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Abstract Robustness, efficiency, and accuracy are qualities that excellent algorithms
should have. Due to the simplicity and minimal storage requirements, Conjugate gradi-
ent (CG) methods are useful for solving large-scale, unconstrained optimization problems.
Despite that, it has a few drawbacks. Even if they have high numerical performance, cer-
tain approaches lack global convergence properties; therefore, the solutions might not
be the most accurate. Various methods and modifications have been done. Some for-
mulations would be difficult to comprehend and apply, and would lead to high CPU
time. The proving process would also be impacted by the complex formulations. Over
the past years, researchers have developed various globally convergent CG methods, but
with a complicated algorithm, it rather hampered the implementation. Therefore, new
CG methods with a derivate-free approach that have good convergence properties and
outperform the existing CG coefficients in terms of number of iterations (NOI), num-
ber of function evaluations (NFE), and central processing time per unit (CPU time) are
proposed. The proposed method will employ a non-derivative approach. This approach
should make the algorithm’s processing time as minimal as possible. The comparison for
derivative-free tools among the existed derivative-free CG. The proposed approach was
chosen because it combines the strengths of the CG method with derivate-free optimiza-
tion to optimize complicated objective functions without explicitly computing derivatives.
This paper will show the derivate-free CG, which was proven to fulfil both convergence
analysis and numerical performance.

Keywords Conjugate Gradient Method, Derivative-Free, Hybrid, Nonlinear Equations,
Projection Method.
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1 Background/Objective and Goals

Developing a hybrid CG approach that is derivative-free and effectively optimizes nonlinear
equations without requiring derivative information is a challenge. In order to obtain rapid
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convergence and robust performance across a variety of optimization problems, this approach
tries to combine the adaptability of derivative-free optimization techniques with the computing
efficiency of CG approaches. Large-scale problems can be effectively optimized using classical
CG methods, but it usually need derivative information, which isn’t always available or accu-
rate. While derivative-free optimization techniques present an alternative approach, it might
not possess the same efficiency and convergence properties as CG methods. A hybrid approach
that combines the strengths of each might offer a powerful derivative-free optimization solution.
In accordance with its derivative-free approach, the coefficient based on hybrid CG methods
was given, which has strong convergence qualities, validity, reliability, accuracy, and outper-
forms the current CG coefficients in terms of NOI and CPU time [1,2]. This approach should
make the algorithm’s processing time as minimal as possible.

The goal of this study is to discover ways to enhance the hybrid CG method to answer
the aforementioned problems, which are complicated formulations, a high number of CPUs,
and NOI. In order to demonstrate their effectiveness and highlight the benefits for the fourth
industrial revolution, we will investigate how the suggested approach may be applied to im-
age restoration problem. This study aims to propose a derivative-free approach in hybrid CG
method, specifically using the Hybrid-Syarafina-Mustafa-Rivaie (HSMR) method [3]. HSMR
method is a combination of Rivaie, Mustafa, Ismail, and Leong (RMIL) method [4] and Syara-
fina, Mustafa, Rivaie (SMR) [5] while using under exact line search. The HSMR method has
outperformed the other hybrid CG methods in terms of NOI and CPU time. A modified hybrid
CG method that neglects the computation of function gradients is called the derivative-free
hybrid CG method. This renders it particularly useful in cases when computing the gradi-
ent is either complicated or costly. The comparison for derivative-free tools is concentrated
on the derivative-free SMR (DF-SMR) method [2], and the proposed method of this study.
The proposed method was chosen because it combines the strengths of the CG method with
derivative-free optimization to optimize complicated objective functions without explicitly com-
puting derivatives.

A graphical representation of a different optimization algorithm’s performance on a set
of problems is called a performance profile. It also compares the effectiveness of different
algorithms and determining which one works best for a given problem may be done using this
helpful method [6]. Plotting the performance profiles of different algorithms on a single graph is
the method of performance profile comparison. The performance ratio, which is the ratio of the
algorithm’s time to the best algorithm’s time, is shown by the x-axis of the graph. The y-axis
is showing the proportion of problems that the algorithm resolves within a certain tolerance
range. When evaluating the performance of different algorithms on a variety of problems using
the performance profile, the best algorithm for a given problem may be identified. The best
algorithm is the one that has the highest ratio of performance and the highest percentage of
problems resolved within the tolerance limit.

This study aims to improve the HSMR CG method by modifying the CG coefficient, which
derives from the CG formula, which is well-known for its good convergence features. Two com-
ponents are necessary to obtain high overall performance: restart property at the numerator
[7, 8] and simple expression at the denominator in the form of descent direction or gradient
vector [4, 9]. Furthermore, the derivative-free HSMR (DF-HSMR) is chosen where the non-
derivative approach is required. The proposed method is used to solve large-scale nonlinear
equations with convex constraints. The aim is to improve hybrid CGs performance in solving
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larger scale problems while also saving a significant amount of time due to its derivative-free
algorithm. The approach is designed to be more efficient in tackling constrained optimization
test problems as well as real-life problems. Moreover, as demonstrated theoretically and numer-
ically, the method must possess sufficient descent and global convergence properties. There-
fore, the effectiveness of the proposed method in resolving constrained optimization problems,
its convergence properties, and its applicability for real-life applications in image restoration
[10,11].

2 Methods

A numerical approach for solving large-scale nonlinear systems of equations without use of
function derivatives is the derivative-free CG methods [12], and it is established on the notion
of minimizing a quadratic model of the function along a conjugate direction [13]. The goal
of this technique is to overcome the obstacles in calculating or approximating derivatives that
could be expensive, inaccurate, or unavailable for certain problems [13], and the suitability of
this method lies in its ability to handle nonsmooth or noisy functions that cannot be handled
by derivative-requiring methods. When using this method, one should specify an initial point
along with a stopping criterion while also considering relevant parameters for both the line-
search and conjugate gradient techniques. Under some mild assumptions, the method generates
a sequence of iterates that converge to a solution of the nonlinear system [12]. One of the main
benefits of using this method is that it is simple to apply without requiring any derivatives.
Furthermore, it guarantees global convergence. Efficient and robust handling of large-scale
problems is another capability it has [14].

The performances of each solver are often shown and compared in a table based on the CPU
time, NOI, and NFE. Because there are a large number of data sets, this method of interpreting
the results sometimes led to a point of disagreement. In order to solve this problem, various
tools for analyzing the data had been studied. Billups, Dirkse, and Ferris developed the first
performance comparison method [15]. The ratio of one solver’s runtime to the best runtime
is used to compare solvers. The solvers are ranked according to the percentage of problems for
which their time is either very competitive or competitive.

The SMR method has been proposed by Mohamed et al. in 2016 [5]. The denominator
of βSMR

k maintains the same form as that of βRMIL
k , and the method proposed is based on the

idea of the RMIL method. Also changed from the βRMIL
k is the numerator. Presented below is

the coefficient of SMR:

βSMR
k = max

{
0,
||gk||2− |gTk gk−1|)

||dk−1||2

}
where βk is the CG coefficient, gk is the gradient, and dk is the search direction. According
to the equation above, the maximum feature causes the value of βSMR

k to automatically revert
to zero when the second expression tends to the negative values. The aim of this equation is
to enhance the method by avoiding the negative values that occurred in RMIL. The classical
version of the CG method, known as SMR, is an extension of RMIL. The hybrid CG method
was proposed as an enhancement of the SMR method [16]. βRMIL

k [4] and βSMR
k [5] are

combined to form HSMR. In order to prevent jamming, the idea is to combine different CG



Nor Deanna Syahirah Mohd Sham and Nur Syarafina Mohamed / MATEMATIKA 41:1 (2025) 123–134 126

algorithms to create a new hybrid convex-combination method [17]. The SMR method has
good computational properties under exact line search, whereas RMIL has strong convergence
properties [4, 5, 18]. A more improved and useful method is produced by combining all the
desirable parameters. A hybrid CG that combines RMIL and SMR is suggested.

βHSMR
k = max

{
0,min

{
βSMR
k , βRMIL

k

}}

Figure 1: Performance Profile for SMR, HSMR, and RMIL.

As can be seen in Figure 1, the performance profile compares each coefficient performance
under exact line search in terms of NOI and CPU time. The top right curve shows the coeffi-
cient’s ability to solve the test functions utilized, while the top left curve shows the coefficient’s
speed in reaching the solution point. These curves demonstrate that, for exact line search,
SMR and HSMR perform better than RMIL, and the outcomes demonstrate that the hybrid
version performs better as it inherited the good characteristics from both SMR and RMIL.

Large-scale nonlinear systems of equations can be solved numerically using the derivative-
free CG method [12]. When the function’s derivative or gradient is unavailable or too costly
to compute, this approach is especially helpful. The CG method is a best option for handling
large-scale unconstrained optimization problems due to its simplicity and does not require a
large amount of storage space [19]. The CG method and the projection method’s benefits are
combined in this derivative-free approach. The derivative-free HSMR method is an enhance-
ment of the HSMR method [3]. Apply βEHSMR

k in place of βESMR
k in the DF-SMR method’s

search direction [2]. Using the same algorithm, it can be used to distinguish between DF-SMR
method and the DF-HSMR method. Nonlinear equation systems with convex constraints can
be expressed mathematically as

v(u) = 0, u ∈ Ω, (1)
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where v : Ω −→ R is a continuous nonlinear mapping and Ω ⊆ Rn is a closed convex set.
The HSMR conjugate gradient method, which will be reviewed below, is the base of the

proposed method. Mohamed et al. [3] suggested using the HSMR method to solve the following
unconstrained optimization problem

min {z(u) : u ∈ Rn} (2)

where z : Rn −→ R is a continuous differentiable function. Let the gradient of z at ut be
represented by ∇z(ut). A sequence of iterates {ut} is produced using the [3] approach using
the recursive formula below

ut+1 = ut + stdt, t ≥ 0 (3)

where u0 is specified to be the sequence’s starting point and ut is the current iterative point.
According to (3), st > 0 is referred to the step size and dt is the search direction defined by the
rule:

dt =

{
−∇Z(ut), if t = 0,

−∇Z(ut) + βHSMR
t dt−1, if t > 0,

(4)

where βHSMR
t , the conjugate gradient parameter, is defined as

βHSMR
t = max

{
0,min

{
βSMR
t , βRMIL

t

}}
. (5)

As can be seen, not all t are likely to descend in the search direction dt, which is indicated
by (4). Select a vector from a subspace µt =

{
p|vTt p = 0

}
to substitute for the second phrase

βHSMR
t dt−1 of the direction (4) in order to maintain decency. Therefore, it obtains

dt = −vt + p, p ∈ µt. (6)

This is undoubtedly inspired by the Gram-Schmidt (MGS) procedure, where the direction used
in [20,21].
Definition 1: Let Ω ⊆ Rn be a closed convex set that is not empty. The projection of any
given y ∈ Rn onto Ω, represented by PΩ[y], is thus defined by

PΩ[y] = arg min{‖y − x‖ : x ∈ Ω}. (7)

One well-known characteristic of the projection operator PΩ, x ∈ Rn is that the following
nonexpansive property holds for any y

‖PΩ[y]− PΩ[x]‖ ≤ ‖y − x‖. (8)
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The new algorithm of the DF-HSMR method is given as follows:

Algorithm
Input. Set up an initial point u0 ∈ Ω,

the positive constants: Tol > 0
ρ ∈ (0, 1), x ∈ (0, 2), a > 0, σ > 0.
Set t=0.

Step 0. Compute vt. If vt ≤ Tol, stop.
Alternatively, generate the search direction dt using the following

dt =

−vt, if t = 0,

−vt + βEHSMSR
t

(
dt−1 −

vTt dt−1

‖vt‖2
jt

)
, if t > 0,

(9)

where βEHSMSR
t is computed by (5).

Step 1. Determine the step size st = max {aρj|j ≥ 0} such that

v(ut + stdt)
Tdt ≥ σst||dt||2 (10)

Step 2. Compute rt = ut + stdt, where rt is a trial point.
Step 3. If rt ∈ Ω and v(rt) = 0, stop.

Alternatively, compute the next iteration by

ut+1 = PΩ

[
ut − x

v(rt)
T (ut − rt)
‖v(rt)‖2

v(rt)

]
,

Step 4. Finally, set t = t+ 1 and return to step 1.

3 Numerical Experiments

In this section shows the numerical performance of the proposed method, DF-HSMR, compared
to DF-SMR, using the Dolan and More performance profile [22]. The NOI, NFE, and CPU time
are among the metrics that are taken into consideration using the Dolan and More performance
profiles. The same algorithm that was proposed in [2] is applied in this study. Ten test problems
were chosen, and for each test problem, seven initial starting points were picked. All codes were
coded using MATLAB R2024b and executed on a desktop running Windows 11 and equipped
with an AMD Ryzen 5 5600H processor, 16.0 GB of RAM, and 3.30 GHz CPU. The following
elements are considered in the experiments:

• Parameters for derivative-free HSMR,pick a = 1, ρ = 0.8, σ = 10−4, x = 1.2, T ol = 10−6

same as derivative-free SMR [2].

• Dimensions: 1 000, 5 000, 10 000, 50 000, 100 000.

• Initial points:
u1 = (0.1, 0.1, . . . , 0.1)T , u2 = (0.2, 0.2, . . . , 0.2)T ,
u3 = (0.5, 0.5, . . . , 0.5)T , u4 = (1.2, 1.2, . . . , 1.2)T , u5 = (1.5, 1.5, . . . , 1.5)T ,
u6 = (2, 2, . . . , 2)T , u7 = rand(0, 1).
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The test problems with v = (v1, v2, . . . , vn) are listed below:
Problem 3.1 [23].Exponential function:

v(u) = eu1 − 1, vi(u) = eui + ui − 1, for i = 2, 3, . . . , n, and Ω = Rn
+.

Problem 3.2 [23].Modified logarithmic function:

vi(u) = ln(ui + 1)− ui
n
, for i = 1, 2, 3, . . . , n,

Ω =

{
u ∈ Rn :

n∑
i=1

ui ≤ n, ui > −1, i = 1, 2, . . . , n

}
.

Problem 3.3 [24].The elements of the function v(i):

vi(u) = 2ui − sin(ui), for i = 1, 2, . . . , n.

Problem 3.4 [25].Discrete boundary value:

v1(u) = 2u1 + 0.5m2(u1 +m)3 − u2,

vi(u) = 2ui + 0.5m2(ui +mi)3 − ui−1 + ui+1, for i = 2, 3, . . . , n− 1,

vn(u) = 2un + 0.5m2(cn +mn)3 − un−1,

m =
1

(n+ 1)
.

Problem 3.5 [23].Strictly convex function I:

vi(u) = eui − 1, for i = 1, 2, . . . , n.

Problem 3.6 [23].Strictly convex function II:

vi(u) =
i

10
eui − 1, for i = 1, 2, . . . , n.

Problem 3.7 [26].Tridiagonal exponential function:

v1(u) = u1 − ecos(m(u1+u2)),

vi(u) = ui − ecos(m(ui−1+ui+ui+1)), for i = 2, . . . , n− 1,

vn(q) = un − ecos(m(un−1+un)),

m =
1

n+ 1
.

Problem 3.8 [27].Nonsmooth function:

vi(u) = ui − sin |ui − 1|, for i = 1, 2, 3, . . . , n,

Ω =

{
u ∈ Rn :

n∑
i=1

ui ≤ n, ui ≥ −1, i = 1, 2, . . . , n

}
.
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Problem 3.9 [23].Trigexp function:

v1(u) = 3u3
1 + 2u2 − 5 + sin(u1 − u2) sin(u1 + u2),

vi(u) = 3u3
i + 2ui+1 − 5 + sin(ui − ui+1) + 4ui − ui−1e

(ui−1−ui) − 3,

for i = 2, . . . , n− 1,

vn(q) = −un−1 − e(un−1−un) + 4un − 3.

Problem 3.10 [28].Penalty I:

ti =
n∑

i=1

u2
i , r = 10−5, vi(u) = 2r(ui − 1) + 4(ti − 0.25)ui, fori = 1, 2, 3, ..., n.

Figure 2: Performance profiles based on number of iterations (NOI).
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Figure 3: Performance profiles based on number of function evaluations (NFE).

Figure 4: Performance profiles based on CPU time (in seconds).

In the performance profile, the p(V) represents the fraction of problems where the method
performs within a factor V. Figure 2-4 shows the plotting of the DF-SMR and DF-HSMR with
comparison to NOI, NFE, and CPU time. DF-HSMR has considerably outperformed DF-SMR
in terms of NOI, NFE, and CPU time. It is evident from Figure 2, the NOI performance
profile, that DF-HSMR performs better than DF-SMR, since DF-HSMR can solve 99% of the



Nor Deanna Syahirah Mohd Sham and Nur Syarafina Mohamed / MATEMATIKA 41:1 (2025) 123–134 132

test problems with fewer iterations, while DF-SMR can solve 96% of the test problems with
fewer iterations. Since DF-HSMR solves approximately 99% of the test problems better than
DF-SMR, and DF-SMR solves approximately 98% of the test problems better, it is clear from
Figure 3 that DF-HSMR also performs better than DF-SMR in terms of NFE. The performance
profile as determined by CPU time is shown in Figure 4. The top curve represents the DF-SMR
that resolved the most problems within a factor V of the optimal time. Specifically, DF-SMR
gets around 88% of the test problems solved with the least CPU time, whereas DF-HSMR gets
about 11%. Even though DF-SMR is faster than DF-HSMR, regarding to the ability to solve
the test problems, DF-HSMR is better than DF-SMR.

4 Conclusion

In this paper, the hybrid CG methods and derivative-free methods are all useful tools for
optimization problems, each with its own set of advantages and uses. The derivative-free HSMR
method is chosen to be explored and improved for dealing with complicated optimization issues,
which contributes to the improvement of optimization algorithms. Since this is a new approach
on derivative-free using the hybrid CG method, there is still potential for improvement in using
this method.

5 Future Work

The proposed method should be tested for global convergence and further modifications for
real-life applications in image restoration.
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