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Abstract Flash floods are highly destructive in Malaysia. Mainly endangering lives,
damaging infrastructure and disrupting the economy. Reliable and precise forecasting is
essential to reduce their effects and enhance preparedness. This study investigates the
application of Machine Learning (ML) algorithms such as Logistic Regression (LR), Ran-
dom Forest (RF) and Long Short-Term Memory (LSTM) to develop a robust flash flood
prediction model. Historical water level and rainfall data recorded every 15 minutes dur-
ing the flash flood at IOI Puchong Jaya on December 15−16 2023 were utilized for model
training. Lag features were created to capture temporal dependencies and enhance pre-
dictive accuracy. Among the tested models, RF outperformed other models by achieving
an accuracy of 0.50 and a perfect recall of 1.00 successfully detecting all flash flood events
with an impressive computation time of just 0.01 seconds. Further real-world validation
during the May 2024 flash floods demonstrated RF’s reliability in predicting actual flood
occurrences while minimizing false alarms. The findings underscore the potential of RF as
a powerful tool for flash flood prediction. Its integration into flash flood warning systems
can provide emergency responders with timely and accurate predictions. This research
highlights the significance of ML-driven approaches in addressing the challenges of flash
flood management and offers valuable insights for future disaster mitigation strategies.

Keywords Machine Learning, Time series, Predictive Models, Statistical Method, Flood
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1 Introduction

Flooding is a recurring natural disaster in Malaysia that categorized into two primary types:
flash floods and monsoon floods [1]. These events significantly disrupt lives, infrastructure
and the economy that makes flood management a critical concern. In contrast, monsoon floods
driven by prolonged heavy rainfall during the northeast monsoon season (November to March)
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that can last for weeks to months [2]. Both types of floods cause widespread devastation with
flash floods being more common in urban areas and monsoon floods predominantly affecting
rural regions in states like Kelantan, Terengganu and Pahang [3]. The distinct landscape and
weather patterns of Malaysia increase its risk of floods. The tropical climate with its consistent
high rainfall coupled with rapid urbanization has increased the risk of flash floods. Sudden
intense rainfall in urban areas overwhelms drainage systems leading to water accumulation and
flash floods [1]. Sanyal and Lu [4] describe flash floods as resulting from heavy rainfall over a
short duration causing high river discharge and localized flooding. Urbanization, deforestation
and poorly planned infrastructure developments have reduced natural water absorption and
increased surface runoff and worsening the severity of floods [5]. Monsoon floods predominantly
impact rural areas along major rivers, such as the Kelantan and Pahang rivers with devastating
effects on agricultural activities and the livelihood of affected communities. Conversely, flash
floods frequently occur in rapidly developing urban areas including Kuala Lumpur and Selangor.
The rapid urbanization of floodplains particularly in Selangor has heightened the vulnerability
of these areas to hazardous flash floods making effective flood management strategies imperative
[6]. In response to these challenges, Malaysia has implemented various mitigation measures
including the construction of flood retention ponds, river deepening projects and early warning
systems.

Machine Learning (ML) has become a robust option for flood prediction that overcomes
the challenges associated with traditional hydrological models. Unlike traditional model which
often require a detailed understanding of complex physical processes. ML methods rely solely on
historical data to capture the nonlinear relationships between variables [7–9]. This capability
allows ML models to achieve higher predictive accuracy and adapt to diverse flood scenarios
effectively. In recent years, ML-based approaches have attained significant prominence in flood
prediction studies, particularly in Malaysia and on a global scale [10–14]. Researchers have
successfully applied a variety of ML algorithms including Logistic Regression, Neural Networks,
Random Forests, and Long Short-Term Memory networks to enhance prediction accuracy and
decision-making. By leveraging advanced ML techniques, flood prediction models can provide
timely and precise forecasts that offers critical insights to emergency responders. This study
builds on these advancements exploring the application of ML methods to improve flash flood
prediction and management strategies.

Flood prediction is a critical aspect of disaster management and various ML algorithms have
been implemented to advance forecasting accuracy. Logistic Regression (LR) is a frequently
applied approach in spatial studies for predicting floods due to its flexibility and ability to
accommodate multiple data types, including scale, nominal, and categorical variables. Unlike
many traditional statistical methods, LR does not require strict assumptions, making it a
versatile tool in flood studies [15]. Tehrany et al. [16] demonstrated LR’s ability to assimilate
meteorological and hydrological data for future flood forecasting. However, while Lopez and
Rodriguez [17] found LR effective in predicting non-occurrence of flash floods, its performance
in predicting occurrences was only acceptable. In comparative analyses, LR has consistently
shown competitive results, outperforming models like Decision Tree (DT) and Support Vector
Classification (SVC) in recall accuracy [18] and performing on par with K-nearest neighbors
(KNN) models [19].
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Random Forest (RF) has emerged as another robust ML algorithm in hydrology known
for its ensemble approach that combines multiple decision trees to mitigate overfitting while
maintaining predictive precision [20]. RF offers high accuracy, rapid computational perfor-
mance and resilience against missing data and noise that makes it ideal for flood prediction
[21]. Studies have shown RF to outperform Artificial Neural Networks (ANN), Support Vector
Machines (SVM), and regression models in various hydrological applications [19, 20]. Despite
its strengths, RF’s complexity and the need for extensive parameter tuning pose challenges in
interpretability and training time [24].

Long Short-Term Memory (LSTM) networks have revolutionized flood prediction, partic-
ularly in time-series analysis. As an evolution of Recurrent Neural Networks (RNN), LSTM
overcomes the vanishing gradient problem and captures complex temporal and nonlinear pat-
terns effectively [25]. Its ability to handle inputs and outputs of varying lengths makes it
particularly suited for dynamic flood prediction scenarios [26]. Studies have consistently high-
lighted LSTM’s superior performance over traditional ML models and statistical techniques,
such as ARIMA, in capturing time-series data patterns for flood forecasting [27, 28]. For in-
stance, [29] found LSTM to be the most effective method in identifying and predicting flood
dynamics compared to RF, SVM, and basic RNNs. This study leverages the unique strengths
of LR, RF, and LSTM models aiming to enhance flash flood prediction by combining their
respective capabilities. By addressing the limitations and harnessing the advantages of these
algorithms, this research seeks to design a strong and accurate method for predicting floods
framework to aid disaster management and mitigation efforts.

The research aims to evaluate the viability of predictive models for accurate and reliable
flash flood prediction, emphasizing the identification of the most suitable model with high
accuracy and recall scores. Besides, the research also applies and assesses predictive models,
including Logistic Regression, Random Forest, and long Short-Term Memory, for predicting
flash flood occurrences using water level and rainfall data. Besides, accurate predictive models
will be developed with the aims at enhancing early warning systems, supporting informed
decision-making, and mitigating risks to lives and infrastructure.

2 Methodology

2.1 Study Area

The core aspect of the research was carried out at Puchong Jaya City in Selangor, Malaysia.
Bandar Puchong Jaya, a highly populated township in Puchong, Selangor, Malaysia. It is a
significant economic hub with a large population, well-established residential neighbourhoods,
and substantial industrial activity. IOI Puchong Jaya is a bustling part of Bandar Puchong Jaya
in Selangor, Malaysia. It is a commercial and entertainment hub within the township. Despite
rapid development, IOI Puchong Jaya faces occasional flash flood issues. Flash floods have
occurred multiple times here, with documented incidents from 2006, including the most recent
on May 12, 2024. The possible reasons for flash flood occurrence are poor drainage system, low
elevation of the IOI Mall area, and water overflow due to extreme rainfall [30]. This analysis
employed hydrological data, such as rainfall and water level, obtained from gauging stations
managed by the Department of Irrigation and Drainage Malaysia (DID). The hydrologic gauging
stations involved in this study are Station Sg. Klang At USJ 1 that provides water level data
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in meters (m), and Station IOI Puchong Jaya that provides rainfall data in millimeters (mm).
Table 1 lists the gauge station used in data collection, and the location of the stations is plotted
in figure 1. The Station Sg. Klang At USJ 1 and Station IOI, Puchong has an elevation of 10m
and 27m, respectively. The average elevation of the IOI Puchong area has a topography ranging
from 10 to 50 metres illustrated in figure 2. With an average elevation of just 38 meters, this
area is susceptible to floods triggered by rising river levels during heavy rain. The Klang River
and its drainage infrastructure lack the capacity to manage surplus water, as evidenced by the
16 December 2023 flood incident.

The hydrological data collection focused specifically on the periods surrounding a flash flood
event on 16 December 2023. Data were collected for the day before and the day of the flash flood
occurrence. Around 192 observations were collected over two days at 15-minute intervals. On
16 December 2023, Subang Jaya City Council’s (MBSJ) Disaster Management Unit announced
a level-three danger warning for the IOI Puchong mall area at 6.45 p.m. [30]. Thus, the data
points from 6.45 p.m. until 8.15 p.m. on 16 December 2023 were labelled as ’1’ to indicate the
flash flood occurrence. Before further analysis, the data is pre-processed to ensure that it is
clean and does not contain any null value.

Table 1: The list of gauge stations used in data collection.

No. Station Name Latitude Longitude Station Open Date State/Basin/District
Type

1 BPTL0033 - 3.050117 101.610108 Water 30/11/2023 Selangor/Sungai
Sg. Klang At Level Klang/Petaling

USJ 1
2 BPTL0005 - 3.04275 101.621417 Rainfall 9/5/2007 Selangor/Sungai

IOI Puchong Klang/Petaling
Jaya

Figure 1: The location of the gauge stations used in data collection.
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Figure 2: The elevation map of IOI Puchong Jaya Area.

2.2 Logistics Regression

Logistics regression analysis is a regression method that establishes the relationship between
continuous or categorical explanatory (independent) variables and categorical response (depen-
dent) variables. Logistic regression is a binary classification algorithm in which the response
variable is a binary variables (0/1) where 1 denotes the presence of a given scenario (success),
and 0 denotes the absence (failure). In the study, the logistics regression is used to predict
the flash flood occurrence where 1 denote flash flood occur and 0 is not. The idealized linear
logistic regression model is estimated using (1).

Pf =
1

1 + e−Z
;Z = ρ0 + ρ1X1 + ρ2X2 + LL+ ρnXn , (1)

where Pf , is the probability of flash flood occurrence, Z is the value of determined from −∞ to
+∞, ρ0 is the intercept of the LR model, the ρi(i = 0, 1, 2, ..., n) are the slope coefficients of the
LR model, and Xi(i = 0, 1, 2, ..., n) are the independent variables. The prediction process of
flash flood occurrence using LR involves the probability calculated. If the probability is higher
than 0.5, it identifies that the flash flood will occur at that timepoint (label= ‘1’), and if it’s
0.5 or lower, its determined that no flash flood is likely to occur (label= ‘0’). The architecture
of LR is demonstrated in Figure 3.
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Figure 3: Architecture of Binary Logistics Regression model

2.3 Random Forest

The Random Forest (RF) technique is a well-established method for supervised classification
that is applicable to both classification and regression issues. RF is an ensemble learning
method combining bootstrapping principles and several decision trees on various subsets of
the given dataset [31]. A bootstrapping or bagging technique ensures that each tree is trained
using randomly resampled training sets from the original dataset. The technique introduces the
randomness in the model and assures the decorrelation among trees. In each decision tree, the
bootstrapped dataset is recursively split until a leaf node (the bottom of decision trees) is left,
and it finds the best split by maximizing information gain. RF also employs random feature
selection. In training each decision tree, a portion of predictor variables is utilized to partition
an internal node following splitting guidelines. The standard splitting criteria in classification
problems are entropy and information gain [32]. At each internal node of the decision tree,
entropy (Equation 2) and information gain (Equation 3) are calculated. The split with lower
entropy or higher information gain is selected and stop when achieving a homogeneous node.

Entropy =
n∑

i=1

pi log2pi, (2)

Information Grain=1-Entropy, (3)

where n is the number of unique classes and pi is the prior probability of each given class. In the
classification problem, each decision tree in Random Forest predicts the class independently.
The final decision or prediction result is decided by a majority vote from all the individual
trees. The conceptual scheme of RF model for classification process is demonstrated in Figure
4.
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Figure 4: Architecture of Random Forest

2.4 Long Short-Term Memory (LSTM)

The Long-Short-Term Memory (LSTM) is an enhanced version of the recurrent neural network
(RNN). It addresses the challenge of vanishing gradients encountered in traditional RNNs and
effectively captures long-term dependency information. The structure of the LSTM model is
in the form of a chain. The key element of the LSTM is a memory cell that can retain its
state throughout time. LSTM is equipped with three gates for managing the cell state. The
input gate permits or blocks the input signal to modify the memory cell state. The output gate
regulates the transmission of the memory cell state to the output. The forget gate manages
how much information the memory cell retains or discards for its next state. Figure 5 shows
the internal structure of the LSTM network.
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Figure 5: Internal Structure of LSTM Network.

The LSTM network begins by recognizing and removing unneeded information from the cell
with the forget gate, which is controlled by the sigmoid function [33]. This function evaluates
the previous output (ht−1) and current input (Xt) to decide which parts of the prior output
should be discarded. The forget gate (ft) is a vector with values between 0 and 1, representing
each element in the cell state (ct−1).

ft = σ(Wf [ht−1,Xt ] + bf ), (4)

where σ is the sigmoid function, and Wf and bf are the weight matrices and bias, respectively,
of the forget gate.

Next, the sigmoid and tanh layers decide which information from the new input (Xt) should
be stored in the cell state and update it accordingly. The sigmoid layer assigns a value of 0 or
1 to update or ignore new information, while the tanh layer weights the values on a scale from
-1 to 1. These values are multiplied to update the cell stat. The new memory is combined with
the old memory (Ct−1) to form the new cell state (Ct).

it = σ(Wi[ht−1, Xt] + bi), (5)

Nt = tanh(Wn[ht−1, Xt] + bn), (6)

Ct = Ct−1ft +Ntit. (7)

Ct−1 and Ct are the cell states at time t − 1 and t, while W and b are the weight matrices
and bias, respectively, of the cell state. Then, the sigmoid layer determines which parts of the
cell state are included in the output. The output from the sigmoid gate (Ot) is multiplied by
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the new values generated by the tanh layer from the cell state (Ct), which range from -1 to 1.
Finally, the output values (ht) are derived from the output cell state (Ot) in a filtered form.

Ot = σ(Wo[ht−1, Xt] + b0), (8)

ht = Ottanh(Ct). (9)

The architecture of LSTM network mainly involves one LSTM layer, one fully connected
layer with dropout rate=0.2 and output layer with dense. The input of model is time lagged
rainfall and water level while the output is predicted probability (PP) which take value between
zero and 1. A threshold of 0.5 is used, such that the non-flash flood event when PP is equal to
or lower than 0.5, and PP greater than 0.5 indicates a flash flood occurred. In the LSTM layer,
the number of hidden units of LSTM layer is 200 and the activation function is Rectified Linear
Unit (ReLU). The activation function in dense layer is sigmoid where it squashes the output
to a probability between 0 and 1, indicating the likelihood of the positive class. The LSTM
also utilizes Binary Cross-Entropy as the loss function, ideal for binary classification tasks, and
employs Adam, an adaptive learning rate optimization algorithm recognized for its efficiency
and effectiveness. Figure 6 shows the proposed methodology of the study.

Figure 6: Proposed methodology of the present study.

In this study, the models are built with the default hyperparameters and built again using
the optimal combination of hyperparameters obtained from hyperparameter tuning. The list
of hyperparameters for each model is listed in Table 2. The optimal combination of hyperpa-
rameters is determined based on the highest accuracy by using K Fold Cross Validation.
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Table 2: List of hyperparameters for each model

Model Default hyperparameters Hyperparameters Tuning
Logistic Regression C=1.0 C: [0.01, 0.1, 1, 10, 100],

solver=‘lbfgs’ solver: [‘lbfgs’, ‘liblinear’]
Random Forest n estimators=100 n estimators: [50, 100, 200]

random state=13 random state:[13]
max depth=0 max depth: [4, 6, 10, 12]

LSTM Batch size=32 batch size:[32, 64,128]
Epochs=50 epochs: [5, 10, 20]

3 Performance Metrices

This part of the study focuses on the evaluation metrics used to evaluate the performance of
classification models. Non-flash floods are categorized as negative instances 0, and flash floods
are classified as positive instances 1. Accuracy represents the proportion of correctly predicted
cases out of all examined cases. An increased accuracy score demonstrates improved prediction
performance. The formula for accuracy can be found in the next equation (10).

Accuracy =
True of Correct Prediction

Total Number of Predictions
. (10)

Recall is the proportion of actual positive instances that are correctly predicted by the model
(Equation 11). It measures the accuracy of model in identifying positive cases. Higher recall
indicates fewer false negatives, which is important when the cost of missing positive instances
is high. The recall of the study is also known as the hit rate (HR) in the flash flood warning
field, according to Zhao et al. [34]. The formula for specificity used in the study is shown in
Equation 11.

Recall =
True Positives

True Positives + False Negative
,

= Hit Rate,

=
Hits

Hits + Misses
.

(11)

where “Hits” is the number of observed flash flood events predicted correctly and “Misses” is the
number of observed flash flood events predicted incorrectly. Recall is important in evaluating
the performance of flash flood prediction models because flash floods are the key event in the
study, and the cost of mispredicting flash floods is high.

F1 score in (12) is the harmonic mean of precision and recall, providing a single metric that
balances both measures. High F1 Score indicates high recall and high precision.

F1 Score = 2 · Precision Recall · Recall

Precision + Recall
. (12)

Precision measures the proportion of correctly predicted flash flood events among all the
instances predicted as flash flood events (Equation 13). It focuses on the accuracy of positive
predictions made by the model. Precision is important when the cost of incorrectly predicting
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an event is high. The greater the precision value, the lower the false alarm rate, indicating that
fewer false alarms are generated.

Precision =
True Posistives

True Positives + False Positives
. (13)

4 Results & Discussion

In this study, the flash floods occurrence in the IOI Puchong Area is predicted using three
machine learning models: Logistic Regression, Random Forest, and Long Short-Term Network.
The evaluation metrics, including accuracy, precision, recall, and F1-score were calculated to
assess the performance of each model. The machine learning models were implemented using
Python on Jupyter Notebook. This section presents a comparative analysis of the prediction ca-
pabilities of these models, offering insights into their effectiveness and applicability in enhancing
flood prediction in the IOI Puchong Jaya Area.

4.1 Time-lagged correlations between rainfall and water level

Two days of records of rainfall and water level at the gauge stations nearest to IOI Puchong
were plotted and analyzed in Figure 7. There were 2 rain events on 15 December and 16
December, respectively. Observing the peak of rainfall and of the water levels, there was a lag
between the two peaks. According to the news article from Sinar Harian, the flash flood on
16 December 2023 was alerted around 6:45 p.m., which was 15 minutes after the gauge station
recorded the highest rainfall value of 30 mm over the two days, as shown in Figure 8 [30].
Besides, it was observed that the water level did not increase immediately following the peak
rainfall at 6:30 p.m. Instead, the highest water level was observed at 7:30 p.m., indicating a
one-hour lag after the peak rainfall event. These observations suggest a time lag between the
rainfall event and the hydrological response, characterized by the increase in water level.
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Figure 7: Rainfall and water level data for IOI Puchong area on 15 December and 16 December
2023

Figure 8: Rainfall and water level data for IOI Puchong area on 16 December 2023
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4.2 Correlation Analysis

The general pattern in Figure 9 shows a sharp increase in correlation leading up to the peak,
followed by a gradual decline. This pattern is consistent with the expected hydrological response
where the water level rises after rainfall and then gradually decreases as the water drains away
or evaporates. The highest correlation is observed at a 5th time lag, which corresponds to 75
minutes (1 hour and 15 minutes). This indicates that the water level is most strongly affected
by rainfall that occurred 75 minutes earlier. After the peak at 5th time lag, the correlation
decreases gradually. This suggests that the impact of rainfall on water levels diminishes over
time. Figure 10 examines the correlation between water level and rainfall on 16 December 2023
across time lags. The highest correlation is observed at a 5th time lag, which corresponds to 75
minutes. This is consistent with the earlier overall dataset analysis, reinforcing the conclusion
that the water level responds most strongly to rainfall 75 minutes prior. After reaching the peak,
the correlation slightly declines but remains relatively high up to 8th time lag (120 minutes).
This suggests that the impact of rainfall on water level persists but weakens after the peak
response time. Both plots showed that the time lag in hydrological response to rainfall, with
the highest impact observed around 75 minutes after the rainfall event. This information is
crucial for flood prediction and early warning systems, as it helps in predicting water level rises
following significant rainfall.

Figure 9: Correlation Between Water Level and Rainfall with Different Time Lag
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Figure 10: Correlation Between Water Level and Rainfall with Different Time Lags on 16
December 2023 Particularly

A correlation analysis revealed that the correlation between water level and rainfall increases
from the 0th lag and reaches its maximum at the 5th lag. Several lag features were created to
account for this lag effect in the model, each representing cumulative rainfall over different time
windows. For instance, rain lag 1 represents the cumulative rainfall for the current time and
the previous 15 minutes; rain lag 2 represents the cumulative rainfall for the current day and
the previous 30 minutes; similar terms are created up to the 75 minutes. The lagged variables
were then used as input variables to build the three models, Logistic Regression (LR), Random
Forest (RF) and Long Short-Term Memory (LSTM) models.

4.3 Model Building

Three machine learning models, Logistic Regression (LR), Random Forest (RF) and Long Short-
Term Memory models were developed to predict the flash flood occurrence. The models were
built using default parameters using the dataset that had included the lagged features. Their
performance with default parameters was evaluated. A hyperparameter tuning was carried out
for each model to improve the predictive performance. For each model, the tuned model with
the higher accuracy was selected and used for training and validation. The chosen model was
then tested and evaluated using various performance metrics.

4.3.1 Using Default Hyperparameters

The models were built using the default hyperparameters and went through 5- fold cross-
validation to assess their performance in predictive capability. Table 3 shows the average scores
of each model during 5-fold cross-validation.

Based on the results in Table 3, all models generally demonstrated high accuracy. The
LSTM model achieved slightly higher accuracy than the LR and RF models. Additionally,
LSTM showed the highest recall, precision, and F1 scores, followed by LR. RF performed
relatively poorly with the lowest recall and very low precision scores, indicating weaknesses in
correctly predicting observed flash flood events and a tendency to generate false alarms.
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Table 3: Performance of LR, RF and LSTM models using default hyperparameters

Model
Average

Accuracy Recall F1 Score Precision
LR 0.97 0.80 0.67 0.60
RF 0.97 0.60 0.43 0.33

LSTM 0.98 0.88 0.91 0.99

4.3.2 Hyperparameter Tuning

This section presents the result after hyperparameter tuning using Grid Seach strategy for
each model, with the accuracy calculated respectively. Table 4 shows the set of the best
hyperparameters that represent the best model configuration obtained with the best accuracy
for LR, RF and LSTM.

Table 4: Performance of LR, RF and LSTM models using tuned hyperparameters

Model Accuracy Score Best parameters

RF 0.97
Max Depth 6
Number of Estimators 50

LR 0.99
Strength of the regularization, C 10
Solver Lbfgs

LSTM 0.98
Batch Size 32
Epochs 20

4.4 Training Result

The flood prediction models are built with logistic regression, random forest and long short-term
memory algorithm with optimal hyperparameters. The models were trained with oversampled
data from Synthetic Minority Oversampling Technique (SMOTE) and, then validated using
5-fold cross-validation techniques. The average score for each performance metric is tabulated
in Table 5.

Table 5: Performance of LR, RF and LSTM models before and after Hyperparameters Tuning

Model
Average

Before Tuning After Tuning
Accuracy Recall F1 Score Precision Accuracy Recall F1 Score Precision

LR 0.97 0.80 0.67 0.60 0.99 0.80 0.73 0.70
RF 0.97 0.60 0.43 0.33 0.97 0.60 0.49 0.43
LSTM 0.98 0.88 0.91 0.99 0.98 1.0 0.98 0.95

After tuning, there were no changes in the accuracy scores for each model. LSTM improved
its recall score to 1, while the recall scores for the other two models remained unchanged from
before tuning. Additionally, RF and LR increased their precision scores by about 10% each,
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indicating an enhanced ability to avoid false alarms. Although the precision of LSTM decreased
after tuning, it remained high at 0.95, the highest among the three models. The improvements
in LSTM’s recall score and in LR and RF’s precision scores were reflected in the increased F1
scores of all three models.

4.5 Model Evaluation

This section will show the result of model testing after training. This section focuses on
identifying the capability of machine learning models in forecasting flash floods occurrence
[35]. Moreover, to identify the effective model for this critical predicting task among three
models. Table 6 highlights the results of the three models evaluated across multiple metrics.

All three types of models, LR, RF and LSTM achieved an accuracy greater than 90%.
However, given that most of the dataset consists of negative samples (cases where flash floods
did not occur), and our primary focus is on detecting flash flood occurrences, the accuracy of
detecting non-flash flood events is less relevant. Therefore, precision and recall, which measure
the detection of positive samples, are more crucial. It is observed that all 3 models had the same
performance in testing phase. They were all high in recall value but only achieving precision
of 0.5. These 3 models had ability to predict the flash flood events correctly, but it also had
50% probability in giving false alarm about flash flood events.

As the main purpose of detecting flash floods, where timely and accurate alerts can save
lives and properties, the models are further compared based on their computation speed. RF
carried out and completed the classification task the fastest. With only 0.01 second difference,
LR is behind RF model. While, considering the complex mechanism of LSTM, it was not
surprised that LSTM took the longest computational time needed.

Table 6: Evaluation metrics of LR, RF and LSTM models

Model TP FN TN FP Accuracy Recall F1 Score Precision Computational
Time (s)

LR 1 0 36 1 0.97 1 0.67 0.5 0.02
RF 1 0 36 1 0.97 1 0.67 0.5 0.01

LSTM 1 0 36 1 0.97 1 0.67 0.5 3.27

Having high precision is crucial in minimizing unnecessary alerts and resource allocation,
particularly when the cost of false alarms is high. On the other hand, high recall is impor-
tant when missing a flash flood event (false negative) is dangerous. It ensures that the model
identifies as many actual flash floods as possible. Even if it may raise the false alerts., recall
is considered more vital. This is because missing a flash flood event could cause severe con-
sequences, whereas false alarms, though undesirable, might be more manageable. Considering
the criteria and the computational speed, RF stands out from another 2 models as it performs
as good as other models but with the fastest speed.

4.6 Prediction of Flash Flood Occurrence on 12 May 2024

A flash flood once again hit the IOI Puchong Jaya Area on 12 May 2024. An examination of
the three models’ performance is provided in this section from Section 4.5 in predicting flash
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flood occurrence using historical water levels and rainfall on 11 and 12 May 2024. The data
source is the same as the dataset used for building the model. The lagged rainfall variable was
created using the approach in Section 4.1, assuming the optimal time lags are from 1st to 5th
lags. The results were summarized in Table 7.

Table 7: Comparison of Three Models on Predicting Flash Flood Occurrence on 12 May 2024

Model TP FN TN FP Accuracy F1 Score Precision Recall
LR 6 0 166 15 0.91 0.44 0.29 1
RF 6 0 167 14 0.93 0.46 0.3 1

LSTM 6 0 165 16 0.91 0.43 0.27 1

Generally, all models achieved perfect recall score (1) and high accuracy as in testing. It
indicated that these 3 models can predict actual flash flood events very well without missing
any. The result proved that these 3 models are viable in predicting flash flood events and giving
early warning. However, these models all had low precision values. Based on Table 7, LSTM
had the lowest precision (0.27), indicating it was the most likely to produce a false alarm,
as compared to other models. While RF has a slightly higher precision score. As compared
with their performance in Section 4.2, overall, the magnitude evaluation metrics dropped down
slightly, except recall.

In selecting the best model for predicting flash flood occurrence, there are a few criteria that
need to be considered. Firstly, it’s noteworthy that none of the models missed positive instances
(flash flood events). The models are proved good in predicting true flood events. Besides, a
false alarm may would like to be prevented by relevant authorities. A false alarm of flash flood
occurrence not only incur immediate economic and social costs but can also have long-term
implications on public safety, community resilience, and trust in disaster management systems.
RF has the highest precision, and it predicted fewer number of false positives, more accurate
in giving flash flood warning and less false alert. Incorporating the result learned from section
4.3, RF executed the classification task faster. Consequently, an accurate and fast flash flood
alert can be given. On the other hand, RF model has the highest F1 score, often achieve a
better balance between precision and recall. This balance is important because it minimizes
false positives while still able to capture a significant number of actual flash flood occurrences.

In summary, RF showed a better balance of precision and recall, higher accuracy, and
overall better performance metrics for predicting flash floods in the Puchong Area. Despite
predicting some non-flash flood events wrongly, RF performs very well in predicting true flash
flood events, which is the primary focus of the study. These factors collectively suggested that
RF was likely to provide more reliable predictions. Therefore, the recommended choice among
the three machine learning models in this specific prediction task in Puchong is RF model.

5 Conclusion

Flash flood is one of the severe natural disasters in Malaysia, and flash flood occurrence will
cause serious damage to the economy and human life. Thus, a reliable flash flood prediction
is needed to be integrated into the early warning system to mitigate the consequences of flash
floods and help in disaster management. Thus, this research addresses the gap by applying
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predictive models to predict flash flood occurrence. The research aims to contribute ideas on
how to apply and identify which machine learning models is the most reliable alternative in
predicting flash floods.

The study primarily aims to apply and identify the most accurate and reliable predictive
models to predict flash flood occurrence in Puchong using historical water level and rainfall
data. The selected study area is IOI Puchong Jaya, as its a flash flood-prone area and is highly
impacted once hit by a flash flood. 3 types of ML algorithms are used: Logistic Regression,
Random Forest and Long Short-Term Memory. Due to the imbalance class in the dataset,
Synthetic Minority Oversampling was applied to training data to remove the bias towards the
major class. The models went through hyperparameter tuning to obtain the optimal combina-
tion of hyperparameters that improve the accuracy of models. The performance of each model
was then validated through 5-fold cross-validation and evaluated in terms of accuracy, recall,
F1 score, and precision. The models also applied on predicting the flash flood event in May
2024 and were evaluated. The results showed that Random Forest is the most accurate and
reliable predictive model as compared to LSTM and logistic regression because it can correctly
predict all true flash flood events while producing fewer false alarms in the fastest speed.

The study also reveals the number of time lags need to be included in input variables.
Through the correlation analysis, it was known that the water level in IOI Puchong Jaya area
will be affected by the previous rainfall and affected the most by rainfall that occurred 75
minutes earlier. The time lag effect was then incorporated into the model by creating the time-
lagged variables that represents cumulative rainfall over different time windows. Thus, there
are 5 new lagged variables created and used in modelling. In summary, the optimal time lag
effect of rainfall on water level is lag 1 to 5 and has been included in the predicting flash flood.

In nutshell, the lagged variables up to 5th lag (75 minutes) are created and used in model
building to improve the accuracy of models. Besides, the research proved that ML is an effective
approach in flood prediction using rainfall and water level data. This research reveals that the
RF stands out from other ML algorithms in predicting flash flood occurrence in Puchong. The
application of the RF algorithm aligns with the primary goal of accurate flood prediction, which
is to provide reliable early warnings to ensure people have as much time as possible to evacuate.

For future work, meteorological variables such as temperature, wind speed, and topograph-
ical factors can be incorporated into the model. More tuning on the parameters of the model.
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