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Abstract A general metrical result of discrepancy estimate related to uniform dis-
tribution is proved in this paper. It has been proven by J.W.S Cassel and P.Erdos &
Koksma in [2] under a general hypothesis of (gn(x))∞n=1 that for every ε > 0,

D(N, x) = O(N
−1
2 (log N)

5
2+ε)

for almost all x with respect to Lebesgue measure. This discrepancy estimate was
improved by R.C. Baker [5] who showed that the exponent 5

2
+ ε can be reduced to

3
2

+ ε in a special case where gn(x) = anx for a sequence of integers (an)∞n=1. This
paper extends this result to the case where the sequence (an)∞n=1 can be assumed to
be real. The lighter version of this theorem is also shown in this paper.
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1 Introduction

The idea of this paper originated from the notion of the uniformly distributed sequences.
To differentiate between a good and a bad uniform distribution of a sequence, we need to
have a quantitative measure, a discrepancy. A discrepancy of a sequence measures how
much a given sequence deviate from an ideal sequence, where it gives us a picture on how
good or bad the sequence is distributed. In this paper, we present a result on discrepancy
estimate for a real sequence, which is described below. The culmination of this paper is
shown in theorem 1. This paper is organized as follows. First we will show the proof of
Theorem 1 in section 2 and proof of Theorem 2 in section 3.

Let (λn)n≥0 be a sequence of real numbers and there exist δ > 0 such that |λn+1−λn| ≥δ.
Also let

D(N,x) = D({λ1x}, ..., {λNx}) (n = 1, 2, ...)

be the discrepancy of the sequence (λnx)∞n=1, and {λnx} denotes the fractional part of λnx.
It has been proven in [3] that for almost real numbers x with respect to Lebesgue measure
(λnx)∞n=1 is uniformly distributed.

Theorem 1 Given ε > 0,

D(N,x) = o(N−
1
2 (log N)

3
2+ε) a.e (almost everywhere).

In the case for dimension d = 1 , Theorem 1 is due to R.C.Baker [5]. His proof hinges on
maximal inequality for partial sums of Fourier series, due to L. Carleson and Hunt, used in
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the proof of their celebrated theorem that if c > 1 and f ∈ Lc([0, 1)), then the partial sums
of the Fourier series of f converge almost everywhere in [0, 1], with respect to Lebesgue
measure. This maximal inequality has a generalization to higher dimensions due to P.Sjolin
[4], which allows R.Nair [7] to extend Baker’s theorem to the case where d > 1, but still for
only limited type of sequence which only consume the integers. Theorem 2, in the case for
d = 1, appears in [6] but with the exponent 3 1

2 + ε instead of 5
2 + ε as what we have.

2 Proof of Theorem 1

To prove the theorem, we need the following lemmas.

Lemma 1 [4] : For a set of real numbers x1, ..., xN , there exists C > 0 such that for all
natural numbers L,

ND(x1, ..., xN ) ≤ C

(
N

L
+

L∑
h=1

1
h

∣∣∣∣∣ 1
N

N∑
n=1

e2πihxn

∣∣∣∣∣
)

Lemma 2 [5] : Suppose we are given δ > 0 , real numbers (λn)N
n=1 such that λn+1− λn ≥

δ > 0, real numbers T and T0 with T > 0 and complex numbers (an)N
n=1 . Then there

exists C > 0 such that

T0+T∫
T0

 max
1≤v≤N

∣∣∣∣∣
v∑

n=1

aneiλnt

∣∣∣∣∣
2
 dt ≤ C(T + 2πδ−1)

N∑
n=1

|an|2

Lemma 3 (Borel-Cantelli) : Let µ be a measure on a set X, with σ - algebra F , and let
(An) be a sequence in F . If

∞∑
n=1

µ (An) < ∞,

then µ(lim supAn) = 0.

Plainly in proving Theorem 1, we may without loss of generality assume x belongs to some
finite interval. Now let

||f || denotes

 1∫
0

|f |2 dx


1
2

.

Then putting xn = λnx , using Lemma 1 in light of Minskowski‘s inequality, there exists
C > 0 such that

∥∥∥∥ max
1≤v≤N

vD(v, x)
∥∥∥∥ ≤ C

N

L
+

L∑
h=1

1
h

∥∥∥∥∥∥∥∥ max

∣∣∣∣∣
v∑

n=1

e2πihλnx

∣∣∣∣∣
1≤v≤N

∥∥∥∥∥∥∥∥
 ,

which in light of Lemma 2 is
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≤ C2

(
N

L
+

L∑
h=1

1
h

N
1
2

)
,

which choosing L = N is ∥∥∥∥ max
1≤v≤N

D(v, x)
∥∥∥∥ ≤ C2N

1
2 (log N). (*)

To deduce Theorem 1 let

E(ε) =
{

x ∈ [T0, T0 + T ] : lim sup
l→∞

lD(l, x)
f(l, ε)

> 0
}

,

where for integers N ≥ 1 and ε > 0,

f(N, ε) = N
1
2 (log N)

3
2+ε.

We need to show that the Lebesgue measure |E(ε)| of E(ε) is zero for all ε > 0.
Note that

E(ε) ⊆
∞⋂

r=1

∞⋃
s=r

As(ε)

where, for a particular fixed positive constant K > 0,

As(ε) =
{

x ∈ [T0, T0 + T ] : max
1≤l≤4s

lD(l, x) > K−1f(4s,
ε

2
)
}

.

This is because if x ∈ E(ε) there exist arbitrarily large positive integer s such that for each
integer l in [4s−1, 4s) there is a real number K > 0, such that

lD(l, x) ≥ f(4s−1,
ε

2
) > K−1f(4s,

ε

2
).

In particular,

max
1≤l<4s

|lD(l, x)| > K−1f(4s,
ε

2
),

so x ∈ E(ε) as required. From (*), there exist C2 > 0 such that

|As(ε)|
(
f(4s,

ε

2
)
)2

≤ C24s(log 4s)2.

Hence, there exists C2 > 0 such that

|As(ε)| ≤
C2

s1+ε

and

∞∑
s=1

|As(ε)| < ∞,
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so by the Borel-Cantelli Lemma, Theorem 1 is proved.

As an application to the result obtained in Theorem 1, we have the following theorem, a
lighter version of Theorem 1. The result in Theorem 2 is the improvement of R.C Baker’s
result.

Theorem 2 Let (Rk)∞k=1 be a collection of disjoint subintervals of [0, 1) such that

|Rk| = O(a−k),

for some a > 1, let

B =
∞⋃

k=1

Rk.

Then given ε > 0, there exists No = No(x, ε) such that if N > No∣∣∣∣∣ 1
N

∑
n=1

χB({λnx})− |B|

∣∣∣∣∣ < N
−1
2 (log N)

5
2+ε a.e.

3 Proof of Theorem 2

For z(N) = loga N (N = 1, 2, ...),

Let

t(N) =
⋃

1≤k≤z(N)

Rk (N = 1, 2, ...)

and

s(N) =
⋃

k>z(N)

Rk (N = 1, 2, ...)

Note that for S ⊆ [0, 1), we set

K(S, N, x) =
1
N

∑
n=1

χs({λnx}) − |S|.

Then for each l = 1, 2, ..., the disjoinness of the Rk implies that

K(B, l, x) = K(t(N), l, x) + K(s(N), l, x).

Hence, ∥∥∥∥ max
1≤l≤N

|K(B, l, x)|
∥∥∥∥ ≤ ∥∥∥∥ max

1≤l≤N
|K(t(N), l, x)|

∥∥∥∥+
∥∥∥∥ max

1≤l≤N
|K(s(N), l, x)|

∥∥∥∥ .
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Note that by the disjointness of the Rk,

K(t(N), l, x) =
∑

1≤k≤z(N)

1
l

 l∑
j=1

χRk
({λjx})− l|Rk|

.

Hence,

∥∥∥∥ max
1≤l≤N

|K(t(N), l, x)|
∥∥∥∥ =

∥∥∥∥∥∥ max
1≤l≤z(N)

∣∣∣∣∣∣
∑

1≤l≤z(N)

1
l

∑
j=1

χRk
({λRk

x})− l|Rk|

∣∣∣∣∣∣
∥∥∥∥∥∥

≤
∑

1≤l≤z(N)

∥∥∥∥ max
1≤l≤N

lD(l, x)
∥∥∥∥

= z(N)
∥∥∥∥ max

1≤l≤N
lD(l, x)

∥∥∥∥ ,

so ∥∥∥∥ max
1≤l≤N

|K(t(N), l, x)|
∥∥∥∥ ≤ z(N)

∥∥∥∥ max
1≤l≤N

lD(L, x)
∥∥∥∥ ,

which by (*) for some C2 > 0 is

≤ C2z(N)N
1
2 (log N) < N

1
2 (log N)2.

Also,

∥∥∥∥ max
1≤l≤N

|K(s(N), l, x)|
∥∥∥∥ =

∥∥∥∥∥∥ max
1≤l≤z(N)

∣∣∣∣∣∣
∑

1≤l≤z(N)

1
l

∑
j=1

χs(N)({λRk
x})− l|s(N)|

∣∣∣∣∣∣
∥∥∥∥∥∥

≤
N∑

j=1

∥∥χs(N)({λjx})
∥∥ + N |s(N)|. (**)

As χ2
Rk

= χRk
, if

Ek,j = {x ∈ [T0, T0 + T} : {λjx} ∈ Rk} ,

we see that, the right hand side of (**) is

≤
N∑

j=1

 ∑
k>z(N)

|Ek,j |

 1
2

+ N |s(N)|.

It is easy to check that there exists C3 = C3(T0, T ) > 0 such that |Ek,j | ≤ C3|Rk| = O(a−k)
.
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Since |s(N)| < 1, this means that there exists C4 > 0 such that∥∥∥∥ max
1≤l≤N

|K(s(N), l, x)|
∥∥∥∥ ≤ C4N |s(N)| 12 .

Also, there exists C5 > 0 such that

|s(N)| =
∑

k>z(N)

|Rk| ≤ C5

∑
k>z(N)

a−k < C5a
−z(N).

Then we have, ∥∥∥∥ max
1≤l≤N

|K(B, l, x)
∥∥∥∥ < Na−z(N) + N

1
2 (log N)2.

The first term of the right hand side is equal to 1. So we have shown that there exists
C6 > 0 such that ∥∥∥∥ max

1≤l≤N
|K(B, l, x)|

∥∥∥∥ ≤ C6N
1
2 (log N)2.

Using the same argument as in Theorem 1 and choosing f(N, ε) = N
1
2 (log N)

5
2+ε gives us

Theorem 2.
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