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Abstract The competitiveness and expansion of small and medium-sized business (SMEs)
engaged in food manufacturing is restricted by ineffective food production systems. This
paper applied discrete event simulation to construct and simulate a representation of a
food production line which enables better management and performance enhancement.
The simulation results inform three improvement models (IMs) designed to reduce bot-
tlenecks by adjusting operator allocation and soybean entry intervals. Data Envelopment
Analysis (DEA) with the Banker, Charnes, and Cooper (BCC) output-oriented model
is employed to determine the efficiency score of each improvement scenario. Addition-
ally, Cross efficiency and Super efficiency BCC methods are used to rank these strategies,
aiding in the selection of the best improvement model to maximise total production and
average resource utilisation. This study found that IM1 which involves Operator 1 manag-
ing the grinding and coagulation process, Operator 2 handling the filtering and moulding
process, and Operator 5 being assigned to the cutting process with a 15-minute interval
between soybean entries selected as the most effective improvement model. IM1 signifi-
cantly reduces the average cycle time by 30.25%, increases total production output from
144 kg to 198 kg and achieves a modest increase of 5.91% in average resource utilisation.
This study demonstrates the value of discrete event simulation and DEA in operational
decision-making by providing strategies that help in identifying and eliminating bottle-
necks and optimise the food production process. The findings contribute to improve the
competitiveness of SMEs by providing a reproducible framework for optimising production
efficiency and resource usage in food manufacturing systems.
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1 Introduction

The food manufacturing industry transforms raw agricultural ingredients into safe, high-quality
and nutritious food products that satisfy demands and preferences of consumers. Food produc-
tion is highly dependent on specialist machinery, equipment and operators to ensure efficiency
and quality. Small and medium-sized businesses (SMEs) contribute significantly to a nation’s
industrial economic growth [1]. Despite government support, SMEs frequently encounter ob-
stacles to growth. As a result, focusing on better processing systems is critical for dealing with
these limits and increasing overall operational effectiveness.

Discrete event simulation (DES) is a computational modelling technique that allows creation
of virtual representations of real-world production lines for analysing and optimising complex
food manufacturing processes. As Kelton et al. [2] highlights that DES allows for thorough
analysis and optimisation without disrupting existing business operations. It helps informed
decision-making by enabling the exploration of various production scenarios and identifying
inefficiencies within the production line.

The objectives of this study are to identify the food production process limitations, evaluate
the relative efficiency of various improvement strategies and select the best improvement model
in order to enhance the operational effectiveness. This research aims to answer the following
questions. Firstly, how can discrete event simulation (DES) be applied to model and analyse
the production line to identify inefficiencies? Then, how does Data Envelopment Analysis
(DEA) rank improvement strategies for food manufacturing production lines based on their
performance in a simulated environment, with a focus on maximizing production output and
resource utilization? Therefore, a simulation model was developed using Arena software to
simulate the processes of the bean curd puff production which enables bottlenecks identification
in the production process. Data Envelopment Analysis (DEA) can differentiate and rank various
improvement strategies to provide valuable guidance in selecting the most impactful strategies
for optimising the bean curd puff production line in terms of maximising the total production
output and average resource utilisation.

2 Literature Review

Discrete event simulation used to study systems by representing them as a sequence of distinct
events that happen at specific times. Entities move through a sequence of activities, in between
which they wait in queues. Each entity can be assigned unique characteristics that influence its
behaviour within the system. The time durations for these activities are generated by sampling
from probability distribution functions [3].

There is a large volume of published studies describing the applications of discrete event
simulation in the manufacturing industry. Rani et al. [4] integrated simulation and the DEA-
BCC model to analyse the efficiency of a cassava chip production line. The study was based on
data collected over a four-hour period and applied Cross efficiency and Super efficiency meth-
ods due to multiple Decision Making Units (DMUs) with an efficiency score of 1. Their model
increased production output from 188 to 213 packets, reduced waiting and production times,
and improved operator utilisation by 0.5%. While the study showcases the potential of simu-
lation and DEA in enhancing production efficiency, its short data collection period limits the
generalizability of the findings. Additionally, the improvement model focuses on adding opera-



Xue Ni Yip et al. / MATEMATIKA 41:2 (2025) 233–248 235

tors to bottleneck areas, reallocating operators, and process improvement, without considering
adjustments to the time arrival of entities, which may impact overall system performance. Li-
ong et al. [5] employed simulation to optimise resource allocation in chilli sauce production.
The findings revealed that the most effective course of action not only increased chilli sauce
production but also reduced resource costs. However, this study primarily focuses on resource
allocation without considering long-term sustainability. Subrata et al. [6] used simulation to
model a bottle production line, identifying a bottleneck at the capping station. They proposed
replacing it with an automated machine, reducing waiting times and increasing overall output.
Additionally, they conducted a breakeven analysis to determine the time required to recover the
cost of the new machine. Despite these contributions, the authors investigated limitations in-
cluding the lack of consideration for worker fatigue and machine breakdowns. Moreover, the use
of average cost and revenue values which may not accurately represent real-world conditions.

Krishnan et al. [7] studied discrete event simulation in a tyre manufacturing plant to iden-
tify the presence of bottleneck. They also utilised Pareto analysis to confirm the bottleneck
simulation analysis result and cause-effect diagram to determine the root causes that lead to the
problems detected. Based on their findings, they suggested modifying the calendering machine
and implementing a pyrometer to avoid waste from under heating or overheating and save time.
They also proposed future research to analyse productivity by automating transport systems
between processes within the plant. Edirisinghe and Karunarathne [8] employed a combination
of simulation, Pareto analysis and cause-and-effect diagrams to identify and address limitations
in a solid tire manufacturing sector. Their findings pointed to inadequately maintained outdated
machines and frequent power failures as key issues and recommended upgrading machines and
adopting new technologies. For future studies, they suggested conducting an extensive analysis
of the entire tire production process, including resilience, press-on band, and flap tire-building
processes, and employing different productivity improvement techniques.

Wogiye [9] conducted a discrete event simulation study on line balancing in shoemaking.
The research identified disruptions in stitching assembly and lasting and finishing lines. By
simulating different scenarios, the study achieved improved line and production efficiencies,
increased output and reduced waiting times in these critical areas. Dereje et al. [10] addressed
challenges in a mineral water production line facing low throughput, long cycle times and equip-
ment failures issues. Their simulation model successfully identified bottlenecks and eliminated
bottlenecks. The result shows that there is a significant improvement in throughput and cycle
time with the effectiveness of implementing a preventive maintenance strategy.

Zaibidi et al. [11] leveraged simulation modelling to assess the performance of a shrimp paste
production system. Their investigation successfully identified a bottleneck within the packaging
process and underutilised resources. By adding an additional packaging station, they achieved
a reduction in total waiting time. Sinem and Merve [12] investigated production lines in a
meat processing industry to improve their production lines and meet the increasing demand
of customers. Through simulation modelling, they developed four scenarios to enhance final
product output while maintaining the existing working time by evaluating the utilisation rate
of machines. The analysis identified the scenario by changing delicatessen production plan,
increasing freezer speed for sliced salami group and adding printer that yielded the highest
production increase while fulfilling the company’s production goals. Teshome et al. [13] applied
discrete event simulation to analyse a polo shirt production line. Their study identified areas
for improvement and proposed alternative line arrangements. There were four proposed line
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balancing scenarios while the fourth scenario with merging similar operations and resource
adjustment brought the resulted in significant gains in output, capacity utilisation, and reduced
waiting times. Additionally, the study highlighted cost savings through reduced labour cost
and increased revenue potential.

3 Methodology

The research methodology involves data collection from the existing system, developing a simu-
lation model using Arena, validating the data once the simulation model is constructed, propos-
ing improvement models, applying Data Envelopment Analysis (DEA) with the BCC model,
and ranking and selecting the improvement models based on their efficiency scores, as shown
in Figure 1.

Figure 1: Process Flow Diagram

In this study, the simulation is designed to focus on the system’s maximum capacity by
excluding resource downtime, such as operator breaks or machine breakdowns. In addition, the
inter-arrival time for soybeans is assumed to be consistent rather than random or following a
specific distribution pattern to ensure the system’s performance is evaluated under controlled
condition. Furthermore, the simulation assumes that there are no ”re-work” activities which
refers to any pre-processed soybean that were rejected in the middle of the production process
since the rejection rate is very low.

3.1 Data Collection

All data for the model were gathered through direct observation with the details on operator
and machine counts, processing time for each stage of production and operator assignments
using a stopwatch. Since the factory’s operations follow a repetitive daily cycle without high
fluctuations in workload, observations were conducted over four operating days, from 6:00 a.m.
to 1:00 p.m. Four days observation period was chosen to enhance the reliability of the data
and result of the system’s overall performance. The collected data was analysed using Arena’s
input analyser. Input analyser helps to determine appropriate probability distributions for
each process to improve the validity and reliability of the simulation model. Table 1 shows the
resulting expression distribution values for each process time.
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Table 1: Distribution of the process in bean curd puff production

Process Distribution Expression value

Grinding Beta 3.15 + 1.5 * BETA (1.31,1.98)

Filtering Beta 9 + 3 * BETA (0.954,1.07)

Cooking Exponential 8 + EXPO (3.34)

Coagulation Beta 9 + 11 * BETA (1.52, 1.4)

Moulding Normal NORM (4.57, 0.537)

Pressing Beta 8 + 15 * BETA (1.29, 1.15)

Pressing with machine Erlang 31 + ERLA (0.784, 4)

Cutting Triangular TRIA (8.38, 13.6, 15)

Frying Erlang 17.2 + ERLA (0.196, 3)

3.2 Simulation Model

The bean curd puff production process was modelled and visualised using Arena software version
16.2 as shown in Figure 2.

Figure 2: Simulation model in Arena software

The production of bean curd puff involves nine main processes. It begins by grinding
softened soybeans into a slurry using a grinding machine. This slurry is mixed with hot water
to create soybean milk and then filtered to separate it from the dregs using a filtering machine.
After that, the soybean milk is cooked with a steam boiler. Coagulants are added to form curds
which are subsequently shaped in moulds, compressed, and sliced into squares. Finally, these
squares are fried until they become crispy and golden brown.

Currently, five operators are involved in the bean curd puff production process, with a 15-
minute interval between each soybean input. The details of the operator assignments shown
in Table 2. However, the roles of operators for coagulation, moulding and cutting can shift
depending on availability.
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Table 2: Operator assignments

Process Number of operators Operator assigned

Grinding 1 Operator 1

Filtering 1 Operator 2

Cooking - -

Coagulation 2 Operator 3, Operator 5

Moulding 2 Operator 1, Operator 3

Pressing - -

Pressing with machine - -

Cutting 2 Operator 2, Operator 4

Frying 1 Operator 4

Once the simulation is complete, a data validation process will be conducted. Sargent [14]
discussed a methodology used to assess the validity of a model by measuring the differences
between the simulation output and actual data. The following formula is applied to ensure that
the model accurately represents the real-world system.

Difference (%) =
|simulation data – actual data|

actual data
× 100. (1)

The difference (%) between the simulated data and actual data must equal or not exceed
10% to declare the model is valid using Equation (1).

3.3 Data Envelopment Analysis (DEA)

Data Envelopment Analysis (DEA) is a nonparametric, “data-oriented” technique developed by
Charnes, Cooper, and Rhodes [15]. It employed linear programming to assess the relative effi-
ciency of comparable entities known as decision-making units (DMUs) which transform various
inputs into outputs. By constructing an efficient frontier based on the best-performing DMUs,
DEA facilitates a data-driven comparison of each unit’s performance. A DMU is considered
fully efficient (score of 1) based on the available evidence if and only if the performances of other
DMUs does not show that some of its inputs or outputs can be improved without worsening
some of its other inputs or outputs.

There are two primary DEA models which are Charnes, Cooper, and Rhodes (CCR) model
and Banker, Charnes, and Cooper (BCC) model where CCR model assumes constant return to
scale (CRS) while BCC model under assumption of variable returns to scale (VRS). Further-
more, DEA models can be oriented towards either inputs or outputs. Input-oriented models
aim to minimise the number of inputs while maintaining the same level of outputs. Conversely,
output-oriented models aim to maximise the number of outputs while using the same level of
inputs. By employing these different models and orientations, DEA provides a comprehensive
analysis of a DMU’s efficiency, allowing for targeted improvement strategies. In this study,
a BCC output-oriented model is used as the factory aims to increase their total production
output and resource utilisation. The BCC output-oriented model is shown below:
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Min q =
m∑
i=1

vixij0 − v0 (2)

subject to
s∑

r=1

uryrj0 −
m∑
i=1

vixij0 + v0 ≤ 0 (3)

s∑
r=1

uryrj −
m∑
i=1

vixij + v0 ≤ 0 (4)

s∑
r=1

uryrj0 = 1, v0 free, ur, vi ≥ ε (5)

where

• j = DMU index

• i = input index

• r = output index

• yrj = the value of the rth output for the jth DMU

• xij = the value of he ith input for the jth DMU

• ur = the weight given to the rth output

• vi = the weight given to the ith input

3.3.1 Cross Efficiency

Traditional DEA models assign an efficiency score of 1 to units on the efficient frontier, indi-
cating they are using resources optimally to produce outputs. However, this approach can lead
to the issue of multiple DMUs being classified as equally efficient, even if their performance
differs [16]. Cross efficiency method was developed as a DEA extension to rank DMUs with
the main idea being to use DEA to do peer evaluation, rather than to have it operate in a
pure self-evaluation mode [17]. Each efficient DMU uses input and output weights from other
efficient DMUs. The Cross efficiency score can be calculated using the following equation:

Ept =

s∑
r=1

urpyrt

m∑
i=1

vipxit

, where p, t = 1, 2, . . . , n (6)

where

• Ept = the score for DMUt using the optimal weights selected by DMUp

• urp = the weight given to the rth output for the DMUp
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• yrt = the value of the rth output for the DMUt

• vip = the weight given to the ith input for DMUp

• xit = the value of the ith input for DMUt

The Cross efficiency refers to the average defined in Equation (7), not the individual score
defined in Equation (6).

Et =
1

n

n∑
p=1

Ept. (7)

3.3.2 Super Efficiency

The Super efficiency BCC technique, introduced by Seiford and Zhu [18], is employed to assess
efficiency while accounting for variable returns to scale (VRS). The Super efficiency BCC model
is as the following:

φ0 = min
m∑
i=1

vikxijo − v0 (8)

subject to
s∑

r=1

uryrj0 = 1 (9)

s∑
r=1

uryrj −
m∑
i=1

vikxij + v0 ≤ 0,

v0free, ui, vi ≥ ε, r = 1, . . . , si = 1, . . . ,mj = 1, . . . , n

(10)

The Super efficiency BCC score should be obtained from

1

φ0

> 1 (11)

and calculated by comparing each DMU’s performance to this virtual best practice unit. Scores
exceeding 1 indicate a level of efficiency surpassing all observed units, providing a clear ranking
system even among previously indistinguishable efficient DMUs. The highest Super efficiency-
BCC score is considered as the best DMU.

4 Results and Discussion

4.1 Simulation Model

According to the simulation results in Table 3, the average total production time for a cy-
cle time of bean curd puff is 312.9807 minutes accompanied by an average waiting time of
184.9586 minutes. Bottlenecks occurred in filtering, coagulation, moulding, pressing and cut-
ting processes with the average total waiting time of 41.7692 minutes, 18.6186 minutes, 46.6501
minutes, 26.6617 minutes and 17.7464 minutes respectively. The moulding process stands out
with the highest waiting time. In addition, the average resource utilisation for each operator
and machine were shown in Table 4. The average resource utilization for operator 1 is the
lowest compared to others at less than 50%, leading to an imbalance in resource utilization.
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Table 3: Results of the simulation model

Process
Average processing

time (minutes)
Average total waiting

time (minutes)
Average cycle time

(minutes)

Grinding 03.7109 01.8509 05.5619

Filtering 10.2598 41.7692 52.0291

Cooking 11.8022 03.0828 14.8850

Coagulation 14.9504 18.6186 33.5690

Moulding 04.3693 46.6501 51.0194

Pressing 16.9519 26.6617 43.6136

Batch 1 (before press-
ing)

- 12.5756 12.5756

Pressing with machine 34.9260 03.7614 38.6874

Cutting 13.1006 17.7464 30.8470

Batch 2 (before frying) - 06.7048 06.7048

Frying 17.9510 05.5368 23.4879

Total 128.0222 184.9586 312.9807

Table 4: Resources utilisation of the existing system

Resources Task Average Resource utilisation
(%)

Operator 1 Grinding, Moulding 41.49

Operator 2 Filtering, Cutting 86.72

Operator 3 Coagulation, Moulding 85.28

Operator 4 Cutting, Frying 58.74

Operator 5 Coagulation 67.41

Steam Boiler - 57.23

Pressing Barrel - 61.03

Pressing Machine - 58.20

4.2 Data Validation

After simulating the production process, Equation (1) was used to validate the accuracy of
the simulation model in representing actual production as shown in Table 5. The simulation
data is fairly accurate but has slight discrepancies when compared to actual data where the
simulation tends to overestimate slightly for the pressing, pressing with machine and cutting
processes which show the highest difference between the actual and simulated values among all
production processes. Overall, the differences between the simulated and actual data for the
processing time in each stage of the production process and the total production time are less
than 10% indicating that the simulation model is validated.
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Table 5: Difference between actual value and simulated value

Process Actual value
(minutes)

Simulated value
(minutes)

Difference
(Simulated -

Actual)
Difference (%)

Grinding 03.7460 03.7109 - 0.0351 0.9370

Filtering 10.4145 10.2598 - 0.1547 1.4854

Cooking 11.3385 11.8022 - 0.4637 4.0896

Coagulation 14.7180 14.9504 - 0.2324 1.5790

Moulding 04.5670 04.3693 - 0.1977 4.3289

Pressing 15.8610 16.9519 - 1.0909 6.8779

Pressing with ma-
chine

34.1345 34.9260 - 0.7915 2.3188

Cutting 12.3200 13.1006 - 0.7806 6.3360

Frying 17.7890 17.9511 - 0.1621 0.9112

Total 124.8885 128.0222 03.1337 2.5092

4.3 Improvement Model

Based on the results from the simulation model in Table 3, improvement models involving
operator reallocation and soybean entry arrival time adjustment will be suggested to elimi-
nate detected bottlenecks within the production line and optimise the production flow. Three
improvement models (IM) are as follows:

• IM1: Operator 1 manages the grinding and coagulation process, operator 2 handles the
filtering and moulding process and operator 5 are assigned to the cutting process.

• IM2: Operator 1 manages the grinding and cutting process, operator 2 handles the fil-
tering and coagulation process and operator 5 is assigned to the moulding process. The
time interval between soybean entries adjust to 25 minutes.

• IM3: Combination of IM1 and the time interval between soybean entries adjust to 35
minutes.

According to Table 6, the operator reallocation strategies focus on the coagulation, moulding
and cutting processes since these stages have higher waiting times and require direct operator
involvement. On the other hand, the assignments for operator 3 and operator 4 remain un-
changed. These stages are the bottlenecks in the production line and reallocating operators
to these areas aims to reduce idle times and enhance process efficiency. Operator 1, 2, and
5 are considered more proficient in the production processes. Therefore, they are suitable for
role adjustments that better balance the workload across the production processes. In addi-
tion, adjusting the time interval between soybean entries help to reduce machine and operator
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idle time. Long intervals may lead to accumulated downtime and wasted capacity, while short
interval may cause bottlenecks. This adjustment addresses timing issues that can disrupt the
smooth transition between stages and provides better control over the production rate.

Table 6: Details of each improvement models

Improvement Model Operator Task Time between
soybean arrivals

IM1

1 Grinding, Coagulation

15 minutes2 Filtering, Moulding

5 Cutting

IM2

1 Grinding, Cutting

25 minutes2 Filtering, Coagulation

5 Moulding

IM3

1 Grinding, Coagulation

35 minutes2 Filtering, Moulding

5 Cutting

Table 7 shows the result for all the three improvement models with their average cycle time,
average total waiting time, total production and average waiting time for each production
process with the bottleneck. All of these results of improvement models are obtained from
simulation models through Arena version 16.2.

Table 7: Comparison of each improvement models

Improvement Model IM1 IM2 IM3

Average cycle time (minutes) 218.2897 222.9891 184.7159

Average total waiting time (minutes) 93.7843 99.1054 59.4719

Total production (kg) 198.0000 180.0000 180.0000

Average waiting time at filtering process (minutes) 9.0090 26.6687 4.8975

Average waiting time at coagulation process (min-
utes)

12.9651 3.6485 4.7202

Average waiting time at moulding process (minutes) 17.7815 15.8074 10.5543

Average waiting time at pressing process (minutes) 9.1126 8.7967 6.2043

Average waiting time at cutting process (minutes) 11.2452 15.4416 7.0701
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Table 8 compares the result of three improvement models (IM1, IM2, and IM3). IM1
prioritizes high production and efficient resource use, while IM3 excels in reducing waiting
and cycle times but at the lower production and resource utilisation. In order to reach the
company’s objective of maximising the total production output and resource utilisation with
given inputs, BCC output-oriented model has been applied with the help of determining the
best intervention. Before applying the BCC output-oriented model, the average total waiting
time, average cycle time and total operator are serving as inputs, while the total production
and average utilisation as outputs.

Table 8: Input and output for each improvement models

Improvement
model

Input Output

Average
total waiting

time

Average
cycle time

Total
operator

Total
production

Average
resource

utilisation

IM1 93.7843 218.2897 5 198 68.33

IM2 99.1054 222.9891 5 180 57.98

IM3 59.4719 184.7159 5 180 55.07

Based on the result in Table 9, IM1 and IM3 emerge as the top-performing models with
an efficiency score of 1. A score of 1 indicates that the model operates at maximum efficiency
which produces the maximum output for the given inputs. Since there are two models that
achieved an efficiency score of 1, both Cross efficiency and Super efficiency methods have been
utilised to determine the superior improvement model between them.

Table 9: Efficiency score for each improvement model with inputs and outputs weights

Improvement
model

Efficiency
score

Average
total

waiting
time

Average
cycle time

Total
operator

Total
production

Average
resource

utilisation

IM1 1.0000 0.0057 < 0.001 0.0939 < 0.001 0.0146

IM2 0.9091 < 0.001 < 0.001 0.2200 0.0056 < 0.001

IM3 1.0000 < 0.001 0.0054 < 0.001 0.0056 < 0.001

The results of Cross efficiency in Table 10 indicate that IM1 is a better improvement model
compared to IM3 as it obtained a higher average score. The diagonal values of 1 represent each
Decision Making Unit (DMU)s efficiency score when evaluated against itself which indicates
perfect efficiency according to its own inputs and outputs under the model’s assumptions. This
implies that the DMU achieves the optimal balance between inputs and outputs as defined by
the DEA model based on its own performance metrics. On the other hand, non-diagonal values
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represent peer evaluations that highlight differences in performance and Zhu [19] mentioned
that the Cross efficiency scores can be greater than 1 under the output-oriented model. A
Cross efficiency score less than one indicates less efficiency, while a Cross efficiency score more
than one indicates that a DMU is performing more effectively relative to its peers as it produces
more outputs for the same level of inputs in a output oriented model.

Table 10: Cross efficiency matrix

Improvement model IM1 IM3

IM1 1.0000 0.9945

IM3 1.0094 1.0000

Average score, Et 1.0047 0.9973

IM1 obtained the highest average score in the Super efficiency BCC model, whereas IM3
has no feasible solution as shown in Table 11. When the Super efficiency BCC model produces
infeasible results, it means that the model cannot find a valid set of weights for inputs and
outputs that satisfies the conditions of the model while maximising the efficiency score beyond
what is achieved by the most efficient DMUs. According to Equation (11), the scores of the
improvement models will exceed 1 and the highest score will be considered the best improvement
model. Given that IM3 is infeasible, IM1 is the optimal solution that achieving the objectives
of maximising output production and average resource utilisation.

Table 11: Super efficiency of BCC

Improvement model φ 1
φ

IM1 0.8428 1.1865

IM3 Infeasible -

This study finds that IM1 selected as the most effective improvement model as IM1 signifi-
cantly reduces the average cycle time by 30.25% (from 312.9807 minutes to 218.2897 minutes)
and bottlenecks in in filtering, coagulation, moulding, pressing, and cutting process had been
reduced. It also increases total production output from 144 kg to 198 kg and boosts average
resource utilisation from 64.52% to 68.33%, representing a modest increase of 5.91%. More
details are shown in Table 12.
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Table 12: Difference between simulation model and IM1

Model
Average

cycle time
(minutes)

Average
waiting time

(minutes)

Total
operators

Total
production

(kg)

Average
Resource
utilisation

(%)

Simulation model 312.9807 184.9586 5 144 064.52

IM1 218.2897 093.7843 5 198 068.33

Difference (%) 030.2546 049.2944 0 37.5 5.9051

5 Conclusion

This paper optimised a bean curd puff production line by identifying bottlenecks using Arena
simulation modelling and recommending the most effective solution using Data Envelopment
Analysis (DEA) with BCC output-oriented model, Cross efficiency and Super efficiency BCC
model. Three improvement models involving operator reallocation and process adjustments
were proposed, IM1 selected as the best improvement model which significantly reduces the
cycle time by 30.25% (from 312.9807 minutes to 218.2897 minutes), increases total production
output from 144 kg to 198 kg and boosts average resource utilisation from 64.52% to 68.33%,
representing a modest increase of 5.91%. By integrating these techniques, the study assists
the management in making informed decisions that address bottlenecks within the production
process, maximise output and optimise resource utilisation. However, the external factors
that could influence the production process such as maintenance costs, machine breakdowns,
and other operational disruptions were not considered. Future investigations could be focus
on incorporating multiple objectives into the optimisation process and conducting sensitivity
analyses to evaluate the impact of assumptions on the optimisation results.
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