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Abstract Heavy metal pollution has always been a serious global environmental issue
worldwide, and many scholars have demonstrated the feasibility of advection diffusion
equation (ADE) to describe its transport in soil. In previous models, for boundary con-
ditions involving instantaneous release of the source term, Dirichlet boundary condition
was often used. This study examines Neumann boundary conditions, focusing on the
evolution of concentration gradients, the influence of retardation factors, and the effect
of the particle release ratio. Initially, sharp concentration gradients form near the point
source, with the peak concentration shifting over time as the contaminant front progresses.
Lower retardation factors increase migration speed and broaden the contaminant distri-
bution. Additionally, a higher particle release ratio leads to higher local concentrations,
underscoring the significant impact of soil porosity on contaminant transport. These
findings provide insights for developing more accurate predictive tools for environmental
remediation of heavy metal pollution.

Keywords Heavy metal, Advection diffusion equation, Neumann boundary condition,
Laplace transform.
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1 Introduction

Heavy metal pollution is a serious environmental issue over the world that must be addressed
to ensure a safe and healthy life. Various strategies have been implemented by authorities to
mitigate this problem from multiple perspectives. Notably, mathematics also can be employed
to predict the behavior of heavy metals, aiding in the development of effective remediation
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strategies. Mathematically, the advection-diffusion equation (ADE) is a very useful model to
describe the transport of heavy metal in a medium. For example, ADE has been succesfully used
by Nriagu [1], Zheng and Bennett [2], Freeze [3], and Anderson et al. [4] to study heavy metal in
the groundwater by which leads to repair techniques. In the scope of heavy metal in soil, Liang
and Isa [5,6], Aral and Liao [7] have made significant contributions to the field, particularly in
studying Dirichlet boundary conditions in two-dimensional (2D) advection-diffusion equations,
focusing on time variation, adsorption, retardation factors, and the behavior of instantaneous
point source releases of heavy metals in soil.

One-dimensional (1D) ADE is the simplest model to study the behavior of pollutant migra-
tion in groundwater or soil systems. Some models have successfully addressed issues such as the
prediction of contaminant concentration profiles and understanding of the interplay between
advection, diffusion, and others. For example, Bear [8] provided the theoretical basis for under-
standing the ADE in 1D models which covered the principles of fluid dynamics in porous media.
Later on, Fitts [9] outlined the transport of contaminants, making it a key source of under-
standing 1D ADE applications. Mojtabi et al. [10] presented 1D ADE and solved it analytically
by separation of variables and numerically by the finite element method, which compared how
was different between these two solutions. Dilip et al. [11] explained 1D ADE analytical solu-
tion which diffusion with continuous input point source. However, real-world scenarios often
involve more complex geometries and interactions that cannot be adequately captured by 1D
models alone. Recognizing the advantages of a two-dimensional (2D) model, some researchers
have studied the ADE within a 2D domain. There has been a significant shift towards 2D ADE
models, which provided a more comprehensive spreading and anisotropic conditions, offering
their evolution over time [12, 13]. For instance, Tirabassi et al. [14] got the analytical solution
in 2D model which pollutant is on the ground. Lowry and Li [15] obtained the solution in
the space-time domain did not discretize the derivative term. In addition, Dirichlet boundary
condition is a common used in ADE model during the latest decades, because of its boundary
values are known, which makes the definition and solving process of the problem clearer. For
some practical problems, such as the fixed emission concentration of the source, the Dirichlet
boundary condition can describe the concentration at the boundary. Bazilevs and Hughes [16]
compared with weakly and strongly enforced Dirichlet boundary conditions for boundary layer
solutions of the ADE which found out the weakly enforced condition is better. However, for
some movement system, for example, pollutants migrate outward through groundwater systems,
Neumann boundary condition describe that progress is better. Cao et al. [17] used a fourth-
order compact finite difference scheme to solve the ADE with Neumann boundary conditions.
Also, Dirichlet -to-Neumann boundary conditions are for multiple problems [18].

In all the above, no analytical solution has been developed to solve 2D ADE with adsorption
and desorption with Neumann boundary conditions. This study mainly introduce the analytical
solution of 2D ADE based on the Neumann boundary condition specifically for point source
with instantaneous release. Specially, Neumann boundary conditions can be used to describe
dynamic flux changes over time, which is of great significance for the study of heavy metal
migration from instantaneous point source releases (such as accidental spills). In this case, the
flux may vary with time, and Neumann boundary conditions can flexibly describe these changes.
So, the Neumann boundary condition is a good supplement for the heavy metal transport in
soil.
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2 Governing equation

To model the transport of contaminants in 2D porous media, it is essential to consider various
factors such as advection, diffusion, adsorption, and source term. The governing equation that
encapsulates these dynamics in a 2D framework is given by [5, 19,20] as

R
∂C

∂t
= Dx

∂2C

∂x2
+Dy

∂2C

∂y2
− u∂C

∂x
− v∂C

∂y
− ρ

θ

∂S

∂t
+ F, (1)

where the
∂S

∂t
is the adsorption term. R is the retardation factor which is essentially a measure of

how much slower a heavy metals moves through soil; C is the concentration of heavy metal ions
in seepage, [ML−3]; S is the adsorption concentration, [M0]; θ is the porosity of porous media;
[L2T−1]; u is the uniform velocity along x or longitudinal direction,[LT−1]; v is the uniform
velocity along y or transverse direction [LT−1]; F is source term, and t is time [T ]; x, y are
the spatial variables, [L]; ρ is the particle density [ML−3]; Dx and Dy are dispersion coefficient
along longitudinal or transverse direction respectively. M, L, and T are the fundamental units,
where M represents mass, L represents length, and T represents time.

The effects of diffusion and source terms in 2D space lead to changes in concentration over
time, accounting for the rate of concentration with respect to spatial variations. Adsorption
condition is considered as [21,22]

ρ

θ

∂S

∂t
= kC(x, y, t)− kx

∂C

∂x
− ky

∂C

∂y
. (2)

The first term on the right-hand side represents the adsorption of the solute in the soil, governed
by the adsorption coefficient k, which quantifies the rate at which pollutants transfer from the
fluid phase to the solid phase, proportional to the mobile concentration. In contrast, the last two
terms describe desorption along the x- and y-axes, characterized by the release coefficients kx
and ky, which measure the extent to which pollutants are released back into the fluid phase due
to spatial concentration gradients. This equation captures a dynamic system where pollutants
continuously undergo adsorption onto and desorption from soil particles, influenced by local
pollutant concentrations and spatial variations. The inclusion of the kx and ky terms accounts
for anisotropy in the soil, reflecting the possibility that desorption occurs more readily in specific
directions due to variations in soil properties or flow conditions.

Using Neumann boundary conditions helps to more accurately describe the adsorption and
desorption processes of contaminants in soil. Since these processes are closely related to the
concentration gradient of the contaminants, Neumann boundary conditions can capture these
dynamic changes, thereby improving the accuracy and predictive capability of the model.

C(x, y, 0) = 0; 0 ≤ x < +∞, 0 ≤ y < +∞, (3)

∂C(0, 0, t)

∂x
= 0,

∂C(0, 0, t)

∂y
= 0, (4)

and
C(+∞,+∞, t) = 0. (5)
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Combining the above equations (1) and (2) yields

R
∂C

∂t
= Dx

∂2C

∂x2
+Dy

∂2C

∂y2
− (u− kx)

∂C

∂x
− (v − ky)

∂C

∂y
− kC + F. (6)

Considering diffusion is directly proportional to velocity, when pollutants penetrate the soil,
and at the same time, adsorption occurs. As heavy metals desorb from the soil, they re-enter
the soil and participate in the diffusion process, thereby increasing the migration rate of heavy
metals in the soil, namely

Dx = a(u− kx), and Dy = b(v − ky), (7)

where a and b are constants which depend on the pore geometry and pore average size of the
porous medium in the equation.

Introduce a new space variable

z = x+ y

√
Dy

Dx

. (8)

To facilitate derivation, a new spatial variable which is from equation (8) is substituted into
the equation (6), then, a 1D second-order constant coefficient partial differential equation as
follows

R
∂C

∂t
= D

∂2C

∂z2
− U ∂C

∂z
− kC + F, (9)

where

D = Dx(1 +
D2
y

D2
x

), U = (u− kx) + (v − ky)

√
b(v − ky)
a(u− kx)

. (10)

The new initial and the boundary conditions of equation (9) are

C(z, 0) = 0; 0 ≤ z < +∞, (11)

∂C(0, t)

∂z
= 0, (12)

and
C(+∞, t) = 0. (13)

Taking Laplace transform to equation (9) with respect to t, and rearranging the equation will
result

D
∂2C̄(z, p)

∂z2
− U ∂C̄(z, p)

∂z
− (k +Rp)C̄(z, p) + F̄ = 0. (14)

Taking Laplace transform with respect to the space variable z, yields

D[s2C̄z(s, p)− sC̄(0, p)− ∂C̄(0, p)

∂z
]−U [sC̄z(s, p)− C̄(0, p)]− (k+Rp)C̄z(s, p) + F̄ z = 0, (15)

and from boundary condition equation12, applying the Laplace transform yields

∂C̄(0, p)

∂z
= 0. (16)
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Substituting the equation (16) into (15) and rearranging the equation, then we get the new
function as follow

C̄z(s, p) =
sC̄(0, p)

(s− J1 + J2)(s− J1 − J2)
−

U
D
C̄(0, p)

(s− J1 + J2)(s− J1 − J2)

−
F̄ z

D

(s− J1 + J2)(s− J1 − J2)
,

(17)

where

J1 =
U

2D
, and J2 =

√
U2

4D2
+
k +Rp

D
. (18)

Let
C̄z = I1 + I2 + I3, (19)

where

I1 =
sC̄(0, p)

(s− J1 + J2)(s− J1 − J2)
, (20)

I2 = −
U
D
C̄(0, p)

(s− J1 + J2)(s− J1 − J2)
, (21)

and

I3 = −
F̄ z

D

(s− J1 + J2)(s− J1 − J2)
. (22)

Taking inverse Laplace to I1, I2, I3, respectively

L−1(I1) = C̄(0, p)
(J2 − J1) exp((J1 − J2)z) + (J1 + J2) exp((J1 + J2)z)

2J2

, (23)

L−1(I2) =
U

D
C̄(0, p)

exp((J1 − J2)z)− exp((J1 + J2)z)

2J2

, (24)

and

L−1(I3) =
1

2J2D

∫ z

0

F̄
[

exp((J1 − J2)(z − τ))− exp((J1 + J2)(z − τ))
]
dτ. (25)

Combine and rearrange the above equations (23) - (25), provides

C̄(z, p) = C̄(0, p)
(J2 − J1) exp((J1 − J2)z) + (J1 + J2) exp((J1 + J2)z)

2J2

+
U

D
C̄(0, p)

exp((J1 − J2)z)− exp((J1 + J2)z)

2J2

+
1

2J2D

∫ z

0

F̄
[

exp((J1 − J2)(z − τ))− exp((J1 + J2)(z − τ))
]
dτ.

(26)
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Let z approach infinity in equation (26) as in boundary condition equation (13). It is
obtained that

C̄(0, p) =

∫∞
0

F̄
D

exp(−τ(J1 + J2))

J2 − J1

dτ. (27)

Substitute the equation (27) into the equation (26), rearranging the equation

C̄ =
J1

∫∞
0
F̄ exp(J1(z − τ)) exp(−J2(z + τ))dτ

J2D(J2 − J1)
+

∫∞
0
F̄ exp(J1(z − τ)) exp(−J2(z + τ))dτ

2DJ2

+

∫∞
0
F̄ exp(J1(z − τ)) exp(J2(z − τ))dτ

2D(J2 − J1)
−
∫ ∞

0

J1F̄ exp(J1(z − τ)) exp(J2(z − τ))

2DJ2(J2 − J1)
dτ.

+

∫ z

0

F̄ exp(J1(z − τ)) exp(−J2(z − τ))

2J2D
dτ −

∫ z

0

F̄ exp(J1(z − τ)) exp(J2(z − τ))

2J2D
dτ

= It1 + It2 + It3 + It4 + It5 + It6.

(28)

Taking inverse Laplace transform to equation (28) respect to t, then it is obtained

L−1(It1) =
U

2DR

∫ ∞
0

∫ t

0

F exp
(−Uτ
D

)
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(
(− k
R
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)
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[ √
R(z + τ)

2
√
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2
√
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(29)
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1

2
√
DR
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0
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0
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k

R
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)
1√
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(30)
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1
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√
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k

R
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π(t− ζ)
exp(
−R(z − τ)2

4D(t− ζ)
) +

∫ ∞
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0
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D
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−
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2
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(31)

L−1(It4) = −
∫ ∞

0

∫ t

0

UF

2DR
exp(

U(z − τ)

D
) exp

(
− k

R
(t− ζ)

)
× erfc

[
−
√
R(z − τ)

2
√
D(t− ζ)

− U
√
t− ζ

2
√
DR

]
dζdτ,

(32)

L−1(It5) =
1

2
√
DR

∫ z

0

∫ t

0

F exp(
U(z − τ)

2D
) exp(−(

U2

4DR
+
k

R
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exp
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4D(t− ζ)

)
dζdτ,

(33)
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and

L−1(It6) = − 1

2
√
DR

∫ z

0

∫ t

0

F exp(
U(z − τ)

2D
) exp(−(

U2

4DR
+
k

R
)(t− ζ))

1√
π(t− ζ)

exp
(
− R(z − τ)2

4D(t− ζ)

)
dζdτ.

(34)

Combine equations (29) - (34) and rearranging, we can get a final general solution of equation
(1) as follow

C(z, t) =
U

2DR

∫ ∞
0

∫ t

0

F exp
(−Uτ
D

)
exp

(
(− k
R

)(t− ζ)
)
erfc

[ √
R(z + τ)

2
√
D(t− ζ)

− U
√
t− ζ

2
√
DR

]
dζdτ

+

∫ ∞
0

∫ t

0

F exp(U(z−τ)
D

)

2
√
DRπ(t− ζ)

exp
(
− (

U2

4DR
+
k

R
)(t− ζ)

)
×
[

exp
(−R(z + τ)2

4D(t− ζ)

)
+ exp

(−R(z − τ)2

4D(t− ζ)

)]
dζdτ

(35)

The point source term is expressed by the following function.

F = W (z)G(t), (36)

where

W (z) =
1

θ
δ(z − z0), G(t) = Mδ(t− t0). (37)

By substituting equations (36) - (37) into the equation (35) and evaluating the integrals, the
final solution of equation (35) result in

C(z, t) =
UQ

2DR
exp

(−Uz0

D

)
exp

(
(− k
R

)(t− t0)
)
erfc

[ √
R(z + z0)

2
√
D(t− t0)

− U
√
t− t0

2
√
DR

]
+

Q exp(U(z−z0)
D

)

2
√
DRπ(t− t0)

exp
(
− (

U2

4DR
+
k

R
)(t− t0)

)
×
[

exp
(−R(z + τ)2

4D(t− t0)

)
+ exp

(−R(z − z0)2

4D(t− t0)

)]
,

(38)

where Q =
M

θ
reflects the proportion of a substance released into the environment compared

to the total amount initially refers to the point source intensity of pollutants at z = z0.
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3 Results and discussion

This section presents some simulations based on the analytical solution (38), derived from the
developed governing equation. It is assumed that the heavy metal is released at time t0 and
at one specific point z0, which is later transformed into its original spacial coordinates (x, y).
Besides, the parameters used in (1), (2), (7) and (37) are as in Table 1.

Table 1: Model parameters for simulations [19,20]

Parameters Values
kx (/day) 0.01
ky (/day) 0.02

R 1.5
a 0.1
b 0.2

u (m/day) 0.36
v (m/day) 0.036

t0 0.08
z0 0.5
Q 1
k 0.1

Figure 1 presents the concentration profiles of heavy metals transport at different earliest
times of 0.081 d, 0.095 d and 0.5 d. At the earliest time, the concentration peak is confined at
the region close to the source, and move towards the right edge, where advection (flow-driven
transport) dominates initially, pushing the plume toward the right edge. As time progresses,
the concentration decreases in magnitude. Also, the sharp peak near the release point broadens,
and the concentration becomes more evenly distributed as can be seen when t = 0.5 d. The
peak broadening signifies mechanical dispersion (spreading due to heterogeneous flow paths)
and molecular diffusion (solute movement from high to low concentration). Starting from t =
1 d, the concentration peak decreases as time progress which can be seen at Figure 2. It can be
clearly observed that the concentration gradually spreads outward from the midpoint we set.

The behaviors shown in Figures 1 and Figure 2 are due to the contaminant front moving
rapidly, while the trailing part still catching up. As the concentration graDdients become less
steep, the advection’s relative impact diminishes, and diffusion causes to spread more slowly
in all directions. This trend aligns with the expected behavior of heavy metals dispersing and
diluting over time.
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(a) t = 0.081 d (b) t = 0.095 d

(c) t = 0.5 d

Figure 1: Concentration profiles of heavy metals at different earliest times for fixed Q = 1 and
R = 1.5 with instantaneous release source heavy metals is introduced at (2.5, 2.5)
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Figure 2: Concentration profiles of heavy metals at different time for fixed Q = 1 and R = 1.5
with instantaneous release source heavy metals is introduced at (2.5, 2.5)

Figure 3 shows the effect of retardation factors on the heavy metals transport in soil. As
the retardation factor decreases, the migration speed of the contaminant increases, and the
position of the concentration peak gradually moves left ledge from the release point. Meanwhile,
the concentration distribution becomes more uniform, and the diffusion range expands. This
indicates that the strength of the retardation effect directly influences the migration speed and
spatial distribution of the contaminant in the soil.

Figure 4 indicates the variation of the concentration under different Q values on the first
day. The increase in the Q value, which represents the ratio of particle release to the porosity
of the porous medium, has a significant impact on the peak concentration. When the ratio of
particle release to porosity is high, a larger number of particles are released into soil. This can
lead to higher local concentrations of contaminants.

Comparison of heavy metal transport in soil with or without adsorption is illustrated in
Figure 5. The red line considers both adsorption and desorption showing a gradual decline
in concentration over time. The green line only adsorption is considered, leading to a faster
decrease in concentration compared to the case with both adsorption and desorption. This
suggests that without desorption, the heavy metal particles are retained in the soil more effec-
tively. While the scenario excludes both adsorption and desorption, leading to the slowest rate
of concentration reduction over time, indicating minimal interaction with the soil particles.
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Figure 3: The effect of different retardation factors on heavy metal concentration from point
source with instantaneous release plotted at Q = 1 and t = 1 d

Figure 4: The effect of different particle release amounts and porosity ratios on heavy metal
concentration plotted at time t = 1 d
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Figure 5: Comparison of heavy metal transport in soil with different conditions of adsorption
and desorption plotted for x = 5 and y = 5

4 Conclusion

The study explores the transport behavior of heavy metals in soil using the ADE. It investi-
gates how concentration gradients evolve over time, highlighting the initial formation of sharp
gradients near the point source and the subsequent shift of peak concentration away from the
source as the contaminant front advances. The impact of retardation factors is also analyzed,
demonstrating that lower retardation leads to faster contaminant migration and a broader,
more uniform distribution. Additionally, the effect of the particle release ratio (Q value) on
the concentration is examined, revealing that higher ratios result in elevated local contaminant
concentrations due to the increased particle release into the soil. The findings also imply that
models incorporating adsorption and desorption dynamics are essential for accurately predict-
ing the transport and retention of heavy metals in soils. For environmental management, this
means that remediation efforts should consider both adsorption and desorption.
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