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Abstract The relevance of studying discrete Lotka-Volterra mappings lies in their ap-
plicability to modeling epidemiological and environmental problems. In this regard, this
work focuses on the asymptotic behavior of these mappings and their connection with
graph theory. The paper demonstrates that, when these mappings are in a general posi-
tion, they can be associated with complete oriented graphs. However, in degenerate cases,
it may be associated with partially oriented graphs. Furthermore, the paper proves that,
if the skew-symmetric matrix corresponding to a Lotka-Volterra mapping is not in general
position, then the set of fixed points becomes infinite. In addition, sets of fixed points are
constructed for systems that are discrete analogues of continuous compartmental models,
SIR, SIRD, and the characteristics of these fixed points are studied by analyzing the
spectrum of the Jacobian matrix and constructing a phase portrait of the trajectories of
the interior points.
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1 Introduction

Interest in nonlinear dynamical systems began in the last century, and the contribution to
the application of these systems in epidemiology can be seen in the work of Kermack and
McKendrick [1]. In this paper, they present an autonomous system of differential equations,
which forms the basis for the SIR compartmental model. These models are still relevant today,
and on their basis, a whole hierarchy of compartment models has been developed, including
SIR, SEIR, SIRS,MSEIR, SIRD and others [2–9].

It should be noted that many physical systems can be reduced to the study of Markov
processes. However, as it turns out, not all systems can be described using them. An example
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of a system that cannot be described by Markov processes is a process described by quadratic
stochastic mappings. The interest in quadratic stochastic mappings began with the work of
Bernstein [10]. Later, this theory was further developed by scientists such as Ulam, Pasta, and
Zimakov [11–13].

The proposed paper focuses on the study of the asymptotic behavior of quadratic stochastic
Lotka-Volterra operators, which were introduced in the works of Ganikhodzhaev R.N. He has
made a significant contribution to the research on this class of mappings and their connections
to directed graphs [13]. It has been found that if the skew-symmetric matrices associated with
these mappings are not in a general position, they can be related to partially oriented graphs.

The relevance of studying discrete Lotka-Volterra mappings lies in their applicability to
modeling epidemiological and environmental problems. In this regard, this paper is devoted
to the asymptotic behavior of these mappings and their relation to graph theory. It is noted
in the paper that when these mappings are in a common position, they can be associated
with complete directed graphs. However, in degenerate cases, they can be associated with
partially oriented graphs. In addition, the paper shows that if the skew-symmetric matrix
associated with the Lotka-Volterra system is not in a general position, then there are an infinite
number of fixed points. It is also proven that, in the case of a general position, all the fixed
points of the system are hyperbolic. Sets of fixed points are constructed for Lotka-Volterra
systems, which are discrete analogues of continuous SIR, SIRD compartmental models. The
characteristics of these fixed points are explored by analyzing the spectrum of the Jacobian
matrix and constructing phase portraits of the trajectories of interior points.

2 Preliminary information

Let x = (x1, x2, ..., xm) be a certain probability distribution of individuals according to charac-
teristics. Assuming that crosses occur randomly (panmixia) and there are no crosses between
different generations, to describe the law of transition from the probability distribution in the
next generation, we obtain the following dynamic system:

x
(n+1)
k = x

(n)
k

(
1 +

m∑
i=1

akix
(n)
i

)
,

where k = 1, 2, ...,m, n = 0, 1, ..., x0 = (x01, ..., x
0
m) is the probability distribution in the initial

generation, aki = −aik, |aki| ≤ 1 are inheritance coefficients [14–18]. Consider the quadratic
stochastic operator V : Sm−1 → Sm−1 introduced in the work [14]:

(V x)k = x
′

k =
m∑

i,j=1

Pij,kxixj, k = 1,m,

where x = (x1, x2, ..., xm) ∈ Sm−1, (V x)k is the k-th coordinate of the point V x ∈ Sm−1 and
the coefficients Pij,k satisfy the conditions

Pij,k = Pji,k ≥ 0,
m∑
k=1

Pij,k = 1. (1)
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It is easy to see that conditions (1) ensure the invariance of the simplex

Sm−1 =

{
x = (x1, ..., xm) : xi ≥ 0;

m∑
i=1

xi = 1

}

with respect to the mapping V.

Definition 1 [14] If
Pij,k = 0, by k /∈ {i, j}, (2)

then the quadratic stochastic operator V is called the Lotka-Volterra mapping on the simplex
Sm−1.

(2) implies that Pik,k + Pik,i = 1 for any i, k = 1,m. Therefore, assuming

aki =

{
2Pik,k − 1, i 6= k,

0, i = k,
(3)

the Lotka-Volterra mapping V can be rewritten as [14]:

x =

(
x1

(
1 +

m∑
i=1

a1ixi

)
, x2

(
1 +

m∑
i=1

a2ixi

)
, ..., xm

(
1 +

m∑
i=1

amixi

))
.

Let V x = (x
′
1, x

′
2, ..., x

′
m). Then,

x
′

k = xk

(
1 +

m∑
i=1

akixi

)
, k = 1,m. (4)

Relation (4) is called the canonical form of the Lotka-Volterra mapping on the simplex Sm−1.
Note that (3) implies

aki = −aik and |aki| ≤ 1. (5)

Since the Lotka-Volterra mapping V is uniquely determined by specifying the skew-symmetric
matrix A = (aki) with the additional condition |aki| ≤ 1, V can be identified with a point in the

space R
m(m−1)

2 , because the skew-symmetric matrix has m(m−1)
2

free parameters. Therefore, the
totality of all Lotka-Volterra mappings is a polyhedron, more precisely, a cube of the dimension
m(m−1)

2
in the space R

m(m−1)
2 .

Recall that a minor is called a major if it is composed of rows and columns with the same
numbers [19]. Recall the following definition from [20] and [21].

Definition 2 [20] A skew-symmetric A = (aki) matrix is called a matrix of general position
if all its major minors of even order are nonzero.

If a skew-symmetric matrix is a general position matrix, then the corresponding Lotka-Volterra
mapping V with coefficients aki is called an operator of general position.

In [20–24], it is proved that skew-symmetric matrices of general position form an open and
everywhere dense subset in the set of all skew-symmetric matrices.
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For example, consider the mapping V : S3 → S3, which has the form:
x
′
1 = x1(1 + ax2 − bx3 + cx4),
x
′
2 = x2(1− ax1 + dx3 − ex4),
x
′
3 = x3(1 + bx1 − dx2 + fx4),
x
′
4 = x4(1− cx1 + ex2 − fx3),

where a, b, ..., f ∈ [−1; 1]. This operator is an operator of general position if and only if the
coefficients a, b, ..., f ∈ [−1; 1] satisfy the following conditions:

a, b, ..., f 6= 0 and af − be+ cd 6= 0.

Lemma 1 Let A = (aki) be a skew-symmetric matrix and b1, ..., bm > 0. Then∣∣∣∣∣∣∣∣
b1 a12 . . . a1m
a21 b2 . . . a2m
. . . . . . . . . . . .
am1 am2 . . . bm

∣∣∣∣∣∣∣∣ ≥ b1 · b2 · ... · bm.

The proof of Lemma 1 can easily be obtained by induction with respect to m.
The point x = (x1, ..., xm) is called a relative interior point of the simplex Sm−1 if xi >

0, i = 1,m. Using Lemma 1, it is obtained that the Jacobian of mapping (4) is positive at
all relatively interior points of the simplex. Hence, the quadratic Lotka-Volterra mapping is a
local homeomorphism in a neighborhood of any relatively interior point of Sm−1. Since Sm−1 is
compact, the local homeomorphism of V implies its homeomorphism [20,24].

In the case where the conditions of Definition 2 are not met, the Lotka-Volterra mapping
and the corresponding skew-symmetric matrix are not in general position. This is a case where
the mapping and its matrix are degenerate.

In [24], it was proved that the quadratic Lotka-Volterra mapping is a homeomorphism of
the Sm−1 simplex.

In problems of population genetics, one needs to study the evolution of a biological system
over time. In many cases, the evolution of the system is described by quadratic mappings of
the simplex into itself. From a biological point of view, the homeomorphism of the evolution
operator means the possibility of restoring the prehistory of a biological system according to
the known state of the system at the moment. The quadratic version of the Lotka-Volterra
simplex mapping is a special case of quadratic homeomorphisms.

3 Connection of Graph Theory Elements in the Study of Lotka-
Volterra Systems

As it is known [24] each quadratic Lotka-Volterra mapping, given on a finite-dimensional sim-
plex, defines a certain tournament, the properties of which allow us to study the asymptotic
behavior of the trajectories of this mapping. In this paper, the concepts of a tournament, a
homogeneous tournament, and a partially oriented graph are introduced. These concepts are
used to study the Lotka-Volterra systems. Before proceeding to this part of the work, it is
necessary to recall the basic concepts of graph theory presented in [25–27] and [28], as well as
in [29].
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Definition 3 [25] A graph G is a finite nonempty set Y containing p vertices and a given set
E containing q disordered pairs of different vertices from Y.

Each pair of vertices y = {u, v} in E is called an edge of the graph G. This means that y
connects u and v. Here, E is a set of unordered pairs of different vertices from the set Y . The
vertex u is incident with the edge y, as is v with y.
If two different edges y and z are incident to the same vertex, then they are called adjacent.
A graph with p vertices and q edges is called a (p, q) graph.

From the above information, it is clear that there can be no loops in the graph, that is,
edges connecting vertices to each other.

Definition 4 [27] A directed graph or digraph D is a finite nonempty set of vertices and a
given set of ordered pairs of different vertices.

The elements of the set E are called oriented edges or arcs.

Definition 5 [27] Pairs of vertices that are connected by more than one edge are called mul-
tiples.

There are no loops or multiple arcs in a digraph.

Definition 6 [29] A directed graph is a digraph in which no pair of vertices is connected by a
symmetric pair of arcs.

Definition 6 implies that each orientation of a graph generates a directed graph.
It is known from [23] and [24] that if the skew-symmetric matrix A = (aki) is in general

position, then it corresponds to a tournament-complete oriented graph. Recall the definition
of a tournament from [24].

Let A = (aki) be a general position matrix of the Lotka-Volterra operator (4) satisfying
conditions (5). Suppose that aki 6= 0 for k 6= i. On the plane, m points are taken and
numbered with numbers 1, 2, ...,m. Then the point k is connected to the point i by an arrow
directed from k to i if aki < 0, and vice versa if aki > 0. The graph constructed in this way is
called the tournament of dynamic system (4) with a skew-symmetric matrix A = (aki) and is
denoted by Tm.

In the case of m = 3, according to the definition of tournaments, skew-symmetric matrices

A =

 0 a12 −a13
−a12 0 a23
a13 −a23 0

 , B =

 0 b12 b13
−b12 0 b23
−b13 −b23 0


correspond to the tournaments shown in Figure 1 [20].

A tournament that has no cycles is called transitive. The concept of a subtournament is
naturally defined. In the definitions, we follow the terminology adopted in [24–26].

Let x1, x2 be the vertices of a tournament. The entry x1 → x2 means that the edge
connecting x1 and x2 is directed from x1 to x2. A finite sequence of vertices x1 → x2 → ...→ xp
is called a route if xi 6= xj at i 6= j. A cycle is a closed route, that is, xp = x1.

The tournament is strong if there is a route with the beginning of x, y ∈ Y and the end of
x for any peaks of y.



Dilfuza Eshmamatova et al. / MATEMATIKA 41:2 (2025) 179–192 184

Figure 1: A tournament is called a) a cyclic triple, b) a transitive triple.

It has been proven [21] that a tournament is considered strong if and only if it contains a
cycle with a length equal to |Y |, where |Y | represents the number of elements in the set Y.

Definition 7 [21] A tournament is called homogeneous if any of its subtournaments is either
strong or transitive.

Obviously, for with |Y | ≤ 3, any tournament is homogeneous. It is shown in [27] that for
|Y | = 4, there are four pairwise non-isomorphic homogeneous tournaments, and in [21], the
criterion of tournament uniformity is proved.

Table 1 below shows the number of tournaments, the number of strong tournaments, as well
as the number of homogeneous tournaments at m ≤ 6.

Table 1: Number of tournaments, strong tournaments and homogeneous tournaments for m ≤ 6.
m Number

of tourna-
ments

Number
of strong
tourna-
ments

Number
of
homo-
geneous
tourna-
ments

2 1 0 1
3 2 1 2
4 4 1 2
5 12 6 4
6 56 32 10

If the corresponding skew-symmetric matrix of the Lotka-Volterra system is not in general
position, i.e. if there is a major minor equal to zero, then a matrix of this kind is called
degenerate. This case is possible only if some coefficients of the skew-symmetric matrix are
zero, i.e. aki = 0.
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An undirected graph is a graph that has no oriented edges, and, generally speaking, it can be
included in partially oriented graphs [27]. A digraph can be considered as a partially oriented
graph in which each symmetric pair of oriented edges is replaced by an undirected edge. If
the skew-symmetric matrix corresponding to system (4) is degenerate, then a partially oriented
graph can be matched to it.

Definition 8 A graph is called partially oriented if it contains both oriented and undirected
edges.

For example, consider the mapping

V1 :


x
′
1 = x1(1 + a12x2),
x
′
2 = x2(1− a12x1),
x
′
3 = x3,

with the matrix

A =

 0 a12 0
−a12 0 0

0 0 0

 .

The partially oriented graph of this matrix has the form as shown in Figure 2.

Figure 2: A partially oriented graph with one directed edge.

The total number of partially oriented graphs with three vertices is given in [27]. In this
paper, the relationship of partially oriented graphs with degenerate Lotka-Volterra mappings
is shown. This contributes to a more understandable presentation of the phase portrait of the
trajectory of the internal points of these mappings.

4 Fixed Points of Degenerate and Nondegenerate Lotka-Volterra
Mappings

The main problem in researching the dynamics of the trajectories of the interior points of
mappings of the simplex is to find their fixed points and study their characters.

Let X = {x ∈ Sm−1 : V x = x} be the set of fixed points of the Lotka-Volterra mapping V .
Since V : Sm−1 → Sm−1 is continuous and Sm−1 is a convex compact, then according to the
Bohl-Brauer theorem, the set of fixed points V is not empty.
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In general, it is known that Lotka-Volterra mappings on a simplex can have a continuum of
fixed points, which significantly complicates the analysis of the asymptotic behavior of trajec-
tories [21, 24].

According to [21–24], when the Lotka-Volterra mapping is in a general position, the number
of fixed points is finite and the vertices of the simplex are fixed points. In contrast to these
works, it is considered the degenerate case here. For example, let the Lotka-Volterra mapping
V : S2 → S2 have the form:

V :


x
′
1 = x1(1− x2),
x
′
2 = x2(1 + x1 − x3),
x
′
3 = x3(1 + x2).

This mapping has infinitely many fixed points. The fixed points of this mapping V are all
points of the segment connecting the vertices e1 and e3, as well as the vertex e2 (see Figure 3).

Figure 3: A partially oriented graph with two directed edges.

The definitions of [30–32] and [33] that describe the characters of fixed points are given
below.

Definition 9 [30] A fixed point x is called repulsive (a repeller) if there is such a neighborhood
that the trajectory of any point from this neighborhood, with the exception of x itself, leaves this
neighborhood in a finite number of steps.

Definition 10 [30] A fixed point x is called an attractor if there exists such a neighborhood
that the trajectory of any point from this neighborhood remains in this neighborhood for a finite
number of steps.

The characters of the fixed points are investigated by analyzing the spectrum of the Jacobian
matrix. For this purpose, it is convenient to consider the Jacobian not only as a determinant,
but also as a linear operator, i.e., the differential of the mapping. Usually, the spectrum of the
Jacobi matrix at the point x is denoted by σ(J(x)).
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Let B = {z ∈ C : |z| < 1}, the unit open circle on the complex plane C and B be its closure.
As it is known [31], for differentiable mappings, a fixed point is attractive if σ(J(x)) ⊂ B,

and repulsive if σ(J(x)) ∩B = ∅.

Definition 11 A fixed point of a differentiable mapping is called hyperbolic if σ(J(x))∩∂B = ∅,
where ∂B = {z ∈ C : |z| = 1} is the boundary of B.

Theorem 1 All fixed points of a general position of the Lotka-Volterra mapping are hyperbolic.

Proof The mapping V is a general position mapping, this implies finiteness of the number of
fixed points and all fixed points are isolated. Further, the mapping V is in a general position,
this implies that its narrowing to the edge Γα will also be a Lotka-Volterra mapping in a
general position [22, 23]. Then it is enough to assume that an arbitrary fixed point is interior,
i.e. x = (x1, ..., xm), where xi > 0, i = 1,m. In this case V x = x implies

xk = xk

(
1 +

m∑
i=1

akixi

)
, k = 1,m.

Since xk > 0,
m∑
i=1

akixi = 0.

Therefore, the Jacobian has the form:

J(x) =


1 a12x1 . . . a1mx1

a21x2 1 . . . a2mx2
. . . . . . . . . . . .

am1xm am2xm . . . 1

 = I + x1 · x2 · ... · xm · A,

where I is a unit matrix and A = (aki) is a skew-symmetric matrix.
According to [34], the eigenvalues of the matrix I +A, where A is a skew-symmetric matrix

in a general position, are complex numbers modulo one, i.e.

σ(J(x)) ∩B = ∅.

Therefore, x is a hyperbolic fixed point.
2

As mentioned above, according to [21–24] and [25], in the case where the Lotka-Volterra
mapping is in a general position, the number of fixed points is finite. For degenerate Lotka-
Volterra mappings, this fact turned out to be different. As a result, the following theorem was
obtained for degenerate mappings.

Theorem 2 If the skew-symmetric matrix corresponding to mapping (4) is degenerate, then
the number of fixed points of this mapping is infinite.
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Proof To prove Theorem 2 consider the following case:

V2 :


x
′
1 = x1(1− a12x2 + a13x3),
x
′
2 = x2(1 + a12x1),
x
′
3 = x3(1− a13x1).

By solving the equation V x = x, the fixed points of the mapping are found. This is the
vertex e1(1, 0, 0) and all the points belonging to the edge of Γ13 = {α, 0, 1− α} , 0 ≤ α ≤ 1.

The characters of the fixed points are revealed by analyzing the spectrum of the Jacobian:

(1− λ)3 + [(x3 − x1)a13 + (x1 − x2)a12)](1− λ)2 + [a12a13x1(x2 + x3 − x1)](1− λ) = 0.

By solving the last equation, the eigenvalues of the mapping V are obtained

λ1 = 1, λ2,3 =
2 + [(x3 − x1)a13 + (x1 − x2)a12]∓

√
D

2
,

D = [(x3 − x1)a13 + (x1 − x2)a12]2 − 4a12a13x1(x2 + x3 − x1).

According to the definitions of fixed points, the following results are obtained and presented in
Table 2.

Table 2: Description of the characters of fixed points of the mapping V2.

Fixed points Eigenvalues The type of the fixed point
e1(1, 0, 0) λ1 = 1;λ2 = 1 + a12;λ3 = 1− a13 saddle
e2(0, 1, 0) λ1 = λ2 = 1;λ3 = 1− a12 attracting (an attractor)
e3(0, 0, 1) λ1 = λ2 = 1;λ3 = 1 + a13 a repeller
∀x∗ε(e3, N) λ1 = λ2 = 1;λ3 = 1− αa12 + (1− α)a13 a repeller
∀x∗ε(N, e2) λ1 = λ2 = 1;λ3 = 1− αa12 + (1− α)a13 attracting (an attractor)

2

The phase portraits of the trajectories of the interior points, according to the character of
the fixed points, are shown in Figure 4.
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Figure 4: Phase portrait of trajectories of interior points of the degenerate mapping V2.

This case was given for a reason, as this special case can be represented as a discrete
model of the compartmental models SIR, SIRD [36–39]. As it turned out, the degenerate
cases of quadratic Lotka-Volterra mappings can act as a mathematical model in problems of
epidemiology and economics. This justifies the relevance of these discrete mappings [37–41].

5 Conclusion

In the paper, the class of quadratic Lotka-Volterra mappings with matrices in a general position
and degenerate matrices is considered. As it turned out [14,15,20,21], in the case when the skew-
symmetric matrix corresponding to the discrete Lotka-Volterra mapping (4), introduced in [14]
and [15] is a matrix in a general position, the mapping can be associated with a tournament.
But in the case when the skew-symmetric matrix is degenerate, then the mapping is associated
with a partially directed graph. The study of Lotka-Volterra mappings (4) using elements of
the graph theory helps to clearly see the phase portrait of the flow of trajectories of interior
points.

In [20] and [24], it was proved that if the Lotka-Volterra mapping is a mapping in general
position, then its set of fixed points is always finite. In this paper, it is proved that, in the
degenerate case, the set of fixed points is infinite. It was also possible to prove that the fixed
points of the Lotka-Volterra mapping in a general position are always hyperbolic. The elements
of the set are called oriented edges or arcs. In the problems of population genetics, there is
a need to study the evolution of a biological system over time. In many cases, the evolution
of the system is described by quadratic mappings of the simplex into itself. From a biological
point of view, the homeomorphism of the evolution operator means the possibility of restoring
the prehistory of a biological system according to the known state of the system at the moment.
In addition, it was possible to prove that the fixed points of the Lotka-Volterra mapping in a
general position are always hyperbolic.
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