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Abstract In the field of research on Deoxyribonucleic acid (DNA), graph theory can be applied
to model the structure of a DNA molecule. In particular, the shortest path problem in graph theory
can be used to identify the shortest path between vertices of a graph. Hence, it is possible to apply
the shortest path problem for minimization of a DNA string so that the time taken for computation
of genome assembly can be reduced. This paper presents a method to represent a DNA string
graphically where the shortest path is calculated for the graph generated from the DNA string,
and the shortest path is then used to minimize the DNA string. In this research, a DNA string is
presented in graphical form by using base pairs of length two as the vertices where the initial bases
used are Adenine (A) and Guanine (G) which are the main bases in purine. The number of base
pairs between adjacent vertices in the DNA string is represented by the edges. The graph is then
reduced by following a given set of rules where the shortest path is calculated for all start and end
vertices of the reduced graph. Next, the simplification of the graph is done based on the shortest
paths obtained by removing all the untraversed paths where the Euler path for the simplified graph
is used to form a minimized DNA string. The result shows that a minimized DNA string can be
obtained by simplifying the graph of the DNA string using the shortest path problem.

Keywords Deoxyribonucleic Acid (DNA), graph theory, shortest path problem.

Mathematics Subject Classification 05C85, 05C90.

1 Introduction

In living organisms, Deoxyribonucleic Acid (DNA) has the function to store and transmit genetic
information [1]. The main composition of DNA are the four bases which are Adenine (A), Cytosine
(C), Guanine (G) and Thymine (T) where these bases form base pairs by chemically attaching opposite
bases by using hydrogen bonds. For these base pairs, the opposite base for Adenine (A) is Thymine
(T) while the opposite base for Cytosine (C) is Guanine (G). These base pairs, after being chemically
bonded to sugar and phosphate molecules, are called a nucleotide. Many nucleotides then chain
together into two long strands in a double helix shape which forms the structure of DNA [2].

As stated by Bernart and Prijith [3], graph theory has a strong relation with biological studies
where the structure of a DNA molecule can be studied using existing concepts in graph theory. Some
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examples are the enabling of long-read genome assembly by using minimizer-space de Brujin graphs
[4] and the classification of individuals according to ancestral lineages using adjacency matrix in
graph representation [5]. Ashton [6] in 2023 has discussed that overlap graphs, also known as de
Brujin graphs, can give insights into overlapping regions in a DNA sequence. Furthermore, in his
paper, it is found that Hamiltonian and Euler paths give information on sequence reconstruction and
sequencing methods respectively. In addition, Hamiltonian paths, Euler paths and de Brujin graphs
have been shown to successfully sequence a genome as discussed by Chikomana and Hu [7]. It can
be noticed that many concepts in graph theory have been used in research on DNA but not using the
shortest path problem.

The shortest path problem in graph theory is used to obtain a path with the least edge weight
from all the feasible paths between any start and end vertices in a graph [8]. Some algorithms by past
mathematicians that can solve the shortest path problems are Dijkstra’s algorithm [9] and the Bellman-
Ford algorithm [10]. There are also some DNA algorithms that can be used for the computation of the
shortest paths as presented by Narayanan and Zorbalas [11] and Ibrahim et al. [12] where the latter
used Direct-Proportional Length-Based DNA computing to solve the shortest path problem.

Therefore, in this research, the shortest path problem is applied to graphs of DNA string where the
graphs formed are only considering Purines (Adenine and Guanine) as the initial bases for the vertices.
This is because Purines plays a significant role in the synthesis of nucleic acids and proteins [13]. The
solution for the shortest paths then produces a minimized DNA string.

The graphs of DNA string used in this research have edges representing the bases between ver-
tices which differ from de Bruijn graphs that have edges representing the overlap between vertices.
Meanwhile, the application of shortest path problem in this research takes inspiration from the paper
by Blazewicz et al. [14] which used Hamiltonian and Euler paths in DNA graphs to reconstruct DNA
sequences.

2 Methodology

In this section, the methods used in this research are discussed, particularly on the selection of a DNA
string, graph generation of the DNA string, calculation of the shortest paths for the graph generated
and the formation of minimized DNA strings.

From the DNA of Bacteriophage lambda cI 857 Sam7 (Lambda) available from the New England
Biolabs (NEB) website [15], a string with a length of 80 base pairs is selected for the research. From
this DNA string, a linear graph is generated by using base pairs of length two with an initial base
of Adenine (A) and Guanine (G) as the vertices respectively, forming the vertex sets of U = {AA,
AC, AT, AG} and V = {GA, GC, GT, GG}. Next, the edges and edge weight of the graph is formed
by the number of base pairs between the adjacent vertices. In mathematical terms, the edge weight
for a start vertex u and end vertex v is denoted as W ((u(m),v(n)) ), m < n where m,n € 77" is the
corresponding position of the initial bases acting as the vertex in the DNA string. The formula to
calculate the edge weight is given by W ({(u(m),v(n i}) =n— (m+2). For example, given the DNA
sequence of ACCAGT and the vertex set of U = {AA, AC, AT, AG}, then the two vertices are AC at
position one and AG at position four. Since the constraints are m < n, therefore, the start vertex is AC
and the end vertex is AG. Next, applying the formula of edge weight calculation, the following edge
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weight is obtained:

W ((ulm), v(n)) = W((AC(1),AG(4)
— 4—(1+2)
- L

This edge weight of one corresponds to the C (colored yellow) between AC and AG (colored red) in
the sequence of AC AGAGT.

From this linear graph, all paths that can be formed for each vertex is calculated and tabulated.
From the table of all paths formed, any start vertex which form a negative length is removed since
negative length in a DNA string is not possible. Other than that, since there are many vertices which
represent the same base pair of length two, these vertices as well as their edges are combined where
only the edge weight(s) with the lowest numerical value is kept for further calculation. This forms the
reduced graph for the DNA string.

From the reduced graph, the shortest path for all start and end vertices is calculated. Since not
all edges are involved in the shortest path obtained, the paths that are not traversed are thus removed
from the reduced graph in order to form the simplified graph for the DNA string. Next, an Euler
path which is a route that traverse through all edges exactly once [16], is obtained from the simplified
graph. This Euler path is used to minimize the DNA string by reconstructing the vertices and edge
weights to their respective DNA strings, followed by arranging the strings obtained according to the
traversed path.

3 Results and Discussion

In this section, the results for the selected DNA string and the cases for vertices of base pairs of
length two with initial bases of Adenine (A) and Guanine (G) are shown respectively. The DNA
string selected for this research is taken from the 12841st base to the 12920th base of Bacterio-
phage lambda cI 857 Sam7 (Lambda) which is 80 bases long. The 80 bases of the DNA string is
GCGTGGGGAA TCTTTACCGG CTGATGCGCG GCTATGCCAC CGGCGGTTAT GTCGGTA-
CAC CGGGCAGCAT GGCAGACAGC which is denoted as ¢ henceforth in this paper. For the case
of A, the vertex set is U ={AA, AC, AG, AT} where the linear graph of all elements of the set for a
is shown in Figure 1.
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Figure 1: Linear graph for all elements of o with vertex set U

In Figure 1, the number above each vertex represents the corresponding position of the initial base
acting as the vertices in the string . The edge weight represents the number of bases between each
vertex which is obtained from o.

The formula for calculating edge weight is W ({u(m),v(n))) = n — (m+2) where u and v denote
the start and end vertex respectively and m < n for m,n € Z* is the position of the bases which acts
as the vertices in the graph. Thus, all possible paths for the graph can be tabulated as shown in Table
1. Note that the edges used in the reduced graph are represented by the cells colored in gray.

From Table 1, a negative edge weight is produced by the sole AA vertex. Therefore this vertex
is removed, forming the vertex set of U’ ={AC, AG, AT}. As mentioned in the methodology, since
there are many vertices which represent the same bases, these vertices along with their edge weights
are combined, leaving only the shortest edge weight which is represented by the cells colored in gray
in Table 1. This results in the reduced graph as shown in Figure 2, where the brackets indicate the
bases used in the formation of the edge weight.



Table 1: All paths for each possible start and end vertex for the graph of o with vertex set U

End vertex Position AA AT AC AT AT AC AT AC AC AG AT AG AC AG
Start vertex 9 10 16 24 34 39 49 57 59 66 69 74 76 78
AA 9 - -1 5 13 23 28 38 46 48 55 58 63 65 67
AT 10 - - 4 12 22 27 37 45 47 54 57 62 64 66
AC 16 - - - 6 16 21 31 39 41 48 51 56 58 60
AT 24 - - - - 8 13 23 31 33 40 43 48 50 52
AT 34 - - - - - 3 13 21 23 30 33 38 40 42
AC 39 - - - - - - 8 16 18 25 28 33 35 37
AT 49 - - - - - - - 6 &8 15 19 23 25 27
AC 57 - - - - - - - - 0 7 10 15 17 19
AC 59 - - - - - - - - - 5 8§ 13 15 17
AG 66 - - - - - - - - - - 1 6 g 10
AT 69 - - - - - - - - - - - 3 5 7
AG 74 - - - - - - - - - - - - 0 2
AC 76 - - - - - - - - - - - - - 0
AG 78 - - - - - - - - - - - - - -

reE—12€ (STOT) €1 VILLVINALYIA / SUSH UEA| U0, pue SU0oK 233 eny)

Y43
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0 8 (GCGCGGCT)
6 (CGGCTG)

2 (AC)
Figure 2: Reduced graph of o with vertex set U’

From Figure 2, the shortest path for all possible start and end vertices are calculated and tabulated
as shown in Table 2. From the calculations shown in Table 2, only the path with the lowest path
length for all start and end vertices is kept and a minimized DNA string is formed for each of the
kept paths. The minimized DNA string is formed by reconstructing the vertices and edge weights
into the represented DNA string, followed by arranging the strings according to the paths traversed.
If there are multiple paths that produce the lowest path length, then the path with lowest amount of
vertices is kept as it produces a shorter DNA string. An example that can be shown is for the start and
end vertex of AC where the paths of AC—AC and AC—+AG—AC has the same lowest path length
of zero. Here, the path Ac—AC produces the string ACAC of length four which is shorter compared
to the string ACAGAC of length six produced by the path of AC—AG—AC. The results of Shortest
path taken, path length and minimized DNA string for the reduced graph are shown in Table 3 where
the red colored bases in the minimized DNA string are obtained from the vertices.

From Table 3, it is noticed that the loop for the vertices AT and AG as well as the edge from the
vertex AC to vertex AT in Figure 2 is not involved in any of the shortest path obtained. Thus these
edges are removed, hence forming the simplified graph as shown in Figure 3.

From Figure 3, there are less than two vertices that are of odd degree which means that an Euler
path exist for the simplified graph. One of the Euler paths that can be obtained is AT — AC —
AC — AG — AT — AG — AC. By reconstructing the path into a DNA string, the string obtained is
ATGCCACACAGCATGCCAGAC, which is a minimized DNA string of length 21 base pairs for «.
A minimized DNA string of the same length but with a different order of bases can be obtained by
using other Euler paths. For example, another Euler path for Figure 3 is AT - AG — AT — AC —
AC — AG — AC which forms the DNA string of ATGGCAGCATGCCACACAGAC which is also
of length 21 base pairs.
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Table 2: Shortest path calculation for the reduced graph of o with vertex set U’

Start vertex End vertex Path taken Path length
AC — AC 0
AC—AG—AC 0+0=0
AC AC—-AG—AT—AC 0+1+3=4
AC—AT—AC 6+3=9
AC—HAT—-AG—AC 6+3+0=9
AC AC — AC— AG 0+0=0
AG AC—AG 0
AC—AT—AG 6+3=9
AC — AC— AT 0+6=6
AT AC—AG—AT 0O+1=1
AC—AT 6
AG — AC 0
AC AG—AG—AC 240=2
AG—AT—AC 1+3=4
AG — AC— AG 0+0=0
AG—AC—AT—-AG 0+6+3=9
AG AG AG—AG 2
AG—AT—AG 1+3=4
AG—AT—AC—AG 1+3+0=4
AG — AC— AT 0+6=6
AT AG—AG—AT 241=3
AG—AT 1
AT — AC 3
AC AT—AG—AC 3+40=3
AT—AT—AC 8+0=28
AT — AC— AG 3+40=3
AG AT—AG 3
AT AT—AT—AG 8+3=11
AT — AC— AT 3+6=9
AT—-AC—AG—AT 3+0+1=4
AT AT—AG—AT 3+1=4
AT—+AG—AC—AT 3+0+6=9
AT—AT 8

Next, the results for the case of vertex set V = {GA, GC, GT, GG} is discussed. The linear graph
obtained from the vertex set of V for the string ais shown in Figure 4 where the number above each
vertex represents the corresponding position of the initial base acting as the vertices in the string o
and the edge weight represents the number of bases between each vertex.

From Figure 4, all possible paths for the graph is calculated using the same formula of

W ({u(m),v(n i)) =n— (m+2) and the results are tabulated in Table 4.
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Table 3: Shortest path taken, path length and minimized DNA string for the reduced graph of o with
vertex set U’

Start vertex End vertex Shortest path taken Path length Minimized DNA string

AC AC — AC 0 ACAC

AC AG AC — AG 0 ACAG
AT AC—AG—AT 0+1=1 ACAGCAT
AC AG — AC 0 AGAC

AG AG AG—-AC—-AG 0+0=0 AGACAG
AT AG — AT 1 AGCAT
AC AT — AC 3 ATGCCAC

AT AG AT — AG 3 ATGGCAG
AT AT—AG—AT 3+1=4 ATGGCAGCAT

Figure 3: Simplified graph of o with vertex set U’

From Table 4, it is observed that all the negative lengths are produced by the GG vertices. There-
fore, the GG vertex is removed form the vertex set of V to form the vertex set V' ={GA, GC, GT}.
The reduced graph formed using the vertex set V’ is shown in Figure 5.



Chua Kee Yeong and Fong Wan Heng / MATEMATIKA 41:3 (2025) 321-334 329

9
30 28 26 23 20
o<>0.1.1<>—1<>
19
1

36 42 43 45 46

Figure 4: Linear graph for all elements of o with vertex set V



Table 4: All paths for each possible start and end vertex for the linear graph of o with vertex set V

Endvertex GC GI GG GG GG GA GG GC GA GC GC GG GC GC GG GC GG GT GT GG GT GG GG GC GC GG GC GA GC

Startvertex  Positon 1 3 5 6 7 8 19 20 23 26 28 30 31 36 42 43 45 46 51 54 55 62 63 64 67 71 72 75 79
GC 1 10 2 3 4 5 16 17 20 23 25 27 28 33 39 40 42 43 48 51 52 59 60 61 64 68 69 72 76
GT 3 - - 0 1 2 [3 14 15 18 21 23 25 26 31 37 38 40 41 46 49 50 57 58 59 62 66 67 70 74
GG 5 - - - Z10 1 12 13 16 19 21 23 24 29 35 36 38 39 44 47 48 55 56 57 60 64 65 68 72
GG 6 - - - - 10 11 12 15 18 20 22 23 28 34 35 37 38 43 46 47 54 55 56 59 63 64 67 7l
GG 7 - - - - - Z110 11 14 17 19 21 22 27 33 34 36 37 42 45 46 53 54 55 58 62 63 66 70
GA 8 .- - - - - 9 1013 16 18 20 21 26 32 33 35 36 41 44 45 52 53 54 ST 61 62 65 69
GG 19 - - - - - - - 12 5 7 9 10 15 21 22 24 25 30 33 34 41 42 43 46 50 51 54 58
GC 20 - - - - - - - 14 6 8 9 14 20 21 23 24 29 32 33 40 41 42 45 49 50 53 57
GA 23 - - - - - - - - 13 5 6 11 17 18 20021 26 29 30 37 38 39 42 46 47 50 54
GC 26 - - - - - - - - - 10 2 3 8 14 15 17 18 23 26 27 34 35 36 39 43 44 47 51
GC 28 - - - - - - . . - - -0 1 6 12 13 15 16 21 24 25 32 33 34 37 41 42 45 49
GG 30 - - - . ... . .. . . —14 10 11 13 14 19 22 23 30 31 32 35 39 40 43 47
GC 31 - - - - - - . . . . . . - 3 9 10 12 13 18 21 22 29 30 31 34 338 39 42 46
GC 36 - - - - . - . . . . . . . - 4 5 7 8 1316 17 24 25 26 29 33 34 37 4l
GG 42 ... ... ... . . . . 11 2 7 10 11 18 19 20 23 27 28 31 35
GC 43 - - - .. ... ... .. . . -0 1 6 9 10 17 18 19 22 26 27 30 34
GG 45 - - ... ... ... ... . . 14 7 8 1516 17 20 24 25 28 3
GT 46 - - ... ..o ... ... ... .36 7 14 15 16 19 23 24 27 31
GT sl - - - .. ... ... ... .. . . 12 9 1011 14 18 19 22 26
GG 54 - - - ... ... ..o . ... ... - 1617 8 11 15 16 19 23
GT 55 S oo oo - 5 6 7 10 14 15 18 22
GG 62 e e e D VRN T
GG 63 - .. ... .o ... . ... .12 06 7 10 14
GC 64 T e T
GC 67 S . ... ..o ..o o ..o oo ... .23 6010
GG 71 ...,
GC 72 S oo oo oo oo oo D
GA 75 ...,

reE—12€ (STOT) €1 VILLVINALYIA / SUSH UEA| U0, pue SU0oK 233 eny)

(033
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13 (ATCTTTACCGGCT)

1(T)

2 (CG)

Figure 5: Reduced graph of o with vertex set V’

The shortest paths are then calculated for Figure 5 and the results of the shortest paths taken, the
path lengths and the minimized DNA strings are shown in Table 5 where the bases colored in red in
the minimized DNA strings are obtained from the vertices.

Table 5: Shortest path taken, path length and minimized DNA string for the reducesd graph of o with

vertex set V'

Start vertex End vertex Shortest path taken Path length Minimized DNA string

GA GA—-GC—GA I+1=2 GATGCTGA
GA GA—-GC—GA I+1=2 GATGCAGA
GC GA—-GC 1 GATGC
GT GA—-GC—GT 1+0=1 GATGCGT
GA GC — GA 1 GCTGT
GC GC — GA 1 GCAGA
GC GC—-GC 0 GCGC
GT GC — GT 0 GCGT
GA GT — GA 3 GTGGGGA
GT GC GT - GA—-GC 3+1= GTGGGGATGC
GT GT — GT 2 GTCGGT




Chua Kee Yeong and Fong Wan Heng / MATEMATIKA 41:3 (2025) 321-334 332

It is observed from Table 5 that the edge of GA to GT, the edge of GT to GC and the loop of GA
in Figure 5 is not used in any of the shortest paths. These edges are removed to form a simplified
graph as shown in Figure 6.

2 (CG)

Figure 6: Simplified graph of o with vertex set V'

From Figure 6, there is no Euler path because there is one vertex of odd degree while all other
vertices are of even degree. Therefore, only one path is chosen between the two paths with length of
one base pair from vertex GC to vertex GA such that there exists an Euler path. Hence, there will
be two minimized string formed for an Euler path. An Euler path that can be formed from Figure 6
above is GC —+ GA — GC — GC — GT — GT — GA. By reconstructing the path into a DNA string,
two strings with a length of 21 bases are obtained, which are GCTGATGCGCGTCGGTGGGGA and
GCAGATGCGCGTCGGTGGGGA. Similar to the case of Adenine (A), other Euler paths used will
result in minimized DNA strings of the same length where the bases are ordered differently.

4 Conclusion

This research has shown that from a DNA string of length 80 base pairs, graphs of the DNA string
can be formed where the vertices have base pairs of length two. The graphs formed are split into two
cases, one with initial base of Adenine (A) and the other with initial base of Guanine (G) where A and
G are the main bases in Purines. Next, the shortest paths are obtained for the graphs where any edge
that is not traversed are removed, hence forming a simplified graph. The Euler paths of the simplified
graphs are then reconstructed into a minimized DNA string. The length of the minimized DNA string
obtained from both cases of A and G as the initial bases for the vertices is 21 base pairs where the
original length of DNA string used is 80 base pairs.

Furthermore, the results of this research help in identifying some properties of a DNA string
from a different perspective by using other graphs apart from de Bruijn graphs. This approach can
contribute to future advancements regarding the properties of DNA strings.
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Some suggestion for future works is to obtain the results of cases for graphs with vertices of initial
bases of Cytosine (C) and Thymine (T) as the main bases for Pyrimidines to complete all the possible
cases, hence a comparison of results for all the cases can be done.
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