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Abstract Droughts are periods of inadequate precipitation that have severe and diverse
impacts on human societies and ecosystems. However, a reliable forecasting technique
can improve drought monitoring and mitigate impacts. This research aimed to assess
the predictive accuracy of a hybrid forecasting model, Wavelet-ARIMA (W-ARIMA),
for drought forecasting, using the Standardized Precipitation Index (SPI) with a tradi-
tional ARIMA model as a benchmark. Monthly rainfall data from the Badeggi district
in the north-central part of Nigeria, covering the period from January 1968 to December
2018, was utilized for the analysis. Subsequently, SPI values for various time scales (3,
6, 9, and 12) were computed. The Wavelet Transform was then employed to decompose
the data series into L components, encompassing details and approximations from A to
D (An, D1, D2, ..., DL−1) of the SPIs, respectively. Furthermore, an ARIMA model was
fitted to each of these details and approximations, and their sum constituted the fore-
casted W-ARIMA values. Evaluation based on the performance metric, the RMSE of
W-ARIMA (0.4889, 0.4326, 0.3566, and 0.2177) while that of ARIMA (0.7771, 0.6667,
0.4648, and 0.3212), revealed that the hybrid model (W-ARIMA) consistently outper-
formed the ARIMA model among the metrics for all the SPI 3, 6, 9, and 12, respectively.

Keywords SPI, ARIMA, SARIMA, Drought forecasting, Wavelet transform, Wavelet-
ARIMA.

Mathematics Subject Classification 62M10, 62P12, 37M10, 42C40, 86A40.

1 Introduction

Drought is a natural disaster that negatively impacts various aspects of human life and the
ecosystem, including agriculture, water resources, socio-economic conditions, and policymaking
[1, 2]. Recurrences of drought are unavoidable, occur randomly, and are only noticeable after
extended periods of below-average precipitation. Although its characteristics vary from place

41:3 (2025) 283–308 | www.matematika.utm.my | eISSN 0127-9602 |



Basiru Yusuf and Ani Shabri / MATEMATIKA 41:3 (2025) 283–308 284

to place, it affects almost everyone in all climatic zones. As such, it is challenging to determine
with precision when a drought will start and end [3,4].

When drought is prolonged due to inadequate precipitation, unfavorable conditions such as
climate change, rising temperatures, deforestation, and ocean temperature fluctuations are ex-
pected consequences [5]. These issues have attracted researchers from various fields, including
hydrology, environmental science, meteorology, agriculture, and ecology [6]. As an integral
part of climate variability, drought is one of the foremost natural disasters, impacting extensive
regions and posing significant threats to the environment and human life [3]. Its unpredictable
nature, coupled with variable characteristics across different locations, makes it challenging to
predict the onset and duration of droughts. Given its far-reaching impacts on human societies
and ecosystems, effective water resource planning and management are imperative. Addressing
this challenge necessitates the continued enhancement of forecasting techniques to predict hy-
drological and meteorological variables, such as precipitation, as a proactive measure to mitigate
the effects of drought [7].

Drought forecasting is crucial for implementing preemptive measures to mitigate the risks
and impacts associated with droughts. The effectiveness of drought preparedness and mitigation
strategies hinges on timely and accurate information about drought onset and progression.
Such information is typically derived from continuous drought monitoring, which relies on the
use of drought indices [8]. Drought indices are metrics designed to capture various drought
characteristics, including magnitude, duration, severity, and spatial extent. The Standardized
Precipitation Index (SPI) is the most widely used tool for measuring meteorological drought
[9–11]. It was originally proposed by [12]. The SPI is favored for its simplicity and versatility
[13], requiring only precipitation data to effectively monitor and predict drought conditions in
a given region.

Research on drought forecasting has highlighted the effectiveness of hybrid models that com-
bine wavelet analysis and autoregressive integrated moving averages (ARIMA) for improved
predictions. Studies by various authors have shown that hybrid models like Wavelet-MLR,
Wavelet-GPR, EWT-ARIMA, and Wavelet-ARIMA outperform standalone models in forecast-
ing drought conditions [2, 14–20]. These hybrid models have been found to improve the ac-
curacy of forecasting multi-scalar Standardized Precipitation Evapotranspiration Index (SPEI)
values over different lead times, with the choice of mother wavelet significantly impacting
the model’s performance. The combination of wavelet analysis with ARIMA in these stud-
ies has demonstrated superior results in predicting drought events, providing valuable insights
for decision-makers and planners in managing hydrological droughts and implementing early
warning systems effectively.

Wavelet-ARIMA models have gained significant attention due to their effectiveness in han-
dling non-stationary time series data. Several studies highlight the significance of integrating
wavelets with other methods. [21] Wavelet Methods for Time Series Analysis provides a com-
prehensive overview of wavelet methods applied to time series analysis, laying the groundwork
for integrating wavelets with ARIMA models. [22] combined wavelet transforms with neuro-
fuzzy models, and the results demonstrated significant improvements in precipitation forecast-
ing accuracy. [23] employed a hybrid ARIMA-neural network model; the study underscores
the potential of combining traditional models with advanced techniques, inspiring subsequent
wavelet-ARIMA research. [24] used wavelet analysis to identify climate oscillations, paving the
way for applying wavelet transforms in climate-related time series forecasting. Recently, several
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studies have employed hybrid models to improve drought forecasting accuracy, including but
not limited to [2, 25–28].

In trying to mitigate the consequences of drought, advanced actions and plans need to be
put in place. To this end, several forecasting methods have been developed to predict drought
occurrences. Among the statistical methods is the conventional autoregressive integrated mov-
ing average (ARIMA), which has been widely applied by many researchers to forecast drought
using the SPI series [29–31]. ARIMA models are linear and assume stationary data sets;
therefore, they are inadequate for handling non-linear and non-stationary series in hydrological
processes [29].

The primary aim of wavelet transformation is to analyze time series data in both the time
and frequency domains by breaking down the original time series into different frequency bands.
Wavelets serve as essential tools in time series forecasting, utilizing wavelet functions for this
purpose. Mathematically, wavelet transforms are functions that enable the analysis of time
series containing non-stationarities. This technique facilitates the use of long-time intervals to
capture low-frequency information and short-time intervals to capture high-frequency informa-
tion, thereby revealing data characteristics such as trends. Additionally, wavelet analysis offers
the flexibility to select the mother wavelet based on the specific attributes of the investigated
time series. Furthermore, the wavelet transform provides the advantage of examining diverse
independent behaviors at distinct time scales [32].

The aim of this research (paper) is to investigate the performance of predictive accuracy
of a proposed hybrid wavelet-autoregressive integrated moving average (W-ARIMA) model for
drought forecasting using SPI data series with the traditional ARIMA model as the benchmark.
Time scales consisting of 3, 6, 9, and 12 periods were utilized in the SPI for the drought analysis.
These intervals were selected because they are widely recognized in the literature for capturing
different types of drought impacts: shorter scales such as 3- and 6-month SPI reflect short-term
precipitation variability relevant to short term meteorological droughts, while longer scales
such as 9- and 12-month SPI are more effective in classifying long-term drought conditions.
The adoption of these time scales is consistent with recommendations by [13, 33] and the
World Meteorological Organization, thereby ensuring comparability with previous studies and
providing a comprehensive assessment of drought dynamics in the study region.

2 Study Area and Data

With a total area of 923,768 km2 (356,669 sq mi), Nigeria ranks as the 32nd largest country
globally and is situated on the Gulf of Guinea in Western Africa. The country’s diverse land-
scape includes the Sahara Desert to the north, dense forests with numerous rivers and streams
in the south, and fertile land in the center. Nigeria is home to an estimated 220,000,000 people
and is bordered by four countries: Cameroon to the east, Chad and Niger to the north, the
Benin Republic to the west, and the Atlantic Ocean to the south. Niger State experiences an
average annual temperature of 34◦C, contributing to its classification as an extremely warm
state. While there are not many traditionally tropical or hot months, the year remains consis-
tently warm or hot, with occasionally uncomfortably high humidity from June to September.
Figure (1) shows the distribution of the study area by state and location.

The dataset used in this study comprises rainfall data sourced from the Badeggi irriga-
tion station in Niger State, located in the north-central part of Nigeria, spanning 600 entries
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from January 1968 to December 2018. The data was divided into a training set consisting of
98% (1968 to 2017) and a validation set comprising 2% (January - December 2018) for both
ARIMA and Wavelet-ARIMA modelling. This data was then transformed into a Standardized
Precipitation Index (SPI) series, serving as the foundation for model construction and drought
forecasting. For model development and validation, MATLAB software was used for the de-
composition of the various SPIs, and R software was utilized for ARIMA model development
and validation.

Figure 1: Spatial location map showing Nigerian Map by States, Niger State the Study
State and Badeggi Study Area. The map was generated using ArcGIS version 10.8 (Esri
Inc.,https://www.esri.com).

3 Methods

3.1 Introduction

To address the inadequacies of ARIMA models, specifically their limitations in handling non-
linear and non-stationary data series typical of drought data, a model integrating wavelet and
ARIMA, called Wavelet-ARIMA, is proposed to enhance forecasting accuracy. This section
will present the data source along with its size. The methods used to model and forecast the
data are ARIMA and SARIMA, and the performance evaluation metrics - RMSE, MAE, and
MAPE - will also be presented.

 https://www.esri.com)
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3.2 Standardized Precipitation Index (SPI)

The Standardized Precipitation Index (SPI) was originally developed by [33] with the primary
purpose of defining and monitoring droughts in the United States. It is a simple, basic drought
index used to identify drought in many regions. Due to its characteristics, it offers several
advantages. First, it is easy to evaluate since its values are derived solely from precipitation
[34]. Second, it can be used to represent drought conditions in a region over different time scales
[34–36]. Third, the standardization of SPI makes it suitable for comparing drought conditions
across different regions, times, and climates; it is geographically independent and can describe
both dry and wet periods. The details of its computational procedure can be found in [34].

The value of SPI is calculated by fitting a density of Gamma Probability distribution given
in equation 1:

f(x;α, β) =
1

βαΓ(α)
xα−1e−

α
β for x, α, β > 0, (1)

where, α is the shaping parameter, β is the scaling parameter and,x is the amount of precipi-
tation which are all positive integers (α > 0; β > 0, x > 0); Γ(α) is the value of alpha obtained
over the integral of the gamma function as presented in equation (2).

Γ(α) = limn→∞

n−1∏
v=0

n!ny−1

y + v
≡
∫ ∞
0

yα−1e−ydy. (2)

SPI has no dimension; its values range from with the negative ending indicating extreme
drought and the positive ending representing an extremely wet period. The classification of SPI
based on drought intensity is given in Table 1. The effect of different time scales on the SPI
lies in their ability to represent distinct drought characteristics. Shorter time scales, such as
the 3- and 6-month SPI, are sensitive to short-term precipitation variability and are therefore
effective in detecting meteorological and agricultural droughts, which directly influence soil
moisture and crop conditions. In contrast, longer time scales, such as the 9- and 12-month
SPI, smooth short-term fluctuations and highlight hydrological droughts, reflecting cumulative
precipitation deficits that affect groundwater recharge, reservoir storage, and streamflow.

Table 1: Classification of Drought based on SPI values

SPI Values Class of Drought SPI Values Class of Drought
0 to -0.99 Mildly dry 0 to -0.99 Near Normal

-1.0 to -1.49 Moderately dry 1.0 to 1.49 Moderately wet
-1.50 to -1.99 Severely dry 1.50 to 1.99 Severely wet

6 -2.0 Extremely dry 6 2.0 Extremely wet
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3.3 Autoregressive integrated moving average (ARIMA) model

As reported by [29–31, 34, 37] the autoregressive integrated moving average (ARIMA) model
is the most widely used linear model stochastic model for drought forecasting. [38] described
the general form of the non-seasonal ARIMA model for any time series Xt, represented by:

Xt =
θ(B)εt
φ(B)∇d

(3)

where:

φ(B) = (1− φ1B − φ2B
2 − ...φpBp), (4)

and

θ(B) = (1− θ1B − θ2B2 − ...θqBq), (5)

where Xt is the value of the observed time series, B is the backshift operator, p is the order
of the autoregressive,q is the order of the moving average, φ(B) and θ(B) are polynomials of
order p and q respectively,d is the number times of differencing, ∇d differencing operator and
εt is the time-independent uncorrelated random variables assumed to be white noise.

3.4 Seasonal Autoregressive Integrated Moving Average SARIMA

While ARIMA models are best suited for modelling a wide range of linear and stationary
data, many seasonal and non-stationary data patterns exist in hydrological processes. To
handle these seasonal and periodic properties, [39] improved the ARIMA model by including
a seasonal component to capture the seasonal characteristics that may exist in the data. This
modified model, called the Seasonal Autoregressive Integrated Moving Average (SARIMA), is
written as ARIMA (p, d, q)(P,D,Q)s . For a given time series Xt, the SARIMA model can be
written as follows:

Xt =
θq(B)ΘQ(Bs)εt

φp(B)Φp(Bs)∇d∇D
s

(6)

where:

ΦP (Bs) = (1− Φ1B
s − Φ2B

2s − ...ΦpB
ps), (7)

ΘQ(Bs) = (1−Θ1B
s −Θ2B

2s − ...−ΘqB
qs), (8)

From the above equations [6–8], Where Xt is the value of the observed time series, s is
the seasonal length,(p, d, q) is the Non-seasonal part of the model,(P,D,Q) is the seasonal
component of the model, ∇D

s is the seasonal differencing part with degree D,φ(B) and θ(B)
are polynomials of order p and q respectively, ∇d differencing operator, and are the time-
independent uncorrelated random variables assumed to be white noise. The seasonal part of
the model is made up of terms that are very similar to the non-seasonal components of the
model, however, they involve backshifts of the seasonal period.
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3.5 ARIMA Model Development

The important steps in the implementation of ARIMA/SARIMA modelling include model
identification and the selection of suitable models for time-based data. Three essential steps
make up the expansion of the ARIMA/SARIMA structure: model identification, parameter
estimation, and diagnostics checking to confirm the model’s suitability. Automatic functions,
the Hyndman-Khandakar algorithm for automated ARIMA modelling in R software, is used to
complete these phases. The sections that follow provide more details on these phases [40–43].

3.5.1 Model Identification

The main aim of model identification is to meticulously choose a subset from the SARIMA/
ARIMA model family that accurately captures the inherent characteristics of the time series
data. According to [44], the identification phase entails the initial step of defining a model
structure that closely corresponds to the observed data collected. The specific configuration of
the model is ascertained through a two-step procedure:
(1) The examination of the autocorrelation function (ACF) and partial autocorrelation function
(PACF) of the data transformation to identify the temporal correlation structure [29].
(2) The application of appropriate differencing to the series, if necessary, to attain stationarity,
which is subsequently employed to delineate the overall form of the model for fitting purposes.

Studies have indicated that estimates with longer delays lack statistical reliability [45]. The
PACF helps to diminish the impact of short-lag autocorrelation, thus decreasing correlation
estimates at extended delays. The PACF quantifies the correlation not explained by lower-
order delays between a variable and its lag. By employing goodness of fit, the precision of
the ultimate model will be evaluated using established metrics such as the Akaike information
criterion (AIC) and the Schwarz Bayesian criterion (BIC) which are given in equation (19) and
(20) respectively [46].

AIC = −2log(L) + 2k, (9)

BIC = −2 log(L) + k ln(L). (10)

The illustration of the number of parameters within the model can be found at the point
where the probability function of the SARIMA/ARIMA model is situated, in conjunction with
the quantity (n) of data within the model. Opting for the model that exhibits the lowest AIC
and BIC values is recommended as the most optimal choice.

3.5.2 Parameter estimation

For estimating unknown parameters various techniques are employed which comprise least
squares, moments, and maximum likelihood. In this specific investigation, the approach delin-
eated in [47], by employing the method of maximum likelihood estimation that will estimate
the unknown parameters in the model. One advantageous characteristic of the maximum likeli-
hood technique is its flexibility; in contrast to other methodologies such as the Cochrane-Orcutt
approach, it can be utilized in scenarios where the autocorrelation pattern of the error is more
intricate than basic first-order autoregressive structures [48].
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3.5.3 Diagnostic Checking

After the appropriate model has been chosen and the unknown parameters have been estimated,
it is critical to evaluate the model’s suitability and, if needed, recommend modifications. This
phase’s main goal is to confirm that the model’s residuals show characteristics of independence,
have a normal distribution, and are homoscedastic. These standards are essential for verifying
that the current time series model is adequate. It is recommended to use residual plots and
various examinations to achieve this. A white noise process serves as a sign that the model is
adequate; if the residuals follow a white noise process, which is defined by a distribution around
zero and a lack of correlation, then the model is suitable.

Analyzing the residuals of ACF and PACF is one way to assess the series’ independence.
There is no significant link between the residuals if the ACF and PACF residuals fall inside
the confidence interval. To achieve this goal, an alternate method that can be used is the
Ljung-Box-Pierce (LBQ) test. One statistical test designed to determine residual independence
is the LBQ test. The test statistic is formulated in equation (11).

Q = n(n+ 2)
m∑
k=1

r2k
n− k

. (11)

In this case, n is the number of samples of data and the number of autocorrelation lags, and rk is
the sample autocorrelation at lag k. The LBQ statistic’s null hypothesis is that the residuals are
independent. Q is distributed approximately as a chi-square with m−p− q degrees of freedom.
If the derived value of Q is excessively large, it suggests that the model is unsatisfactory.

3.6 Wavelet analysis

Recently, researchers have turned their attention to the use of wavelets due to their ability
to show information within a given signal in both time and scale domains [49]. Wavelet is
a mathematical tool that was developed for digital signal processing and image compression.
Wavelet is defined as a mathematical function used in decomposition of original signal usually
in the time domain to various scales of interest for processing and or analysis [50].

The wavelet transform is the procedure that decomposes the original data into various
components given a time scale. It is categorized into discrete wavelet transform (DWT) or
continuous wavelet transform (CWT). The latter is not commonly used due to its computational
compatibility and time requirement [51]. Hence, the DWT which is given in equation (12) is
frequently used in time series forecasting due to its simplicity and fewer time requirements.

ψm,n(t) =
1
√
smo
ψ

(
t− nτosmo

smo

)
, (12)

where, ψ(t) is the mother wavelet, and m and n are integer values that control the scale and
time respectively. The usual choices for the parameters are S0 = 2 and τ0 = 1. However,
Mallat’s wavelet transform states that the inverse of the discrete wavelet transform (DWT),
given in equation (12), is used to decompose the original discrete time series Xt into linearly
independent components at various scales of approximation and detail signals [52]. The inverse
is expressed in equation (13):
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x(t) = T
M∑
m=1

2M−m−1∑
t=0

Wm,n2−
m
2 ψ(2−mt− n), (13)

where: Wm,n = 2−
m
2

∑N−1
t=0 ψ(2−mt−n)x(t) represents the wavelet coefficient for the discrete wavelet

transform at scale s = 2m and τ = 2mn.
To achieve the necessary level of decomposition [3, 6, 9, 12, .........] of an original data set

into wavelets, [53] proposed the following formula, presented in equation (14):

L = int[log(N)]. (14)

In this formula,L represents the level of decomposition, and N denotes the total number of
elements in the SPI data. The original SPI drought data series is decomposed into L compo-
nents, comprising both details and approximation from A to DL−1(An, D1, D2, ...DL−1) These
components correspond to different frequency elements of the original data, each playing a
unique role and impacting the original SPI drought data differently. The sum of these compo-
nents (An, D1, D2, ...DL−1) is equal to the original SPI, as presented in equation (15). Rather
than using the components individually as input for the model, we combine the appropriate
components. This combined approach is more effective and enhances the forecast performance
of hybrid models.

Sn = An +D1 +D2 + ...+DL−1. (15)

3.7 Wavelet-ARIMA

The combination of the Wavelet Transform (WT) with the Auto-Regressive Integrated Moving
Average (ARIMA) model has gained prominence for its effectiveness in predicting phenomena
such as wind speed, temperature, and drought events. The hybrid method involves integrating
wavelet decomposition and empirical mode decomposition to stabilize original time series data
into various components comprising an approximation (An) and details (Dn−1, ..., D1) repre-
senting low and high frequencies patterns of the data. This is followed by the application of
ARIMA models to each of the decomposed subseries for model selection and predictions; and
subsequently summing up the fitted values from each of the fitted ARIMA made up of the
forecast wavelet-ARIMA.

Notice that these forecasted SPI values are obtained based on the inverse transform using
wavelets, leveraging the strength of both the wavelet analysis and the ARIMA Methods in
improving the predictive accuracy for modelling complex phenomena like drought. In essence,
wavelet-ARIMA involves three (3) fundamental stages: decomposition of data, fitting ARIMA
Model, and construction of signals to obtain Wavelet-ARIMA forecasts. The wavelet-ARIMA
framework is presented in Figure 2.
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Figure 2: Wavelet – ARIMA Framework

1) The first stage is to apply wavelet transform to decompose the SPI values using MATLAB
software. The process enables the data to be transformed to appropriate approximate and
detailed component levels capturing the low and high frequency patterns of the data. Selecting
a suitable decomposition method is essential in wavelet analysis. Hence, scholars suggested
various methods which include but are not limited to Symlet, Meyer, Daubechies, and Morlet.
For all these methods, the type of mother wavelet is dependent on the characteristic of the data
[54], [55]. For this study, therefore, the Daubechies function of order 2 and decomposition level
3 (which correspond to integer log (600)) were used, as describe in equation (16).

f(t) = D1 +D2 +D3 + A3. (16)

The choice of the Daubechies wavelet is justified because of its property of maximal number of
vanishing moments and has superior ability to model complex data, its orthogonality and hence
beneficial in denoising signals typical of drought data. More so, its flexibility in handling various
applications, makes it an ideal candidate for enhancing the accuracy of drought forecasting
models.
2) The optimal ARIMA models are fitted into each deconstructed layer for each SPI series in
the second phase. All of the iterative processes outlined in Section (3.5) are used to create a
unique model for every decomposed component in order to arrive at the appropriately selected
ARIMA model.
3) Thirdly, equation (17) will be used to rebuild the signal utilizing these expanded and de-
composed signals on various scales. This is achieved by summation of all subseries projections
of each deconstructed layer for each SPI, hence it yields the anticipated value of W-ARIMA.

ŷ = D̂1 + D̂2 + D̂3 + Â3. (17)

3.8 Performance Evaluation Criteria

To ascertain the performance of the forecasting accuracy of the estimated hybrid models, we
employ the use of evaluation metrics; which include the RMSE defined as the standard deviation
of the model’s forecasted values and the mean absolute error MAE that computes how closely
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the forecasted values with the observed values; while the mean absolute percentage error MAPE
measure how accurate the forecasted values are. These measures are defined in the equations
[18–20] respectively. Details of these measures of performance evaluation metrics are details
discussed in the literature: [56–60]. By these parameters, superior model performance is
achieved by choosing any metric with a lower value.

RMSE =

√√√√ 1

n

n∑
i=1

(Yi − ˆYi)2, (18)

MAE =
1

n

n∑
i=1

|Yi − Ŷi|, (19)

MAPE =
1

n

∣∣∣∣∣Yi − ŶiYi

∣∣∣∣∣× 100. (20)

For equations (18) to (20), the number of sample data is symbolized as n, where Y signifies
the recorded data and indicates the predicted values.

4 Results and Discussions

4.1 The preliminary Data Analysis

Preliminarily, a plot of different values of all the SPI was constructed and presented in Figure 3.
This is to observe any underlying pattern contained in the various time series. Examining the
plots, we can examine that there are very good number of values that shows greater portion
are moderately dry i.e., the drought occurrences is noticed and can lead to measures, there
are however for all the SPIs an extremely dry values occurring consistently during the 1993
(100 month) and for about 175 months in SPI 3 and 6. This is justified by the drought events
experienced in the area in the early 1990s. onward. The drought index value exhibited is
not surprising due to susceptible climate variation of Badeggi area, and that has significantly
affected the agricultural and other livelihood activities.
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Figure 3: Plots of 600 Data Sets for Various SPIs (3,6,9 and 12) Used for the Study

4.2 The ARIMA Model

The three model development stages, the model identification, parameter estimation, and di-
agnostic checking of modelling ARIMA are executed herein the following subsections.

Model Identification

The identification stage is the initial phase of ARIMA modelling, during which the model’s order
is established. To do this, the autocorrelation function (ACF) and the Partial autocorrelation
function (PACF) of the original SPI data series are observed and studied. Figure 4 displays
the ACF and PACF charts for each SPI. The model parameters p, d and q values are frequently
determined based on the plots’ significant lags.
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Figure 4: Plots of ACF and PACF Utilized for Models’ Selection in SPI 3, 6, 9, 12

In ARIMA modelling, ensuring that the data is stationary is crucial [61]. Before estimating
parameters, it’s common to assess both stationarity and seasonality in the time series. One can
check for stationarity by looking at the Autocorrelation Function (ACF) and Partial Autocorre-
lation Function (PACF) plots. If the time series is nonstationary, techniques like differencing can
be used to achieve stationarity. To identify the correct order for the ARIMA model, ACF and
PACF plots are also utilized. To find the best-fitting model, researchers rely on goodness-of-fit
measures such as the Akaike Information Criterion (AIC) and the Schwarz-Bayesian Criterion
(SBC). The model with the lowest AIC and SBC values is typically considered the best option
[46,49,62].
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Parameter Estimation

The second stage of ARIMA Modelling involves the estimating of parameters of the various
identified models. After identifying the most suitable ARIMA model for different temporal
scopes of the Standardized Precipitation Index (SPI), the next step involved estimating the
model parameters. The maximum likelihood method of estimation is employed for estimating
the unknown parameters in the model due to its flexibility [47]. The results of these estimations
are presented in Table 2, which includes the estimated parameters, standard error, t-statistic,
and p-value for each SPI. It is worth noting that a significant proportion of the parameters
show a lower standard error than the parameter value itself. Furthermore, except SPI 9, all
p-values demonstrate statistical significance, suggesting that the estimated parameters are valid
for inclusion in the models.

Table 2: Summary of Selected ARIMA Model Parameters for All the SPIs

Fund
Model
Parameters

Variables contained in the Model
Estimated
Parameter

Standard
Error

t-Statistic p-Value

SPI 3 ψ1 0.6263 0.03377 18.5846 0.0000
θ1 -0.2591 0.0433 -5.9838 0.0000
ε 0.144 0.0635 2.2677 0.0236

SPI 6 ψ1 1.1549 1.3018 0.8872 0.3752
ψ2 -0.2593 1.0624 -0.2441 0.8072
θ1 -0.4394 1.2966 -0.3389 0.7348
θ2 -0.0184 0.1459 -0.1261 0.8997
θ3 0.3109 0.1687 1.8429 0.0656
θ4 -0.6247 0.1542 4.0512 0.0001

SPI 9 ψ1 0.9136 0.0173 52.80925 0.0000
ψ2 -0.8453 0.1336 -6.3271 0.0000
θ1 0.3208 0.1291 2.484895 0.0130
θ2 -0.5231 0.0619 -8.45073 0.0000

SPI 12 ψ1 0.9768 0.0090 108.5333 0.0000
θ1 -0.8215 0.0243 -0.8458 0.3977

Diagnostic Checking

Following identification and evaluation, the models are chosen based on the forecasting accuracy
results for the different SPIs that were calculated. Table 3 presents the summaries of the
models that were chosen based on the performance evaluation metrics that showed the lowest
performance and AICs. All four (4) SPIs, however, exhibit seasonal data series, according to
the ARIMA Model’s results; SPI 6 differs from the others with AR(2) and MA(2), respectively.
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Table 3: Summary of the Selected Best ARIMA Models and Metrics for the Various SPIs

TRAINING TESTING
DATA MODEL RMSE MAE RMSE MAE AIC BIC
SPI-3 SARIMA(1,0,0)(0,0,1)[3] 0.7771 0.6030 0.8568 0.7504 1380.72 1398.23
SPI-6 SARIMA(2,0,2)(1,0,1)[6] 0.6667 0.479 0.5027 0.4116 1207.4 1238.04
SPI-9 SARIMA(1,0,0)(1,0,2)[9] 0.4648 0.3367 0.4806 0.3906 782.62 804.5
SPI-12 SARIMA(1,0,0)(0,0,1)[12] 0.3212 0.2191 0.2277 0.1735 353.59 366.72

4.3 Assessing Model Adequacy

The final stage in ARIMA modelling involves assessing the adequacy of the model. After
selecting an appropriate model and estimating its parameters, it is critical to evaluate how
well the model fits the data and to propose adjustments if necessary. This evaluation aims to
ensure that the residuals of the model exhibit key characteristics such as independence, normal
distribution, and homoscedasticity.

To conduct this assessment, various diagnostic tests are employed, including the analysis
of residual plots, and presented in Figure 5. An indication of model adequacy is when the
residuals behave like white noise, characterized by a mean centered around zero and an absence
of correlation among them. Standard practices for evaluating the goodness-of-fit for ARIMA
models involve examining the Partial Autocorrelation Function (PACF) and Autocorrelation
Function (ACF) of the residuals. In this context, the observed residuals appear to be normally
distributed, which supports the conclusion that the model is adequate for the data at hand.

4.4 Proposed W-ARIMA Model

To enhance forecasting accuracy, a combined model named the Wavelet-ARIMA (W-ARIMA)
model, integrating a wavelet and ARIMA, is introduced to address the limitations of stan-
dalone ARIMA models when dealing with nonstationary data. In this approach, the DWT
is applied to decompose the SPI series, generating suitable approximate and detailed compo-
nents. Inverse wavelet transform is subsequently used to reconstruct the decomposed series.
Optimal ARIMA/SARIMA models are fitted to each of the decomposed elements, and the W-
ARIMA predictions are obtained by summing the forecasted values from all the decomposed
components.
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Figure 5: Plots of Standardized Residual, ACF, and P-values of the Residual for the SPIs

Each SPI series undergoes a six-level decomposition utilizing the DWT with the application
of the Daubechies function of order 2 (db2). This decomposition results in the extraction
of components including an approximate representation (A3) and various detail components
(D3, D2, and D1). Figure 6 illustrates the decomposition of SPI 6 into approximate and detailed
components.
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Figure 6: Plots of SPI 12-Time Series DWT Decomposition of Different Levels and Approxi-
mation (A3, D3, D2, and D1)

The proposed W-ARIMA model is easily derived by aggregating the predicted values from
each decomposed layer, utilizing the six iterative stages previously elucidated, along with the
corresponding ARIMA model for each constituent subseries. Various ARIMA/SARIMA models
were applied to each decomposed SPI (A3, D3, D2, and D1) timescales. The summary of optimal
models based on AIC, BIC, and. The summary of optimal models based on AIC, BIC, and
p-values is presented in Table 4. The most suitable model for each original SPI is identified by
selecting the models with the lowest AIC and BIC values.
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Table 4: Summary of the Selected W-ARIMA Models

SPI Model
Testing Set

X2 p-value AIC BIC
SPI 3 ARIMA(2,0,2) with zero mean 0.0403 0.8408 -3478.3 -3456.45
SPI 6 ARIMA(2,0,2) with zero mean 0.0356 0.8503 -3012.55 -2990.66
SPI 9 ARIMA(2,0,2) with zero mean 0.0842 0.7717 -2622.43 -2600.54
SPI 12 ARIMA(2,0,2) with non-zero mean 0.1329 0.7154 -2377.37 -2351.11

The forecasting ability of the ARIMA model was improved upon by the application of
Wavelet analysis with respect to all the SPI as shown in Table 5 containing the values of
performance metrics of root mean square error (RMSE), mean absolute error (MAE) and mean
absolute percentage error (MAPE). From the values, it can also be observed and conclude that
the application of wavelet has improved the forecasting performance of the model.

Table 5: Summary of the Statistical Performance Metrics (SPM) of W-ARIMA Models

SPI Model
SPM

RMSE MAE MAPE
SPI 3 ARIMA(2,0,2) with zero mean 0.4889 0.3715 53.4192
SPI 6 ARIMA(2,0,2) with zero mean 0.4326 0.3236 46.4089
SPI 9 ARIMA(2,0,2) with zero mean 0.3566 0.2607 35.5696
SPI 12 ARIMA(2,0,2) with non-zero mean 0.2177 0.1551 19.9942

All of the SPIs had the characteristics of a white note, according to the LQT test result
shown in Table 4, with very small x-squared values and high p-values. These indicate a suitable
model and residual independence. To evaluate the normality assumption of the residual, Figure
7 provides a scatter plot, probability plot, histogram, and residuals plot against fitted values
of SPI 12 as an example. The residuals follow a white noise process, by studies of since the
histogram shows a normal distribution and the values of the residuals against the fitted plot are
spread around zero mean value with no indication of correlation [63, 64]. The majority of the
residuals in the QQ probability plot, on the other hand, align with the diagonal line, indicating
that the normality assumption is satisfied [63,65]. The residual and fitted values are plotted in
a scatter plot to confirm the residual’s Homoscedasticity. The result indicates that the values
have a constant variance of around and no clear pattern. And as a result, it can be said that
there is a constant variance that would guarantee the preservation of the predictive accuracy.
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Figure 7: Residual Plot, Histogram, Residual vs Fitted, and Normal Probability Plot of the
Residuals for the Selected Model SPI 12

In order to measure the predictive accuracy of the two models (ARIMA and W-ARIMA),
a comparison of their performance evaluation metrics is employed. The values RMSE and
MAE is presented in Table 6. Based on these values, its evidently clear that the hybrid model
(Wavelet-ARIMA) outperformed the traditional ARIMA model in both training and testing
sets across all the SPIs.

Table 6: Comparison of Evaluation Metrics Between ARIMA and W-ARIMA Models for All
the SPIs

PERFORMANCE
METRICS

ARIMA WAVELET-ARIMA

SPI 3 SPI 6 SPI 9 SPI 12 SPI 3 SPI 6 SPI 9 SPI 12

RMSE 0.7771 0.6667 0.4648 0.3212 0.4889 0.4326 0.3566 0.2177
MAE 0.603 0.479 0.3367 0.2191 0.3715 0.3236 0.2607 0.1551

Next, to validate the fitted models, a time series plot was employed. Figure 8 presents the
visual comparison of the observed and predicted values of the various SPI data series based on
the estimated models. From these plots, it shows that the predicted values align closely to the
observed values for all the SPIs indicating the validity and adequacy of the models.
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Figure 8: Comparison of Observed and Predicted W-ARIMA Values for all the SPIs

5 Conclusion

In this study, we developed a new hybrid drought forecasting model called Wavelet-ARIMA
by combining wavelet transforms with the ARIMA model. Our goal was to improve the pre-
diction of drought occurrences using Standardized Precipitation Index (SPI) data from the
Badeggi district in North-Central Nigeria. This data-driven approach addresses the challenges
of drought forecasting by leveraging the wavelet’s ability to decompose data and extract sig-
nificant information across different timescales, alongside the accuracy of the ARIMA model.
This combination is particularly valuable for modelling Nigeria’s diverse climatic conditions
and contributes to advancements in drought prediction techniques.

A key aspect of our research was the thorough comparison between the Wavelet-ARIMA
model and the traditional ARIMA model, using performance metrics like Root Mean Square
Error (RMSE) and Mean Absolute Error (MAE). The results showed that the Wavelet-ARIMA
model consistently outperformed the traditional ARIMA model across all SPI metrics, high-
lighting its potential to enhance the accuracy of drought forecasts. This is due to wavelet-
ARIMA’s ability to capture both high-frequency fluctuations and low-frequency trends in the
data. The Wavelet transform acts as a decomposition technique, enabling the separation of time
series into different frequency components. This allows the W-ARIMA model to more effectively
capture the non-stationary and complex characteristics of drought time series, such as sudden
changes in precipitation patterns or long-term drought cycles, which the ARIMA/SARIMA
models may struggle with. This explains why W-ARIMA consistently delivered superior re-
sults across all SPI metrics.
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Initially, the traditional ARIMA model served as a benchmark. We decomposed each
SPI series using the Discrete Wavelet Transform (DWT) with the db2 wavelet to capture
information at different timescales. The final Wavelet-ARIMA forecast was generated by ag-
gregating the predictions from the optimal ARIMA model for each decomposed component
(A6, D6, D5, D4, D3, D2, and D1). Our research introduces an innovative data-driven forecast-
ing technique for drought prediction in north-central Nigeria. The effectiveness of the Wavelet-
ARIMA model, demonstrated through its comparison with the traditional ARIMA model,
underscores its precision in forecasting droughts.

We believe that the hybrid Wavelet-ARIMA model holds significant potential for improving
drought forecasting. Meteorologists, environmental assessors, and administrators can utilize
this model for more accurate predictions, which are crucial for effective water resource man-
agement and drought preparedness. However, a limitation of this study is that it only applies
to SPI data series. We encourage other researchers to expand on this work by applying the
model to weekly or daily data and incorporating additional variables, such as streamflow and
flood data.
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