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Abstract To combat multicollinearity problem in linear regression model, a biased esti-
mator named as the k-almost unbiased regression estimator (KAURE) was investigated in
this study. KAURE is associated with the biasing parameter, and the mean squared error
(MSE) of KAURE is sensitive to changes in the biasing parameter. Theoretical and nu-
merical comparisons in the previous research showed that KAURE outperformed ordinary
least squares estimator (OLSE) in terms of MSE when the biasing parameter was within
a specific range. However, KAURE is not unique within the specified range of the biasing
parameter, which complicates its practical use in linear regression modeling. Hence, there
is a need to find an optimal biasing parameter for KAURE to enable practitioners across
various fields to effectively use KAURE. In this paper, some new methods to estimate the
optimal biasing parameter for KAURE that minimizes its MSE were proposed. Exten-
sive Monte Carlo simulations were conducted to evaluate the performance of the proposed
methods based on the average mean squared error (AMSE) criterion by varying the values
of different factors (sample size, error standard deviation and degree of multicollinearity).
The simulation results were confirmed by the empirical application. Thus, the proposed
optimal biasing parameter provides a novel approach to formulating KAURE, enhancing
its effectiveness as a practical alternative to OLSE for addressing multicollinearity issues
in linear regression models.

Keywords Multicollinearity; Biasing parameter; Mean squared error; Linear regression
model.

Mathematics Subject Classification 62F10.

1 Introduction

Linear regression is a statistical method that has various applications across different fields.
Some notable areas where linear regression is commonly used are environmental science, medicine
and healthcare, engineering, sports analytics, economics and finance. The most widely utilized
estimation technique in regression analysis is the ordinary least squares estimator (OLSE).
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While OLSE is an unbiased estimator in the regression model, its efficacy diminishes in the
presence of multicollinearity in the data [1–3]. Multicollinearity is a widespread challenge with
notable implications across diverse fields, especially during the application of linear regression
analysis.

According to Belsley [4], multicollinearity is an inherent imperfection in data, stemming
from uncontrollable processes within the data-generating mechanism. This phenomenon man-
ifests when two or more independent variables in a regression model exhibit high correlation.
Hence, multicollinearity arises when there is a nearly exact relationship between two or more
independent variables in a dataset. The accuracy of the OLSE is affected by its large variance
when multicollinearity is present in the data. In practical terms, multicollinearity can result in
elevated standard errors of the coefficients. The consequence of having large variance extends
to the inflation of confidence interval widths for the parameters in the regression model [5].
Furthermore, multicollinearity can misguide significance tests, erroneously suggesting that cer-
tain crucial variables are unnecessary in the model. As a result, coefficients may be deemed
statistically insignificant even when the variables hold theoretical importance [6]. Beyond this,
multicollinearity causes a reduction of statistical power of statistical tests. In studies where the
primary focus lies in parameter estimation and the identification of important variables in the
process, the impact of multicollinearity emerges as a serious concern.

Suppose Y is an n× 1 vector of standardized dependent variables, X is an n× p matrix of
standardized independent variables, β is a p× 1 vector of parameters, and ε is an n× 1 vector
of errors such that ε ∼ N (0, σ2In) and In is an identity matrix of dimension n. Then, we may
use the matrix form Y = Xβ + ε, to represent a linear regression model with p standardized
independent variables and a standardized dependent variable, y.

Let the matrix Λ = diag(λ1, λ2, ..., λp) be a p× p diagonal matrix whose diagonal elements
are the eigenvalues of X′X where λmax = λ1 ≥ λ2 ≥ ... ≥ λp = λmin > 0. Let the matrix
Q = [q1,q2, ...,qp] be a p × p orthonormal matrix consisting of the p eigenvectors of X′X.
Here, the matrix Q and Λ satisfy Q′X′XQ = Λ and Q′Q = QQ′ = Ip, where Ip is a p × p
identity matrix.

The linear regression model Y = Xβ + ε can be transformed into a canonical form Y =
Za + ε, where Z = XQ is an n × p matrix, a = Q′β is a p × 1 vector of parameters, and
Z′Z = Λ.

Let α̂ be the OLSE of parameter α. The OLSE is given by

α̂ = (Z′Z)−1Z′Y. (1)

OLSE is an unbiased estimator that has no bias. However, the variance of OLSE is unac-
ceptably large when multicollinearity is present in the regression model. Therefore, the accuracy
of the parameter estimates by using OLSE is affected. Hence, biased estimators are introduced
as an alternative to the OLSE. Although there is an amount of bias in biased estimators, its
smaller variance would result in a smaller mean squared error (MSE) compared to the MSE of
OLSE. As a result, the accuracy of parameter estimates by using biased estimators is better.
There are many biased estimators that have been introduced such as almost unbiased modified
ridge-type estimator [7], modified two-parameter regression estimator [8], new Ridge-type es-
timator [9] modified Ridgetype estimator [2], almost unbiased Ridge regression estimator [10]
Liu-type estimator [11], Liu estimator [12], restricted Ridge regression estimator [13], Principal
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component regression estimator [14–17], iteration estimator [18], Ridge regression estimator [19]
and Shrunken estimator [20].

A biased estimator named as the k-almost unbiased regression estimator (KAURE) was
developed in [1]. The KAURE of parameter α is given by

âKAURE =
[
I− (Z′Z + kI)−2(k − 1)2

]
â (2)

Let HKAURE = I− (Λ + kI)−2(k − 1)2. The equations of the estimator KAURE as well as
its bias, variance-covariance, and MSE of KAURE are given in Equations (3) to (7).

âKAURE = HKAUREâ (3)

bias(âKAURE) = (HKAURE − I)a (4)

cov(âKAURE) = HKAUREΛ−1H′KAUREσ
2 (5)

MSE(α̂KAURE) = HKAUREΛ−1H′KAUREσ
2 +α′(HKAURE − I)′(HKAURE − I)α (6)

= σ2

p∑
j=1

1

λj

[
1−

(
k − 1

λj + k

)2
]2

+

p∑
j=1

α2
j

(
k − 1

λj + k

)4

(7)

KAURE is associated with the biasing parameter k, and it has been observed that the
MSE of KAURE is sensitive to changes in k. The theoretical and numerical comparisons in [1]
showed that KAURE outperforms OLSE in terms of MSE when k is within a specific range.
However, KAURE is not unique within the specified range of k, making its practical application
in linear regression modeling challenging. Therefore, it is essential to identify an optimal biasing
parameter for KAURE, allowing practitioners in various fields to effectively utilize it in linear
regression models with multicollinear data. This paper expands on the research presented
in [1]. The objective of this paper is to propose and evaluate methods for estimating the
optimal biasing parameter for KAURE, aimed at minimizing its MSE.

The rest of the paper is organized as follows. The methodology for estimating the optimal
biasing parameter for KAURE is detailed in Section 2. Section 3 details the simulation design
and evaluates the performance of the proposed methods. Section 4 presents a numerical example
to illustrate the application of the proposed optimal biasing parameter for KAURE. Some
industrial applications of linear regression are discussed Section 5. Section 6 concludes the
work.

2 The Proposed Optimal Biasing Parameter for KAURE

Biasing parameters are crucial for formulating a biased estimator and determining its MSE.
The estimation of biasing parameters for biased estimators is fundamentally linked to the min-
imization of the MSE of estimator to enhance estimator accuracy. In the case of Generalized
Ridge regression estimator (GRRE), α̂k = (Z′Z + K)−1 Z′Y that was proposed by Hoerl and
Kennard [19]. Here, K = diag (k1, k2, . . . , kp) consists of biasing parameters named ridge pa-

rameters. Hoerl and Kennard [19] proposed kj =
σ̂2

α̂2
j

to estimate the biasing parameter in

GRRE. Throughout literature, many researchers have suggested various methods in estimating
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ridge parameters [5,21–29]. For instance, Kibria [25] proposed the arithmetic mean of kj =
σ̂2

α̂2
j

and median of kj =
σ̂2

α̂2
j

to estimate ridge parameters. Dorugade [27] utilized the concepts of

arithmetic mean, geometric mean, harmonic mean, and median in determining the value of
the ridge parameter. Some studies suggested including the largest eigenvalue λmax of X′X in
estimating the biasing parameter [5, 26, 27]. Jacob and Varadharajan [29] proposed the robust
variance inflation factor and applied it in ridge parameter estimation.

Hoerl et al. [19] stated that the biasing parameter should be selected such that the MSE of
the biased estimator is smaller than that of the OLSE. Therefore, the key to estimating biasing
parameter for biased estimators lies in employing search methods that minimize the MSE of
the estimator. This approach is supported by a substantial body of research demonstrating
that effective selection of biasing parameters can lead to improved estimator performance [28].

The methods used in previous studies on estimating biasing parameters for other estimators
were adopted as a fundamental guideline to estimate biasing parameter for KAURE in this
study. In this paper, the optimal biasing parameter for KAURE was developed based on the
approach of minimizing MSE of KAURE.

Let uj =
k − 1

λj + k
. The MSE (α̂) in Equation (7) can be expressed

MSE(α̂KAURE) = σ2

p∑
j=1

1

λj

(
1− u2j

)2
+

p∑
j=1

α2
ju

4
j (8)

Hence, we obtain the following derivatives.

duj
dk

=
λj + 1

(λj + k)2
(9)

d [MSE(α̂KAURE)]

duj
= uj

[(
4σ2 + 4λjα

2
j

λj

)
u2j −

4σ2

λj

]
d [MSE(α̂KAURE)]

dk
=
d [MSE(α̂KAURE)]

duj
· duj
dk

(10)

= uj

[(
4σ2 + 4λjα

2
j

λj

)
u2j −

4σ2

λj

]
· λj + 1

(λj + k)2
(11)

The value of k that minimizes MSE of KAURE is obtained by solving
d [MSE(α̂KAURE)]

dk
=
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0 as below. (
4σ2 + 4λjα

2
j

λj

)
u2j −

4σ2

λj
= 0

uj =

√
σ2

σ2 + λjα2
j

k =

1 + λj

√
σ2

σ2 + λjα2
j

1−
√

σ2

σ2 + λjα2
j

(12)

Adopting algorithms outlined in [25,27], we propose the following methods (kA, kM and kG)
to estimate the optimal biasing parameter for KAURE.

kA = Arithmetic Mean [fj] , (13)

kM = Median [fj] , (14)

kG = Geometric Mean [fj] , (15)

where fj =

1 + λmax

√
σ2

σ2 + λmaxα2
j

1−
√

σ2

σ2 + λmaxα2
j

and j = 1, 2, · · · , p.

3 Monte Carlo Simulation Study

In this section, Monte Carlo simulation was conducted to evaluate the performance of the
proposed methods to estimate the optimal biasing parameter for KAURE. The simulation
design was first explained in Section 3.1. The simulation results were presented and discussed
in Section 3.2. Python programming was used to conduct the simulation.

3.1 Simulation Design

The explanatory variables are generated following the methods of Xu & Yang [31] and Liu [11].
The formulation for the explanatory variables is defined as

x∗ij =
(
1− ρ2

) 1
2 uij + ρui,p+1, (16)

where uij are independent pseudo-random numbers that follow standard normal distribution,
i = 1, 2, ..., n and j = 1, 2, ..., p.

In this simulation, we consider p = 3. Hence, the explanatory variables are generated using
the formulation below

x∗ij =
(
1− ρ2

) 1
2 uij + ρui4, (17)
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where i = 1, 2, ..., n and j = 1, 2, 3.
The dependent variable is determined by

y∗i = β1x
∗
i1 + β2x

∗
i2 + β3x

∗
i3 + εi, i = 1, 2, ..., n, (18)

where the error εi are independent pseudo-random numbers that follow normal distribution
with mean zero and variance σ2.

In this simulation, we choose (β1, β2, β3)
′ = (1, 2, 3)′.

Standardization is done on dependent variable (y∗i ) and explanatory variables (x∗i1, x
∗
i2 and

x∗i3) using the Equation (19) and Equation (20), respectively. The standardized dependent
variable is denoted by yi and the standardized independent variables are denoted by xij, where
i = 1, 2, ..., n and j = 1, 2, 3.

yi =

y∗i −
1

n

n∑
i=1

y∗i√
n∑

i=1

(
y∗i −

1

n

n∑
i=1

y∗i

)2
, (19)

xij =

x∗ij −
1

n

n∑
i=1

x∗ij√
n∑

i=1

(
x∗ij −

1

n

n∑
i=1

x∗ij

)2
. (20)

The matrix X is an n × 3 matrix of standardized independent variables. The vector Y is
an n× 1 vector of standardized dependent variable. The linear regression model is represented
by Y = Xβ + ε. The matrix Λ is a 3 × 3 diagonal matrix in which the diagonal elements
are the eigenvalues of X′X. The matrix Q is a 3 × 3 orthonormal matrix consisting of the
eigenvectors of X′X. The linear regression model Y = Xβ + ε is transformed into a canonical
form Y = Zα+ ε, where Z = XQ.

The OLSE of parameter α is defined by α̂ in Equation (1). Its MSE is given by

MSE(α̂OLSE) = σ̂2

p∑
j=1

1

λj
(21)

The settings of the simulation are as follows;

• n = 50, 100

• ρ = 0.9, 0.95, 0.99

• σ = 5, 8, 10

• k = kA, kM , kG

For n = 50, nine sets of simulation are performed by varying ρ = 0.9, 0.95, 0.99 and σ =
5, 8, 10. For n = 100, another nine sets of simulation are performed by varying those values
of ρ and σ. The simulation is done 1000 times by generating new pseudo-random numbers for
each of these eighteen simulation sets.
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For each replicate in the simulation, the MSE of OLSE and the MSE of KAURE corre-
sponding to the proposed methods of the biasing parameter (kA, kM and kG) for KAURE, are
obtained. In this study, the average mean squared error of the regression estimators is used
as the performance evaluation criteria. Average mean squared error is abbreviated as AMSE.
The equations for AMSE of KAURE, AMSE of OLSE and their Ratio, are defined in Equation
(22), Equation (23) and Equation (24), respectively.

AMSE(KAURE) =
1

1000

1000∑
l=1

[MSE(α̂KAURE)l] , (22)

AMSE(OLSE) =
1

1000

1000∑
l=1

[MSE(α̂OLSE)l] , (23)

Ratio =
AMSE(OLSE)

AMSE(KAURE)
, (24)

where MSE(α̂KAURE)l denotes the MSE of KAURE at the l-th simulation and MSE(α̂OLSE)l
denotes the MSE of OLSE at the l-th simulation.

3.2 Simulation Results and Discussion

For n = 50, nine sets of simulation were performed with the parameters as follows:

Set 1: (n = 50, ρ = 0.90, σ = 5), Set 2: (n = 50, ρ = 0.90, σ = 8),

Set 3: (n = 50, ρ = 0.90, σ = 10), Set 4: (n = 50, ρ = 0.95, σ = 5),

Set 5: (n = 50, ρ = 0.95, σ = 8), Set 6: (n = 50, ρ = 0.95, σ = 10),

Set 7: (n = 50, ρ = 0.99, σ = 5), Set 8: (n = 50, ρ = 0.99, σ = 8),

Set 9: (n = 50, ρ = 0.99, σ = 10).

Table 1 summarizes the simulated results of AMSE(KAURE), AMSE(OLSE) and the ratio
of AMSE(OLSE) over AMSE(KAURE) for simulation Set 1 to Set 9.
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Table 1: Monte Carlo simulation results for n = 50

Set ρ σ k AMSE(KAURE) AMSE(OLSE) Ratio

1 0.90 5 kA 0.089482 0.103548 1.157

kM 0.070790 0.103548 1.463

kG 0.070864 0.103548 1.461

2 0.90 8 kA 0.105057 0.158491 1.509

kM 0.092525 0.158491 1.713

kG 0.091018 0.158491 1.741

3 0.90 10 kA 0.110857 0.176610 1.593

kM 0.099909 0.176610 1.768

kG 0.097515 0.176610 1.811

4 0.95 5 kA 0.138268 0.190414 1.377

kM 0.128205 0.190414 1.485

kG 0.120650 0.190414 1.578

5 0.95 8 kA 0.177140 0.294120 1.660

kM 0.175498 0.294120 1.676

kG 0.164095 0.294120 1.792

6 0.95 10 kA 0.189815 0.337265 1.777

kM 0.191437 0.337265 1.762

kG 0.180205 0.337265 1.872

7 0.99 5 kA 0.633789 0.895387 1.413

kM 0.683643 0.895387 1.310

kG 0.633229 0.895387 1.414

8 0.99 8 kA 0.937401 1.412004 1.506

kM 0.979219 1.412004 1.442

kG 0.928967 1.412004 1.520

9 0.99 10 kA 0.980109 1.606567 1.639

kM 1.044154 1.606567 1.539

kG 0.984066 1.606567 1.633

For n = 100, another nine sets of simulation were performed with the parameters as follows:

Set 10: (n = 100, ρ = 0.90, σ = 5), Set 11: (n = 100, ρ = 0.90, σ = 8),

Set 12: (n = 100, ρ = 0.90, σ = 10), Set 13: (n = 100, ρ = 0.95, σ = 5),

Set 14: (n = 100, ρ = 0.95, σ = 8), Set 15: (n = 100, ρ = 0.95, σ = 10),

Set 16: (n = 100, ρ = 0.99, σ = 5), Set 17: (n = 100, ρ = 0.99, σ = 8),

Set 18: (n = 100, ρ = 0.99, σ = 10).
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The simulated results of AMSE(KAURE), AMSE(OLSE) and the ratio of AMSE(OLSE)
over AMSE(KAURE) for simulation Set 10 to Set 18 are summarized in Table 2.

Table 2: Monte Carlo simulation results for n = 100

Set ρ σ k AMSE(KAURE) AMSE(OLSE) Ratio

10 0.90 5 k̂A 0.061378 0.049692 0.810

k̂M 0.037985 0.049692 1.308

k̂G 0.042391 0.049692 1.172

11 0.90 8 k̂A 0.062303 0.075989 1.220

k̂M 0.050377 0.075989 1.508

k̂G 0.050247 0.075989 1.512

12 0.90 10 k̂A 0.061603 0.085305 1.385

k̂M 0.052384 0.085305 1.628

k̂G 0.051793 0.085305 1.647

13 0.95 5 k̂A 0.030050 0.091829 1.147

k̂M 0.066792 0.091829 1.375

k̂G 0.065739 0.091829 1.397

14 0.95 8 k̂A 0.098781 0.140830 1.426

k̂M 0.093011 0.140830 1.514

k̂G 0.087280 0.140830 1.614

15 0.95 10 k̂A 0.098341 0.161385 1.641

k̂M 0.100916 0.161385 1.599

k̂G 0.093006 0.161385 1.735

16 0.99 5 k̂A 0.319133 0.433916 1.360

k̂M 0.346713 0.433916 1.252

k̂G 0.314766 0.433916 1.379

17 0.99 8 k̂A 0.464602 0.671173 1.446

k̂M 0.500986 0.671173 1.341

k̂G 0.461844 0.671173 1.454

18 0.99 10 k̂A 0.506189 0.770699 1.523

k̂M 0.548304 0.770699 1.406

k̂G 0.507490 0.770699 1.519

Figure 1 to Figure 6 present the graphs of AMSE(KAURE) and AMSE(OLSE) for different
values of ρ based on the simulation results when n = 50 and σ = 5 (Figure 1), n = 50 and
σ = 8 (Figure 2), n = 50 and σ = 10 (Figure 3), n = 100 and σ = 5 (Figure 4), n = 100
and σ = 8 (Figure 5), n = 100 and σ = 10 (Figure 6). It is observed that AMSE across
all regression estimators tends to increase when ρ increases. The explanatory variables in the
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simulation sets are generated using the Equation (17). A higher value of ρ in the Equation (17)
implies an increase in the degree of multicollinearity. For fixed values of n and σ, the AMSE of
OLSE and the AMSE of KAURE for all biasing parameters (kA, kM and kG) display a notable
increasing trend when the values of ρ increase from 0.90 to 0.99. This finding is consistent with
other studies [2–3], which indicate that multicollinearity often reduces estimation accuracy of
regression estimators.

Figure 1: For n = 50 and σ = 5 Figure 2: For n = 50 and σ = 8

Figure 3: For n = 50 and σ = 10
Figure 4: For n = 100 and σ = 5

In the comparison of regression estimator performance, the simulation results show that
KAURE outperformed OLSE in terms of AMSE for all biasing parameters (kA, kM and kG)
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Figure 5: For n = 100 and σ = 8 Figure 6: For n = 100 and σ = 10

in seventeen out of eighteen simulation sets, consistently achieving lower AMSE values than
OLSE.

Based on the simulated results, Figure 7 to Figure 12 present the graphs of AMSE(KAURE)
and AMSE(OLSE) for different values of σ when n = 50 and ρ = 0.90 (Figure 7), n = 50 and
ρ = 0.95 (Figure 8), n = 50 and ρ = 0.99 (Figure 9), n = 100 and ρ = 0.90 (Figure 10), n = 100
and ρ = 0.95 (Figure 11), n = 100 and ρ = 0.99 (Figure 12). It is observed that there is an
increase in the AMSE across all regression estimators when σ increases. For fixed values of n
and ρ, the AMSE of OLSE and the AMSE of KAURE for all biasing parameters (k4, kM and
kG) show an increasing trend when the values of σ increase from 5 to 10. This indicates that
lower data variability leads to better estimation accuracy across all estimators. This finding is
consistent with the study in Jegede et al. [7].

Figure 7: For n = 50 and ρ = 0.90 Figure 8: For n = 50 and ρ = 0.95
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Figure 9: For n = 50 and ρ = 0.99 Figure 10: For n = 100 and ρ = 0.90

Figure 11: For n = 100 and ρ = 0.95 Figure 12: For n = 100 and ρ = 0.99

Comparing the performance of the regression estimators, the simulation results showed that
KAURE corresponding to all biasing parameters (k4, kM and kG) outperformed OLSE in terms
of AMSE in 17 out of a total of 18 simulation sets. In the particular simulation set (n = 100,
ρ = 0.90, σ = 5), OLSE outperformed KAURE corresponding to the biasing parameter k4.
However, the performance of KAURE associated with the biasing parameters kG and kM were
better than OLSE in terms of AMSE (Figure 10).

The ratio of AMSE(OLSE) over AMSE(KAURE) was examined in order to compare the
performance of the proposed methods (k4, kM and kG) to estimate the biasing parameter
for KAURE. The method that yields the highest ratio is identified as the optimal choice for
estimating the biasing parameter for KAURE.

Figure 13 presents the simulated results of the Ratio =
AMSE(OLSE)

AMSE(KAURE)
corresponding to

various biasing parameters for KAURE across all eighteen simulation sets. The results indicated
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that the AMSE(KAURE) for the biasing parameter kG achieved the highest ratio in 14 of the
simulation sets. In contrast, k4 produced the highest ratio in 2 simulation sets, while kM also
had the highest ratio in 2 simulation sets.

Therefore, it is recommended that kG = Geometric Mean [fj] in Equation (15) be chosen as
the optimal biasing parameter for KAURE.

(a) (b)

Figure 13: Figure 13: Ratio of AMSE(OLSE) over AMSE(KAURE) corresponding to the
proposed methods (k4, kM , and kG) to estimate the biasing parameter for KAURE when (a)
n = 50 (simulation Set 1 to Set 9) and (b) n = 100 (simulation Set 10 to Set 18).

4 Numerical Example

To empirically apply the proposed methods to estimate the optimal biasing parameter for
KAURE, we used the Portland cement data that was originally from Woods et al. [32]. This
dataset has since been widely analyzed by researchers such as [1,2,9,11,33]. The linear regres-
sion model for the data includes one dependent variable (heat evolved after 180 days of curing)
and p = 4 independent variables (Tricalcium aluminate, Tricalcium silicate, Tetracalcium alu-
minoferrite, and β-dicalcium silicate).

Standardization was done on the dependent variable and independent variables. The canon-
ical form of the linear regression model was represented by Y = Zα + ε. From this dataset,
we obtained four eigenvalues (λj), four OLSE of the parameters (α̂j), and estimated variance
σ̂2 = 0.002. The data and computational formulations are detailed in Appendix A.

Based on Equation (13), Equation (14), and Equation (15), the estimated value of fj is
given by

f̂j =

1 + λmax

√
σ̂2

σ̂2 + λmaxα̂2
j

1−
√

σ̂2

σ̂2 + λmaxα̂2
j

. (25)

The values of λj, α̂j, and f̂j are given in Table 3.
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Table 3: The values of λj, α̂j and f̂j

j λj α̂j f̂j

1 2.235704 -1.198979 1.082756

2 1.576066 -0.018413 19.56334

3 0.186606 -1.549323 1.063682

4 0.001624 0.573396 1.177814

Table 4 presents the results of the proposed methods for determining the biasing parameter
for KAURE, along with the corresponding MSE of KAURE. The equation of f̂j in Table 4 is
given by Equation 25.

Table 4: Biasing parameter for KAURE and the corresponding MSE(α̂KAURE)

Proposed methods
Estimated biasing
parameter k for

KAURE
MSE(α̂KAURE)

kA = Arithmetic Mean
[
f̂j

]
=

1

p

p∑
j=1

f̂j kA = 5.722 1.437540

kM = Median
[
f̂j

]
kM = 1.130 1.212067

kG = Geometric Mean
[
f̂j

]
=

(
p∏

j=1

f̂j

) 1
p

kG = 2.270 0.802176

Figure 14 presents the graph of MSE(α̂KAURE) versus the biasing parameter k. The
minimum value of MSE(α̂KAURE) occurs when k is between 2 and 3.

Comparing the three proposed methods (kA, kM and kG), we find that kG = 2.270 falls
between 2 and 3. The MSE of KAURE with kG = 2.270 is the lowest among these methods,
yielding an MSE of 0.802176. Therefore, kG is selected as the optimal biasing parameter for
KAURE, a conclusion that is further supported by the simulation results presented in Section
3. Moreover, it is worth noting that MSE(α̂KAURE) = 0.802176 corresponding to kG = 2.270

is less than MSE(α̂OLSE) = σ̂2
4∑

j=1

1

λj
= 1.244601. Therefore, the superiority of KAURE over

OLSE remains valid when kG is selected as the optimal biasing parameter.

5 Discussion on Industrial Applications

Some industrial applications of linear regression are discussed in this section. In various indus-
trial applications, multicollinearity, a condition where two or more independent variables are
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Figure 14: MSE(α̂KAURE) versus the biasing parameter k

highly correlated, often arises. Multicollinearity is an inherent imperfection in data resulting
from uncontrollable processes through the data-generating mechanism.

For example, linear regression is often used in environmental and climate modeling. In
predicting air pollution levels, independent variables such as weather conditions, traffic vol-
ume, population density, land use and industrial emissions are often correlated. Some studies
related to air pollution modeling using regression are [34–36]. In economic and financial mod-
eling, multicollinearity frequently arises because independent variables are often interrelated.
In predicting economic growth, independent variables such as investment, debt, interest rate,
exchange rate, consumption, and exports are often correlated. Related study can be seen in [37].

In healthcare, multicollinearity arises when analyzing medical outcomes or genetic data.
In predicting disease risk, lifestyle factors and biometric indicators such as blood pressure,
cholesterol levels and diet are often intercorrelated. The results reported in [38] highlighted the
adverse effects of multicollinearity in regression analysis conducted in epidemiologic studies.
Multicollinearity is a common challenge in many industrial applications of linear regression,
leading to unstable and unreliable coefficient estimates. While OLSE are unbiased, their high
variance in the presence of multicollinearity necessitates the use of biased estimators. By using
biased estimators in regression modeling, these techniques effectively reduce mean square eror
of regression estimators, improve the accuracy in parameter estimation and identification of
important variables in modeling, making them essential tools in modern statistical modeling.

6 Conclusion

In this paper, we introduced some new methods for estimating the optimal biasing parameter
for k-almost unbiased regression estimator (KAURE) that minimizes its MSE. Extensive Monte
Carlo simulations were conducted to assess the performance of estimators based on the AMSE
criterion by varying factors such as sample size, error standard deviation and degree of multi-
collinearity. Among the proposed methods (kA, kM and kG), the results indicated that KAURE
showed the best performance when the biasing parameter kG was utilized. Additionally, these
simulation findings were confirmed by the empirical application. Based on both the simulation
results and real-world application, we conclude that the biasing parameter kG is proposed as the



Set Foong Ng / MATEMATIKA 41:1 (2025) 57–76 72

optimal choice for practitioners seeking to effectively apply KAURE as a regression estimator
to address multicollinearity issues in linear regression models.

Appendix A

This Appendix provides the Portland Cement data. The dependent variable consists of heat
evolved after 180 days of curing (T ). The independent variables consist of Tricalcium aluminate
(S1), Tricalcium silicate (S2), Tetracalcium aluminoferrite (S3) and β-dicalcium silicate (S4).
Table A1 presents the Portland Cement data.

Table A1: Data

T S1 S2 S3 S4

78.5 7 26 6 60

74.3 1 29 15 52

104.3 11 56 8 20

87.6 11 31 8 47

95.9 7 52 6 33

109.2 11 55 9 22

102.7 3 71 17 6

72.5 1 31 22 44

93.1 2 54 18 22

115.9 21 47 4 26

83.8 1 40 23 34

113.3 11 66 9 12

109.4 10 68 8 12

The standardized dependent variable and the standardized independent variables are ob-
tained from the Equation (26) and Equation (27), respectively.

yi =
ti − t̄√
n∑

i=1

(ti − t̄)2
, (26)
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xij =
sij − s̄j√
n∑

i=1

(sij − s̄j)2
, (27)

where i = 1, 2, . . . , n, j = 1, 2, . . . , p, n = 13, p = 4, t̄ is the mean of T and s̄j is the mean of
Sj.

The linear regression model that is formed by the standardized variables is represented by
Y = Xβ + ε. The regression model is then transformed into a canonical form Y = Zα + ε,
where Z = XQ, α = Q′β, Z′Z = Λ and Λ = diag(λ1, λ2, . . . , λp).

Multicollinearity diagnostic analysis is done by evaluating variance inflation factor V IFj

and condition index CIj. The values of V IFj are obtained from the diagonal element of matrix
(X′X)−1. In this dataset, V IFj are 38.496211, 254.423162, 46.868386 and 282.512861. All
values of V IFj are greater than 10, indicating the existence of multicollinearity in the dataset.

The values of CIj are obtained from CIj =

√
λmax

λj
. In this dataset, CIj are 1, 1.191022,

3.461339 and 37.106342. The largest condition index is higher than 30, indicating the existence
of moderate to strong dependencies among the independent variables in the dataset.
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