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Abstract This study aims to elucidate a steady two-dimensional laminar mixed con-
vection boundary layer over an inclined stretching plate immersed in an incompressible
viscous fluid. The governing partial differential equations (PDEs) are first reduced to
ordinary differential equations (ODEs) using a similarity transformation, before being
solved numerically using MATLAB software, which is based on the boundary value prob-
lem fourth order (bvp4c) method. The effects of the radiation parameter, angle of the
plate, Richardson number, and the Prandtl number on the heat transfer and fluid flow
characteristics are obtained and discussed. The impacts of flow constraints on the velocity
profile, temperature profile, heat transfer rate and skin friction coefficients are presented
in tables and figures. The observation indicates that the rate of heat transfer at the sur-
face rises with increases in the Richardson number, and inclination of plate angle but it
diminishes as the radiation parameter increases. Meanwhile, the drag force experiences
a decrease with an increase in radiation and the inclination of the plate angle. How-
ever, it demonstrates an increase with the rise values of Richardson number and Prandtl
number. This leads to enhanced buoyancy-driven flow effects, ultimately resulting in a
reduced skin friction along the surface Moreover, a further analysis using Computational
Fluid Dynamics (CFD) simulation is applied to solve the governing equations of flow in
interesting applications, enhancing the understanding of boundary layer flow.

Keywords Radiation, Mixed convection, Richardson number, Inclined plate, Stretching,
Sakiadis flow.
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1 Introduction

Sakiadis [1] pioneered the investigation of boundary layer behaviour on continuous solid sur-
faces, leading to what is now known as Sakiadis flow. In his research, he observed that the
boundary layer originates at the slot and progresses in the same direction as the surface motion.
The fluid velocity in the x-direction at surface’s solid equals the velocity of the surface itself.
Moving away from the surface, the fluid’s x-direction velocity gradually diminishes to zero.
Concurrently, the y-direction velocity of the fluid changes from zero at the surface to a finite
value at the boundary layer’s edge. Essentially, Sakiadis flow characterizes the behavior of a
boundary layer where the fluid is stationary, and the solid surface is in motion. A numerical
comparison between Sakiadis and Blasius flows further highlights the distinct characteristics of
Sakiadis flow, particularly in terms of velocity profiles and boundary layer thickness |[2].

Viscous and incompressible fluid flow in a laminar boundary layer via moving plate at
constant speed has been widely studied. Cortell [3] looked into fluid flow and heat transfer
via stretching plate, considering factors like magnetic fields, viscoelastic fluids, and surfaces
stretched by different forces, with suction/injection. Grubka and Bobba [4] studied flow via
linearly stretching surface, while Soid and Ishak [5] extended this by including the radiation
effects on steady flow via such plates in a viscous fluid. In real-world scenarios, many factors,
especially radiation, must be considered when analysing fluid flow and heat transfer.

Manufacturing processes such as hot rolling, extrusion, melt-spinning, and wire drawing
commonly involve flow via stretching surface. Soid and Ishak [5] highlighted the significant
role of thermal radiation in high-temperature processes, noting that it cannot be overlooked.
Solar energy stands out as a highly promising renewable resource, particularly as local energy
reserves become depleted. Ghasemi and Hatami [6] pointed out that despite its slightly higher
costs, solar energy is widely favoured for its environmental benefits and protective features.
Solar radiation can produce heat for manufacturing processes, while thermal radiation plays a
crucial role in heat transfer in high-temperature industries such as nuclear power plants, gas
turbines, and thermal energy storage. Studies on radiation effects have been carried out by
Dehsara et al. [7] Hayat et al. [8], Noor et al. [9], Izani et al. [10] and Mishra and Samantara
[11].

2D laminar mixed convective flow via vertical flat plate is a key model often used in the
literature as a basic example (Siddiga and Hossain [12]). It’s important to analyse various
heat transfer methods on surfaces with high temperatures. One such mechanism involves
the fluid absorbing, emitting, and scattering radiation, which allows for rapid heat exchange.
Understanding heat and flow behaviour is critical to ensuring the final product meets quality
standards. Many studies have focused on heat and fluid flow over stretching sheets, considering
both Newtonian and non-Newtonian fluids [13-19].

Recent studies have expanded this focus to include complex factors such as thermal radi-
ation, magnetic fields, and hybrid nanofluids, providing deeper insights into the heat transfer
mechanisms involved. For instance, Balamurugan and Kumar [20] investigated the influence
of quadratic convection in transient magnetohydrodynamic (MHD) combined convection over
a stretching sheet, incorporating thermal radiation effects. Similarly, Alzu'bi et al. [21]con-
ducted a numerical study on Casson mixed convection transport by ternary hybrid nanofluids
over a vertical stretching sheet, considering Newtonian heating conditions. These studies un-
derscore the importance of integrating various physical phenomena to accurately model and
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analyze heat and fluid flow over stretching sheets.

Heat transfer refers to the exchange of energy due to temperature differences, while mass
transfer involves the movement of a liquid mass within fluid flow, seen in processes like ab-
sorption, evaporation, and drying [22]. Mixed convection combines free convection, driven by
buoyancy (represented by the Richardson number), together with forced convection, common
in industrial processes [23]. Al-Sumaily et al. [24] note that most research has focused on
either forced or natural convection, with less attention given to the combined effects of both.
However, the interaction of mixed convection and heat radiation is significant.

Mandal et al. [22] observed that temperature and concentration vary near the plate’s edge
but remain constant further away. The inclination angle of the stretching plate causes the
boundary layer thickness to decrease. Researchers like Alabdulhadi et al. [25], Hamad et al.
[26], and Malik et al. [27] have studied steady, incompressible flow over inclined, stretching
sheets to explore mass and heat transfer.

Computational Fluid Dynamics (CED) is a branch of fluid mechanics that applies numerical
methods and computational algorithms to solve and analyze fluid flow issues. It simulates
how liquids and gases interact with surfaces, providing a valuable tool for predicting flow
patterns, pressure, temperature, and concentration in a wide range of applications. CFD models
rely on equations such as the Navier-Stokes equations to describe the motion of fluids. With
advancements in computational power, CFD is now a widely used tool for design optimization,
reducing the need for physical prototypes, and enhancing efficiency in multiple industries such
as in the food industry [28] and Neurosurgery [29]. Dobhal and Gupta [30] evaluates different
RANS turbulence models in CFD analysis for boundary layer flow via flat plate, using ANSY'S
Fluent 19.1. They concluded that model selection is critical for accurate simulation. It provides
guidelines for selecting turbulence models based on mesh resolution and y+ values, highlighting
the importance of different models for different boundary layer regions. Some other studies
related to CFD are Mahdavi et al., [31], Alhamid and Al-Obaidi [32] and Algaidy and El Shrif
[33].

Researchers have been intrigued by the study of mixed convection boundary layer flow
because it closely resembles real-world scenarios, accounting for gravity and temperature dif-
ferences between the fluid and the plate. This makes the results similar to natural phenomena.
This study will focus on flow of Sakiadis, thermal radiation, and number of Richardson via
inclined stretching plate employing boundary value problem method (bpv4c) in MATLAB. It
builds on Soid and Ishak’s [5] previous research by adding the mixed convection parameter.
The study explores how different plate angles affect fluid flow and heat transfer.

The inclusion of the mixed convection effect is significant because it enhances the accuracy
of heat and mass transfer predictions, particularly in high-temperature manufacturing processes
where buoyancy forces play a crucial role. Understanding how convection influences boundary
layer development provides deeper insights into optimizing thermal management in industrial
applications. Additionally, integrating CFD in this research allows for a comprehensive analysis
of fluid dynamics by providing numerical simulations that complement theoretical models. CFD
simulations offer visual and quantitative validation of flow behavior, aiding in the refinement
of mathematical models and ensuring more precise predictions. The findings are expected to
be valuable for Newtonian-based analyses of stretching plates and useful for engineers and
researchers in industries like manufacturing, where optimizing heat transfer and fluid flow is
essential for efficiency and product quality.
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2 Mathematical Model

The study examines steady, 2D mixed convection boundary layer flows via inclined plate that
stretches linearly and is submerged in an incompressible viscous fluid, as illustrated in Figure
1. The plate stretches at a constant positive velocity, denoted as U, = ax . The ambient
temperature T, and the surface temperature T,,, are both assumed to be constant, with T, >
T, . Here, g represents gravitational acceleration and € is the plate’s angle.

Figure 1: Physical model

The governing equations and the boundary conditions as following :

ou Ov

T 1

8x+8y 0 (1)
ou ou 0%*u
— — = — T T, in ) 2
uaervay vay2+gﬁ( ) sin (2)

oT N oT —aaQ—T 1 g,
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subject to conditions of

v=0u=U"T=T, at y=0,
u— 0T —T, as y— o0

(4)

u and v is the velocity component in the x- and y-direction, respectively, v represents
kinematic viscosity, 1" is temperature of the fluid, « is the thermal diffusivity, pis the fluid
density, C, and is the specific heat at constant pressure.

The radiative heat flux,q, is defined using the Rosseland approximation, expressed as:

4o OT*

qr = 3_K8_y (5)
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where K is the Rosseland mean absorption coefficient and o is the Stefan-Bolzman constant. It
is important to note that T is often expressed as a linear function of temperature as the flow’s
temperature difference is minimal.

T~ TL + (T — Ty 4T3, = 4T3 T — 3T (6)
By applying (5) and (6) to (3), we gain

or — or <82T 82T> (7)

Ur—F+V—=a| =5 + N+
ox oy Oy? oy?
The similarity variables were introduced,

T-T,
= = 8

T T, (8)
where 7 is the similarity variable and 1 is the stream function defined as U = 0¢/0dy and
v = —0/0x which satisfied the continuity Eq. (1).

Using the similarity transformation variables, the PDEs are converted into ODEs as shown
below:

n= (9)1/2 y, ¥ = (va)' 2z f(n),0(n)

v

Fm)? = fm)f"(n) — f"(n) — Rib(n)sinQ = 0 (9)

1

pr(L+N)O"(0) = f(m)¢'(n) =0 (10)

The conditions (4) are as follows:

F0)=0,f(0)=1,00)=1 at n=0

f'(n) = 0,6(n) =0 at 7 — oo (11)

where Ri = Gr,/Re?(= const.) the Richardson number, where G7, is number of Grashof and
Re, is number of Reynolds, N is the radiation parameter and Pr is number of Prandtl, described
as
T, —Ts) 23 Uyx 160T2, v
GTg; = gﬁ( 02 ) y Rex = T, N = 3}{—/{;7 Pr = E (12)
The physical parameters, namely the skin friction coefficient C'y and local Nusselt number
Nu, are presented as follows [5]:

21 <8u) rk (8T>
Cr=—|— , Nug=———7——7— | —=— 13
T=puz\oy),_, K(Tw—Too) \ 0y ), (13)

with p and k are dynamic viscosity and thermal conductivity respectively. Using Eqgs. (8) and
(13) yields

1
§che}/2 = f"(0), Nu,Re;"? = —6'(0). (14)
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3 Results and Discussion

3.1 Detailed Evaluation of Results

Nonlinear ODEs Eq. (9-10) and conditions (11) are numerically solved utilizing boundary
value problem solver (bvpdc) in MATLAB. This research takes into account the values of
N = 0,05,1,5,10, Ri = 1,3,5,7,10 and © = 0,575 , while Prandtl number is set to be
constant, Pr = 7. Pr = 7 was chosen because it corresponds to water at standard conditions,
making the study relevant to many industrial applications involving heat transfer in liquids.
Additionally, previous studies [5] on boundary layer flow have commonly used this value,
allowing for validation and comparison of results.

Table 1 shows the comparison values of the —6’(0) for varies values of Pr and N with the
absence of €2 and Ri which shows a favorable agreement with those obtained by Soid and Ishak
[5]. In addition, Table 2 demonstrates the numerical values of skin friction coefficient f”(0)
and Nusselt number —€'(0) of varies parameters when Pr = 7 . The values of f”(0) and —6'(0)
are increases as 2, N and Ri increase. However, the values of —6'(0) decreases only when Nis
increased. Furthermore, for the 2 = 0 case, an increase in values of N causes no changes to
the values of f”(0) and for the increase of Ri, both f”(0) and —6’(0) also, the values remain
the same

Table 1: —6¢'(0) for varies of Pr and N for Q=Ri=0

—0' = (0)
Pr | N | Soid and Ishak [5] | Present (bvp4c)
0.7] 0 0.4539 0.45391666
0.5 0.3364 0.33639327
1 0.2688 0.26903220
3 0.1051 0.10506184
10 0.0599 0.05996650
1 0 0.5820 0.58197671
0.5 0.4383 0.43827498
1 0.3544 0.35445628
D 0.1444 0.14436909
10 0.0836 0.08362953
3 0 1.1652 1.16524595
0.5 0.9114 0.91135768
1 0.7603 0.76028951
> 0.3544 0.35443745
10 0.2195 0.21953644
7 0 1.8954 1.89540326
0.5 1.5075 1.50746165
1 1.2762 1.27615604
D 0.6454 0.64536813
10 0.4238 0.42375763
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Table 2: Values of f(0) and —¢'(0) for some values of 2 and N values when Pr =7

Q [N [Ri| f70) —6'(0)
0 | 0 | 1 |-1.00000000 | 1.89540326
0.5 ~1.00000000 | 1.50746165
1 ~1.00000000 | 1.27615604
5 ~1.00000000 | 0.64536813
10 ~1.00000000 | 0.42375763
1 | -1.00000000 | 0.42375763
3 | -1.00000000 | 0.64536813
5 | -1.00000000 | 0.64536813
7 | -1.00000000 | 0.64536813
10 | -1.00000000 | 0.64536813
7/2] 0 ~0.75106735 | 1.93032573
0.5 -0.70648260 | 1.54967027
1 -0.67146994 | 1.32436507
5 -0.51623756 | 0.72307190
10 -0.42479667 | 0.51932328
1 | -0.42479667 | 0.51932328
3 | 0.20145063 | 0.80675966
5 | 1.00882531 | 0.86283876
7 | 1.67469001 | 0.90670973
10 | 2.60931423 | 0.95977339

The velocity f”(n) and temperature profile 6(n) are represented graphically in Figures 2 to

11 for varies N, Ri and when Pr = 7. A consistent f”(n) is depicted in Figure 2 because the
value of N, Pr and Ri do not affect the flow at the horizontal plate (2 = 0). As indicated in
Eq. (9), it is anticipated because Pr and N are not present, while the Richardson number R is
influenced by the angle of the plate. Therefore, only a single valid curve was generated, and the
boundary layer thickness remained unchanged. Figure 3 illustrates an increase in response to
rising N values. Importantly, the increase in the temperature profile results in a thicker thermal
boundary layer. This is expected because the addition of radiation provides extra heat near
the plate. This increase enables the fluid to move more rapidly, resulting in higher temperature
and velocity within the boundary layer region.

In Figures 4 and 6, f'(n) shows that as N increases, the thickness of the boundary layer also
increases. The Richardson number Ri is important in Equation (9) because it influences the
flow around plates that are positioned either vertically or at an angle. In Figures 5 and 7, the
temperature profile rises with increasing N values. Additionally, f’; (0) on the plate increases,
while —6; (0) decreases as N rises, as indicated in Table 2. This occurs because, as N increases,
the fluid temperature rises, making the temperature difference between the plate’s surface and
the free stream nearly the same, which slows down —6;(0) up to thermodynamic equilibrium
is achieved. This effect is particularly important when the plate is inclined. Furthermore, the
two coeflicients change when comparing vertical and horizontal plate placements.
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Figure 2: f/(n) for varies N values when Figure 3: 6(n) for varies N values when
Pr=7, Ri=1 and Q =0 Pr=7, Ri=1 and Q =0

Figures 8 to 11 illustrate the f’(n) and 6(n) for distinct Ri at @ = n/6 and Q = 7/2
respectively. From Table 2, an increase in Ri, shows f”(0) tends to increase due to enhanced
buoyancy effects.—6’(0) also increases as the Ri goes up. This is because stronger convection
from buoyancy forces helps move more heat from the surface to the fluid. This trend is especially
significant when the plate is inclined. Figures 8 and 10 indicate that for higher Ri, the velocity
is considerably greater. Ri is the ratio between the Gr, and Re, . Since Re,has an inversely
proportional relationship with fluid velocity f’(0), the fluid velocity increases as Ri changes.
However, when 1 approaches 3, the behaviour shifts, leading to a rapid decrease in the boundary
layer thickness, approaching zero faster than other cases. Meanwhile, the boundary layer
thickness in the temperature profile, as shown in Figures 9 and 11, decreases with increasing
Ri. This means that higher Ri values result in a quicker drop in the plate’s temperature.
Consequently, Ri is essential for maintaining fluid flow stability and enhancing the heat transfer
rate within the boundary layer.

As the angle increases, both f”(0) and —6'(0) rise, as shown in Table 2. Meanwhile, Figure
12 shows that the thickness of the boundary layer in f'(n) increases, while Figure 13 displays the
opposite trend in #(n), where the thickness decreases. Additionally, when the plate is vertical
(Q = 7/2), the fluid flows faster because the buoyancy force decreases with increased plate
inclination. Thus, as €2 increases, the momentum boundary layer thickness increases, whereas
the thermal boundary layer thicknesses decrease.
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Pr=7,N =5 and Ri=1 Pr=7,N =5 and Ri=1

3.2 Computational Fluid Dynamics (CFD)

Boundary layer problems can be solved numerically using various methods, including the
method of Runge-Kutta, finite difference method, boundary value problem techniques, and
CFEFD simulations. Klazly and Bognar [34] investigated airflow over a flat plate to examine
hydrodynamic and thermal boundary layers through CFD simulations, utilizing Ansys Fluent
R18.1 to solve the governing flow equations. Their results showed excellent agreement between
analytical and numerical solutions, with a maximum error of less than 6.19%.

In computational fluid dynamics, numerical methods are used to analyse and solve fluid
flow problems with the CFD software package Ansys Fluent. For this case study, the plate
is inclined (©2 = 7/6), and radiation and mixed convection are taken into account. The CFD
process involves creating the geometry, generating the mesh, setting physical parameters, and
solving the problem.

Figure 14 illustrates the flow configuration of the computational domain. The plate is 1
meter long parallel the z-axis, and the heights of boundaries AB and CD are 0.1 meters across
the y-axis. Fluid flows via the plate surface from boundary AB, the inlet, to boundary CD,
the outlet. Boundary BC represents the plate surface, while boundary AD is characterized
as symmetry. Figure 15 displays the geometry model for the flow configuration, created via
DesignModeler, as the plate is tilted at a specified angle (2 = 7/6).

The next step in this simulation involves creating a computational mesh. In order to analyse
fluid flow accurately, the flow area is divided into smaller element (quadrilaterals or triangles
for 2D models). In this study, Fluent is used for mesh generation. The inlet and outlet are
divided into 50 sections employing a specific division method with a bias factor of 50 to increase
detail near the critical plate area for better accuracy. The sides, symmetry, and plate are also
divided into 120 sections each.
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v=0.1m

Figure 14: The flow configuration Figure 15: Geometry model

Figures 16 and 17 show the results of the mesh generation. Figure 16 displays the mesh in
DesignModeler, while Figure 17 shows the fluid flow and plate surface in Ansys Fluent. The
blue arrow indicates fluid entering through the inlet and moving over the plate, while the red
arrow shows the fluid exiting at the outlet. Fluid flow is strongest near the plate surface.

[iiei] 25D 0500(m)
| EEa—— [ ESS—

ans 237

Figure 16: Generated Meshing in Design Figure 17: Generated Meshing in Fluent
Modeler solver with the direction of fluid flow

For the next stage, the fluid low and thermal boundary conditions for the model are specified
based on the parameters from Ansys Fluent. Boundary AB (velocity inlet), has both horizontal
and vertical velocities set to zero. Boundary CD (pressure outlet), having static pressure equal
to ambient pressure, and other flow values derived from the interior. The plate BC is represented
as a wall, with the horizontal velocity maintained as constant and the vertical velocity equal
to zero. Boundary AD is a symmetry line, meaning there are no vertical velocity changes.
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The fluid properties are provided by the Fluent solver and listed in Table 3, together with the
boundary conditions in Table 4.

Table 3: The physical properties

Name Fluid properties Value
Density p 998.2 (kg/m?)
Dynamic Viscosity 1 1.003 x 1073(kg/ms)
Thermal conductivity of the fluid k 0.0242

Table 4: Boundary conditions

Name Fluid properties | Value
Length x 1
Ambient fluid velocity Uso 0
Velocity fluid on the surface Uy 1
Ambient fluid temperature Ty 300
Wall temperature T 400
Prandtl number Pr 6.99091

Finally, the Navier-Stokes equations, and energy equation that includes N, Ri and € setup,
were resolved to obtain the solution numerically. The simulation used a laminar solver with
a 2nd-order upwind method for discretizing the equations. The inlet velocity was set to zero,
while the wall moved at 1 meter per second. Calculations were done with high precision, and
the solution’s progress was tracked using a residual monitor with a set convergence criterion of
1076,

Table 5 shows that there is only a slight difference in f”(0) and —6’'(0) values between the
numerical solutions from MATLAB and the CFD software. Table 5 shows that f”(0) is slightly
negative in MATLAB (-0.6522) but positive in the CFD software (0.6615), indicating different
directions of the friction force. A negative value means the flow is experiencing adverse pressure
gradients, potentially leading to boundary layer separation or flow reversal. In contrast, a
positive value suggests favourable pressure gradients, promoting smooth flow along the surface.
—0'(0) values obtained from MATLAB and CFD are in a good agreement with 98%. These
numbers represent how fast heat is transferred to or from the surface. The small differences
may be due to mesh resolution, or convergence criteria used in each simulation.

Table 5: The comparison value of f”(0) and —6'(0) between MATLAB and CFD

f"(0) —6'(0)
MATLAB | -0.65221258 | 0.37996613
CFD 0.661521 | 0.37214224
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Figures 18 and Figure 19 illustrate the velocity contour and velocity direction. The colour
scale ranges from blue (lowest velocity) to red (highest velocity), with green, yellow, and orange
showing increasing speeds. In Figure 18, the velocity is highest at the surface and incrementally
decreases until it becomes uniform in the inviscid region above the boundary layer. This contour
shows the velocity distribution across the plate. Figure 19 displayed velocity vectors across the
plate. The fluid near the plate surface has the highest velocity due to the wall’s movement,
but this decreases gradually because of friction, eventually reaching zero at the free stream.
This underscores the significance of accounting for boundary layer behavior and shear stress by
means of examining fluid flow via moving wall in CFD simulations.

Ansys

STUDENT

Veloty Magniuge
[me)

§rRiigRiiLe
\
‘,\\‘ﬁ\‘\‘“
X -

Figure 19: Velocity direction

Another key finding, illustrated in Figure 20, is the pressure contour, which could not be
calculated using MATLAB. Though it’s a bit hard to see, the contour is most noticeable at
the inlet’s leading edge, shown by a light blue colour indicating low pressure. As the flow
progresses towards the outlet, the pressure gradually increases, transitioning to a red colour,
which represents higher pressure. This pressure distribution is important in simulations with
an inclined moving plate, as it provides valuable insights into fluid flow dynamics and boundary
layer behaviour. Pressure gradients are essential in determining how the fluid accelerates or

decelerates along the plate, impacting both the stability of the boundary layer and the potential
for flow separation.
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Figure 20: Pressure contour

Additionally, understanding the pressure distribution is vital for optimizing engineering de-
signs, as it helps minimize drag and maximize heat transfer efficiency. Figure 21 shows the
temperature distribution across inclined flat plate, with a colour gradient from blue (lowest) to
red (highest). In regions of low pressure, the increased fluid velocity can enhance convective
heat transfer, while higher pressure regions may slow down the flow, reducing the heat transfer
rate. At the plate’s surface, there is a thin boundary layer where the temperature peaks at
400K, shown in red. As the distance from the surface increases, the temperature progressively
decreases, stabilizing at a uniform value (blue) of 300K, which corresponds to the free stream
temperature in the inviscid region near the outlet. These temperature variations are primarily
attributed to the fluid’s thermal conductivity, facilitated by heat convection amid the plate and
the fluid. By accurately mapping the pressure contours, this study provides a deeper under-
standing of how pressure variations affect both fluid flow and thermal management, making it
highly relevant for design improvements in fields such as aerospace and manufacturing.

Figure 21: Temperature distribution
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Conclusion

This study considered radiation, inclined stretching plate and Richardson number. The PDEs
were converted into ODEs via similarity transformation, and the numerical results were exe-
cuted using the bvp4c function in MATLAB. These f”(0), —6'(0) and the velocity and tem-
perature profiles behavior are determined by taking into account N, Ri, Pr and various plate
position. Thus, the following is a list of the findings in summary:

e As radiation increases, the values of f”(0) increase while —6'(0) decreases, indicating less

resistance to fluid motion along the surface and higher surface temperatures.

As the Richardson number increases, both f”(0) and —6'(0) are generally elevated due to
stronger buoyancy-driven effects.

The angle of inclination affects this velocity increase, with steeper angles usually resulting
in higher velocities. Additionally, an inclined plate alters flow characteristics, which may
reduce flow separation near the surface.

CFD simulation results show that the fluid velocity is highest at the plate’s surface but
decreases as it moves away toward the free stream. This occurs because the fluid moves
faster at the plate surface than in the surrounding area, following the Sakiadis flow bound-
ary condition, in which the surface velocity is significant while the surrounding velocity
equal to zero. The plate’s surface temperature reaches its peak and progressively de-
creases as it nears the free stream. Likewise, the pressure at the inlet edge of the plate is
at its minimum and steadily rises toward the free stream.
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