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Abstract This research introduces a time-varying autoregressive (TVAR) model, de-
veloped to improve the precision of forecasting in economic time series data. The model
advances the conventional TVAR framework by incorporating potential mean adjustments
and utilizing the Kalman Filter within a Maximum Likelihood Estimation (MLE) frame-
work, with further optimization through the NelderMead method. Applied to the real
gross national product (GNP) data of the United States (U.S.), the model effectively
captures dynamic patterns and structural changes that traditional models often overlook.
The model’s performance is rigorously compared with the widely used Markov switching
autoregressive (MSAR) model, demonstrating superior results in both training and test-
ing forecasts. The TVAR model consistently achieves lower error metrics, underscoring
its robustness and flexibility in capturing dynamic economic trends and providing reliable
forecasts. This research emphasizes the TVAR models potential for broader applications
in economic policy analysis, strategic planning, and decision-making processes, particu-
larly in understanding and predicting economic growth. The models adaptability and
precision make it a valuable tool for economists and policymakers aiming to navigate
complex economic fluctuations with greater confidence as well as accuracy.

Keywords Time Series Analysis; Forecasting; Time-Varying Autoregressive; Kalman
Filtering; Economic Growth.
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1 Introduction

Analyzing time series data is essential across many disciplines, particularly in the economic
sector, where predicting and comprehending economic indicators is vital. Conventional models
like the autoregressive (AR) model usually assume static parameters, restricting their capacity
to adjust to data fluctuations. However, these models are restricted by their linear nature,
making them unable to capture complex nonlinear patterns often present in economic data
[1, 2]. Additionally, economic data are often dynamic, influenced by numerous factors that
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cause structural changes over time. To address this limitation, time-varying parameter (TVP)
models have been developed, allowing model parameters to change over time and providing a
more accurate representation of real-world phenomena [3–6].

TVP models are part of a wider group of state-space models, providing the necessary adapt-
ability to accurately represent the shifting and intricate characteristics of economic indica-
tors [7, 8]. These models are particularly effective in handling non-stationarity in underlying
processes caused by policy shifts, technological advancements, or other external shocks [9]. By
allowing parameters to adapt, TVP models better reflect the true dynamics of the data, leading
to more reliable forecasts and insights.

While TVP models are widely applied in economics, the time-varying autoregressive (TVAR)
model, a specific variant of TVP models, has also gained prominence in fields such as signal
processing and audio analysis [10–12]. The TVAR model incorporates lagged endogenous vari-
ables as predictors, making it particularly suitable for capturing the autoregressive nature of
time series data. Previous studies have demonstrated the superiority of TVAR models in cap-
turing the dynamic nature of data within signal processing, particularly in applications like
sleep EEG analysis and acoustic signal processing. In these contexts, TVAR models have been
employed to track time-varying patterns in brain activity, providing insights into both motor
imagery and sleep state detection. These models have proven useful in analyzing nonstation-
ary EEG signals, where time-varying coefficients can capture the temporal dynamics of neural
oscillations, improving classification accuracy and signal segmentation [11–14].

The adaptability of TVAR models is further demonstrated in their application to sleep EEG
studies, where they estimate parameters and identify alterations in signal characteristics via
segmentation methods utilizing basis functions [15]. Additionally, TVAR models have proven
effective in acoustic signal processing for moving vehicles, where they analyze nonstationary
acoustic signatures to provide insights into vehicle activities and types [16]. TVAR models have
also been adapted into vector autoregressive frameworks for analyzing time-varying variance in
multivariate settings, demonstrating their capability in handling more complex data structures
and interdependencies [17]. Furthermore, TVAR approaches have been extended to model non-
Gaussian processes, showcasing superior performance in managing complex stochastic behaviors
and addressing limitations of Gaussian-based models [18]. However, despite their success in
these areas, the application of TVAR models to economic data and forecasting remains largely
unexplored, presenting an opportunity for further research and development.

We propose a modified TVAR model that integrates potential mean adjustments and em-
ploys the Kalman filter for parameter estimation. This modification enables real-time updates
of parameter values as new data is received. The TVAR model merges the flexibility of time-
varying parameters with an autoregressive structure, improving its capacity to respond to shifts
in underlying data dynamics. This recursive estimation approach ensures that the model stays
relevant and precise over time, making it highly effective for forecasting purposes.

In this research, we applied the TVAR model to U.S. real GNP data to demonstrate its
effectiveness in economic forecasting. The TVAR model’s performance is evaluated against the
widely adopted Markov switching autoregressive (MSAR) model [19–21]. The MSAR model
was first introduced by Hamilton [19] to handle time series data exhibiting nonlinear structural
changes, such as economic data undergoing recessions or policy shifts. This model is highly
popular due to its ability to capture regime shifts or different states in the data, such as
transitions from high to low economic growth. Although MSAR has many advantages, such as
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the ability to detect structural changes, it has limitations in accommodating dynamic changes
in the data over time, particularly when model parameters also change over time.

Some of the results from applying the MSAR model to the same dataset in this study
are drawn from our previous research [21]. In that study, we compared the MSAR model
with the Markov switching models with time-varying parameters (MSAR-TVP), finding that
the MSAR-TVP model outperformed the MSAR model. However, in this study, our focus
is on developing and estimating parameters for the base TVAR model and applying it for
forecasting, which contributes to the body of knowledge in time-series modeling. The TVAR
model we have developed is particularly suited for data that exhibits changes over time. Its
effectiveness is demonstrated by comparing it with the MSAR model. This comparison aims
to highlight the advantages of incorporating time-varying parameters in economic forecasting.
Model accuracy is assessed using metrics such as mean absolute percentage error (MAPE) and
mean absolute error (MAE). This research contributes to the expanding literature on dynamic
modeling methodologies and provides important insights for economists and policy advisors.

The structure of this paper is as follows: Section 2 provides a detailed explanation of the
materials and methods, Section 3 focuses on the discussion of the results and their implications,
and Section 4 presents the conclusions along with recommendations for future research.

2 Materials and Methods

2.1 Time-Varying Autoregressive Model

Time-varying parameter (TVP) models, a subset of state-space models, are designed to account
for the dynamic nature of economic data, allowing parameters to evolve over time [3,22]. In the
context of autoregressive models, this flexibility helps capture structural changes and trends
that static models might miss. A specific variant, the time-varying autoregressive (TVAR)
model, extends this concept by incorporating an endogenous lag variable, effectively capturing
time-dependent dynamics in the data [4, 10–12].

The TVAR model developed in this study incorporates mean adjustments to effectively
handle non-stationary data, with the aim of enhancing forecasting precision The model operates
on an AR(p) process, integrating parameter estimation through the Kalman filter within the
MLE framework, and is further optimized using the NelderMead method. This structure allows
the model to adapt its coefficients dynamically over time, capturing the evolving data patterns.

The TVAR model is formulated as follows:

(yt − µ) = βt,1 (yt−1 − µ) + ...+ βt,p (yt−p − µ) + εt, (1)

(βt,k − δk) = φk (βt−1,k − δk) + νt,k, k = 1, 2, ..., p. (2)

In these equations, yt is the dependent variable at time t, yt−k is the explanatory variable
with the endogenous lag of yt, µ is the mean of the observed data, βt,k is the unknown time-
varying parameter, φk is the autoregressive coefficient, δk is the mean of autoregressive process,
and εt and νt,k are the error terms, which are assumed to follow εt ∼ i.i.d N (0, σ2) and
νt,k ∼ i.i.d. N (0, σ2

k). Equation (1) is known as the measurement equation, while Equation (2)
is referred to as the parameter transition equation.
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For simplicity, this research examines the TVAR model with an AR order of p = 1, denoted
as the TVAR(1) model, expressed as

yt = µ∗ + yt−1βt,1 + εt, (3)

βt,1 = δ∗1 + φ1βt−1,1 + νt,1, (4)

where µ∗ = (1− βt,1)µ and δ∗1 = (1− φ1) δ1.
This approach demonstrates the TVAR model’s capability to adapt to changing economic

conditions by adjusting its parameters in real-time, providing more accurate and reliable fore-
casts.

2.2 Kalman Filtering in TVAR Model

To estimate the time-varying parameter βt,1 in the TVAR(1) model as defined in Equations
(3)-(4), we employ the Kalman filter under the assumption that hyperparameters µ∗, δ∗1, φ1, σ

2

and σ2
1 are known. If these hyperparameters are not known, they can be estimated using the

MLE method before applying the Kalman filter. The Kalman filter is a recursive algorithm
that optimally estimates the unobserved state, here the time-varying parameter βt,1 by utilizing
the available information up to time t, minimizing the mean squared error.

Let Yt = {yt, yt−1, ..., y2, y1} represent the set of observation data up to time t, and Yt−1 =
{yt−1, yt−2, ..., y2, y1} represent the set up to time t − 1. Key notations used include βt|t−1 =

E [βt|Yt−1], with wt|t−1 = E
[(
βt − βt|t−1

)2]
representing the variance based on this informa-

tion. Similarly, βt|t = E [βt|Yt] is the estimate of βt based on information up to time t, with

wt|t = E
[(
βt − βt|t

)2]
representing the corresponding variance. The prediction of yt based on

information up to time t− 1 is yt|t−1 = E [yt|yt−1] and the prediction error, which provides new
information about βt is given by ηt|t−1 = yt − yt|t−1. The conditional variance of the prediction

error is denoted as ft|t−1 = E
[
η2t|t−1

]
. Finally, when considering the entire sample, the esti-

mate of βt based on information up to time T is βt|T = E [βt|YT ] with wt|T = E
[(
βt − βt|T

)2]
,

representing the variance based on this full information set.
The Kalman filter then iteratively predicts and updates these estimates as new data become

available. The prediction and updating equations are as follows:
Prediction:

βt|t−1 = δ∗1 + φ1βt−1|t−1, (5)

wt|t−1 = φ2
1wt−1|t−1 + σ2

1, (6)

ηt|t−1 = yt − (µ∗ − yt−1) βt|t−1, (7)

ft|t−1 = y2t−1wt|t−1 + σ2. (8)

Updating:
βt|t = βt|t−1 + wt|t−1yt−1

[
f(t|t−1)

]
η(t|t−1), (9)

wt|t =

(
1−

wt|t−1y
2
t−1

ft|t−1

)
wt|t−1. (10)
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After applying the Kalman filter, the next step in the TVAR(1) model estimation involves
the integration of filtering techniques with a focus on optimizing the model’s parameters. Ini-
tially, the values for β0|0 and w0|0 are set to initialize the Kalman filter process. As the filter
iterates, it recursively computes βt at each time step t, updating predictions with the arrival of
new data.

The log-likelihood function, which measures the fit of the model to the observed data, is
then approximated by calculating the conditional density f (yt|Yt−1) at each time step. This
recursive process of updating and refining estimates is crucial for maintaining the accuracy and
reliability of the model. The log-likelihood function is then approximated by:

l (θ) = lnL (θ) =
T∑
t−1

ln f
(
yt|Y(t−1)

)
, (11)

where f (yt|Yt−1) is the density of yt given the past observations up to time t−1. The recursive
likelihood function for the TVAR model is given by:

l (θ) = −1

2

T∑
t−1

[
ln ((2π) |ft−1) + η2t f

−1
t−1
]
. (12)

To optimize the model parameters, the NelderMead method, which is a nonlinear optimiza-
tion technique, is employed [23,24]. This method iteratively adjusts the parameter vector θ to
maximize the likelihood function, which serves as the objective criterion. Convergence criteria,
including the maximum number of iterations and changes in function value, are set to ensure
that the optimization process yields the best possible estimate for the model’s parameters.
This ensures that the model’s predictions are not only precise but also adaptable to new data,
reflecting the dynamic nature of the TVAR framework.

2.3 Model Performance Evaluation

The mean absolute percentage error (MAPE) and mean absolute error (MAE) are critical met-
rics for evaluating the accuracy of forecasting models [25]. MAPE expresses accuracy as a
percentage, making it easily understandable for non-technical audiences, while MAE indicates
the average error magnitude without regard to direction, reflecting how much predicted values
deviate from actual observations. Lower values of MAPE and MAE generally signify better
model accuracy. MAPE is particularly valued for its clarity and comprehensive error represen-
tation [26]. For reference, typical ranges of MAPE values for industrial and business data, and
their corresponding interpretations, useful for evaluating forecasting model performance, are
detailed in [27].

The formulas for MAPE and MAE are defined as follows:

MAPE =
1

T

T∑
t=1

∣∣∣∣yt − ŷtyt

∣∣∣∣ , (13)

MAE =
1

T

T∑
t=1

|yt − ŷt| , (14)

where yt is the actual value and ŷt is the predicted value.
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3 Results and Discussion

This section describes the implementation and performance evaluation of the TVAR model
using quarterly U.S. real GNP data, following historical insights from Hamilton’s MSAR
model [19]. The training data, denoted by , spans from Q3 1952 to Q4 1984, while the test-
ing period covers Q1 1985 to Q4 1986. These datasets, denominated in billions of chained
1982 dollars, were sourced from the Business Conditions Digest issues of February 1986 and
March 1990. Specifically, series 50, pages 102 and 80, represent the training and testing
datasets. The data can be accessed at: https://fraser.stlouisfed.org/title/business-conditions-
digest-43?browse=1980s#7474 (accessed on 1 January 2024). A comparative analysis was car-
ried out to evaluate the forecasting performance between the TVAR model and the MSAR
model.

Before initiating the analysis, the fundamental properties of the dataset were investigated.
The Tersvirta test results indicated nonlinearity, with a p-value of 0.0306, while the Chow
test identified significant structural changes with a p-value below 2.2 × 10−16, assuming a
significance level of α = 0.05. The TVAR model, which is well-suited for handling structural
changes in data, was applied to the transformed and differenced series. This data transformation
involved scaling by 100 times the log-difference of quarterly real GNP, represented as Yt =
100×∆ ln (Zt), which captures the economic growth rate.

Following this, the TVAR model was applied to Yt under an AR(1) process, formulated as
an TVAR(1) model. Parameter estimation was performed using MLE, integrating the Kalman
filter, and refined through numerical optimization with the NelderMead method. The resulting
equations are as follows:

ŷt = µ̂∗ + yt−1β̂t,1, (15)

β̂t,1 = δ̂∗1 + 0.5527β̂t−1,1. (16)

The estimation process provides the time-varying parameter β̂t,1, which is depicted in Figure
1. Additionally, the estimates for other parameters across various time intervals, including µ̂∗

and δ̂∗1, are presented in Figure 2.

Figure 1: A Time-Varying Parameter β̂t,1 of the TVAR Model
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(a) (b)

Figure 2: Parameter Estimates at Various Time Points: (a) µ̂∗, (b) δ̂∗1

Figure 1 shows the time-varying parameter β̂t,1 which represents the autoregressive coeffi-
cient in the TVAR model. This parameter fluctuates over time, reflecting the model’s ability
to adjust to the dynamic nature of the data. Meanwhile, Figure 2 displays the fluctuations of
parameters µ̂∗ and δ̂∗1 over time. Parameter µ̂∗ exhibits significant variation in the early time
periods, followed by gradual stabilization, while δ̂∗1 demonstrates a more stable pattern after an
initial shift. These figures illustrate how the parameters in the TVAR model adapt to changes
in the data, highlighting the model’s capability to capture structural shifts effectively.

In this research, the TVAR model’s performance on U.S. real GNP data was compared to
that of the MSAR model, which applies an AR(1) process across its two regimes (denoted as
MS(2)-AR(1)). The MSAR model estimation employed the MLE method, utilizing the Hamil-
ton filter, and optimization was achieved through the NelderMead method. A comprehensive
discussion of the MSAR model’s application to U.S. real GNP data can be found in our earlier
work [21].

Table 1: Comparison Between TVAR and MSAR Models for U.S. Real GNP (1952-1986)

Model
Training Testing

Maple (%) MAE MAPE (%) MAE

TVAR 2.2168 49.7792 2.4261 87.9299

MSAR 3.3042 62.4868 4.3318 159.2326

Based on the analysis shown in Table 1, the TVAR model outperforms the MSAR model in
both training and testing evaluations. During the training period, the TVAR model achieves a
lower MAPE of 2.22% and an MAE of 49.78, highlighting its capability to capture underlying
patterns and structural shifts in the data effectively.

In the testing period, the TVAR model continues to excel, with a MAPE of 2.43% and
an MAE of 87.60, outperforming the MSAR model, which has a higher MAPE of 4.03% and
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an MAE of 147.71. These results indicate that the TVAR model provides more accurate
predictions, making it better suited for both training and testing forecasting of U.S. real GNP
data.

The diagnostic tests shown in Table 2 indicate that the residuals from both the TVAR and
MSAR models follow a normal distribution and exhibit white noise characteristics. The p-
values from the Kolmogorov-Smirnov (KS) test [28] and the Durbin-Watson (DW) test [29,30]
all surpass the significance level of α = 0.05, suggesting that the residuals meet the necessary
assumptions for valid statistical analysis.

Table 2: Residual Diagnostics of TVAR and MSAR Models for U.S. Real GNP (19521984)

Model Regime KS Test (p− Value) DW Test (p− Value)

TVAR – 0.6268 0.9739

MSAR Regime 1 0.4025 0.1099

Regime 2 0.1699 0.5465

As shown in Table 2, the MSAR model divides the data into two regimes, labeled Regime
1 and Regime 2, representing periods of economic expansion and recession, respectively. Each
regime is modeled independently with its own parameters to account for structural shifts in the
data. In contrast, the TVAR model does not rely on regimes; instead, it continuously adjusts
its parameters over time, capturing changes without the need for predefined structural breaks
as seen in the MSAR model.

In summary, the TVAR model demonstrates superior performance over the MSAR model
when analyzing U.S. real GNP data, applicable for both training and testing periods. The
TVAR model’s strength lies in its ability to better capture and adapt to dynamic structural
changes, making it a robust tool for economic time series forecasting. In contrast, while the
MSAR model shows strong initial performance, the TVAR model consistently surpasses it in
longer-term predictions, emphasizing its robustness and flexibility in modeling complex eco-
nomic phenomena.

Figure 3 illustrates the comparative training and testing performance of the TVAR and
MSAR models on U.S. real GNP data. The TVAR model aligns more closely with actual
data during the training period, displaying high accuracy in tracking real GNP trends. It
also demonstrates a superior ability to capture dynamic patterns and structural changes in the
testing period, evidenced by its lower MAPE and better alignment with the test data compared
to the MSAR model.

The TVAR model was utilized to predict outcomes on an expanded dataset, encompassing
training data from Q1 1947 to Q4 2017 and testing data from Q1 2018 to Q4 2019. The dataset
which is obtained from the Federal Reserve Economic Data (FRED) and available at
https://fred.stlouisfed.org/series/GNPC96 (accessed on 30 June 2024), enabled an evaluation
of the model’s forecasting capability over a longer time span. The TVAR model exhibited strong
performance with a MAPE of 5.06% and an MAE of 605.09 for the training data, indicating
a high level of forecasting accuracy. For the testing data covering eight quarters, the model
recorded a MAPE of 18.02% and an MAE of 3,738.56, which still falls within the range of good
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forecasting accuracy. This performance is depicted in Figure 4, illustrating the TVAR model’s
training and testing predictions.

Figure 3: Comparison of TVAR and MSAR Model Performance on U.S. Real GNP (1952-1986)

Figure 4: Comparison of Actual and Forecasted U.S. Real GNP using the TVAR Model (1947-
2019)

Despite the increased error in the testing forecast, the TVAR model successfully met the
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assumptions of normality and white noise, validating its accuracy. However, the model faced
challenges in maintaining prediction precision over extended testing periods, indicating some
limitations in longer-term forecasts.

4 Conclusion

This study introduces a modified time-varying autoregressive (TVAR) model designed to im-
prove forecasting accuracy for economic time series data, specifically U.S. real GNP. The model
demonstrates superior performance compared to the MSAR model, with lower MAPE and MAE
values during both the training and testing phases. However, limitations exist, particularly in
maintaining accuracy over extended periods, as the model relies on first-order autoregressive
processes, which may hinder its effectiveness for long-term forecasts. Additionally, the models
performance may decline with non-Gaussian data. Future research could address these issues
by incorporating higher-order autoregressive processes, exploring non-Gaussian error distribu-
tions, and employing more advanced parameter estimation methods such as Bayesian Markov
chain Monte Carlo (MCMC) with Gibbs sampling. Overall, the TVAR model proves to be
a valuable tool for economic analysis and forecasting, offering insights for policymakers and
economists, while its flexibility makes it a strong candidate for future development in time
series forecasting.
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