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Abstract In this work, a Susceptible-Infected-Recovered (SIR)-based epidemic model
incorporating nonlinear incidence and recovery rates, with the consideration of limited
medical resources (e.g., the availability of hospital beds) is examined. The model also
emphasises the significance of factoring in distinct intervention strategies and considers
some important epidemiological factors, in the light of COVID-19 endemicity. In partic-
ular, the study employs a Monod-type nonlinear incidence rate coupled with a nonlinear
recovery equation, to uncover the intricate dynamics that emerge from the interplay of
these epidemiological forces. The findings reveal the existence of disease-free and endemic
equilibria, their stability conditions, and bifurcational changes in the dynamics of the sys-
tem. Bifurcation analysis demonstrates the emergence of transcritical, saddle-node and
Hopf bifurcations with the existence of distinct stable and unstable equilibria and limit
cycles. Overall, this work highlights the importance of mathematical modeling and dy-
namical systems techniques in investigating the interplay among various epidemiological
factors, thereby providing valuable insights to guide effective epidemic control strategies.

Keywords COVID-19, nonlinear incidence and recovery rates, dynamical systems, bi-
furcation analysis, equilibria.

Mathematics Subject Classification 37G35, 34C23.

1 Introduction

Over the years infectious diseases ranging from olden days plagues and European black deaths
down to the present pandemics have been a serious health threat to both humans and nonhuman
globally [5], causing many casualties and numerous deaths. Mathematical models contribute
immensely to examining the dynamics of infectious diseases such as malaria, Ebola, dengue
fever, SARS-COV2 [7] and providing health policymakers with information to help design
strategies for containing epidemics. According to [6], different mathematical models considered
important epidemiological factors like demography, population size, mixing patterns, diseases’
latency period, transmission and recovery rates, etc. The analysis of these models reveals vital
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insights into the spread patterns of infectious diseases and estimation of basic reproduction
number, Ry.

Apart from the quantity Ry, the epidemiological functions that define the incidence and
recovery rates are among the primary factors that determine a model’s behavior in infectious
disease modelling. To expand on research and improve comprehension of the saturation effect
and limited healthcare resources, distinct studies such as [1,3,8,9,15] incorporated nonlinear
incidence and recovery rates into the SIR model. This prevented the recovery rate from
declining as the number of infectious individuals increased and controlled the rise in new cases.
Considering nonlinear incidence and recovery rates in the STR model is a means of uncovering
some vital dynamics. The nonlinear incidence rate often being given by:

BSI
14 al’

where [ is the transmission rate, S is the number of susceptible individuals, I is the number
of infectious individuals, and « is a parameter that regulates the saturation effect [1]. The
recovery rate can be modelled as follows:

vI
1+0I’

where ~y is the recovery rate and J is a parameter controlling the effect of healthcare saturation
[4]. Previous investigations, such as [11], employed an ordinary differential equations (ODE)
model incorporating the nonlinear epidemiological functions to demonstrate the existence of
forward and backward bifurcations in the analysis of the COVID-19 SEIR system. Their
findings on the bifurcation analysis further reveal that by implementing drastic preventive
measures during epidemic outbreaks, consequently, this situation can reduce Ry, which can
help policymakers effectively control the spread of disease [11]. The co-infection of HIV and
COVID-19 model developed by [12] also exhibits backward bifurcation when Ry is below than
unity; this finding implies that backward bifurcation can result in multiple equilibria, which
may explain the persistence of a stable endemic state. Additionally, [14] contributed to the
understanding of a modified STR model where the susceptible population undergoes logistic
growth while being vaccinated at a constant rate; their analysis shows that the model’s endemic
equilibrium displays distinct codimension 1 and codimension 2 bifurcations. This study also
highlights the importance of vaccination parameter by deriving an expression for the number
of individuals that need to be vaccinated to reduce disease transmission [14].

Another modelling work by [10] employed the SEIQHR fractional epidemic model to deepen
investigation and enhance the understanding of the epidemiological insights into the spreading
dynamics of infectious disease. Their analysis illustrated the impact of the model parameters
and memory effects on the transmission dynamics by presenting conditions for the occurrence of
both forward and backward bifurcations [10]. Unlike the classical ODE (or integer-order) mod-
els, fractional-order models effectively incorporate memory and historical effects across different
stages of an epidemic, thereby offering an alternative framework framework for identifying sta-
bility conditions and bifurcation scenarios in complex disease transmission dynamics [17,18].
Additionally, the application of dynamical systems techniques and bifurcation theory, along
with the consideration of discrete-time modelling framework, enabled [9] to prove the existence
of different codimension 1 and codimension 2 bifurcations; this study concludes that discrete-
time models predict more complex dynamics compared to continuous-time epidemic models.
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In a related study, [1] extends the classical SIR model by incorporating a Monod-equation
type of nonlinear incidence rate, providing insights into the effects of intervention levels on
infectious disease transmission. This incidence rate function suggests that, at low levels of
infection, the rate remains low due to stringent interventions but escalates as the number of
infected individuals increases, eventually reaching a state where it becomes independent of the
infected subpopulation, as seen during the COVID-19 pandemic. Motivated by the work of [1],
we employ numerical bifurcation analysis to examine the overall dynamics of the epidemiolog-
ical system and we extend previous observations by broadening the numerical investigations
regarding the parameter regime where disease persists or dies out.

This paper is organised as follows. Section 2 describes the SIR model inspired by the
work of [1]. Section 3 outlines the existence and stability analysis of the equilibria. Section
4 discusses codimension 1 bifurcation analysis results while also focuses on codimension 2
bifurcation analysis findings and the overall dynamics of the model. Finally, Section 5 concludes
this study by highlighting the salient observations and further insights from the findings of this
epidemiological system.

2 Model Description

The epidemiological system that has been considered in this study is inspired by [1]. The total
population, N (t), is divided into three subpopulations namely; Susceptible class, S(t), Infected
class, I(t), and Recovered class, R(t). Firstly, births occur at a constant rate A. Then,
susceptible individuals get infected at the rate 5/(k 4 I), where [ is the transmission rate,
BIS is the force of infection and k stands for the level of intervention. Additionally, infected
individuals recover at the rate (ag— (o —ao)ﬁ), where b is the hospital bed population ratio,
ap and aq are the respective minimum and maximum recovery rates. Finally, deaths can occur
at the rate (y+ u) where, 1 denotes the natural death rate and «y represents the disease-induced
death rate. The schematic diagram in Figure 1 below described the transmission kinetics of
the epidemiological system:

1S (V*;#)I

pisictt [ \ (ooHar-agb/a+b) [

Figure 1: Schematic diagram of the epidemiological system with nonlinear incidence and
recovery rates.
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In general, this model extends the classical SIR framework by introducing nonlinear inci-
dence and recovery rates. This nonlinear formulation enables the system to capture realistic
epidemiological features such as saturation effects, healthcare capacity limits and intervention-
induced behavioral modifications that are not adequately represented in the standard bilinear
incidence ST or constant recovery rate models in the classical SIR.

Additionally, the nonlinear incidence term SIS/(k + I), generalises the classical 5ST form
by introducing a saturation denominator (k4 I). The parameter k represents the intervention
or control measure level, which can include vaccination, social distancing, or treatment capac-
ity. As the number of infected individuals increases, the effective transmission rate saturates,
reflecting the reduced contact efficiency due to awareness or behavioral adaptation within the
population.

Another salient feature of the epidemiological system lies in the nonlinear recovery rate
where b denotes the hospital bed ratio and ag, a; are the minimum and maximum recovery
rates, respectively. This component models the healthcare system’s saturation: at very low
infected levels, I, the recovery rate approximates ay (efficient recovery due to sufficient hospital
capacity), whereas at very high infected levels, the recovery rate approaches aq (poor recovery
due to hospital overload). Hence, the model captures the real-world constraint that recovery
efficiency declines when the number of infected individuals surpasses medical capacity.

3 Model Equations

Below is a system of nonlinear ordinary differential equations describing the model presented
in Figure 1 above.

ds BST
— =A—-———uS 1
dt k+1 " (1)
dl  pBSI b
P e — I— I 2
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The per capita recovery rate, (b, I), is defined as:
(6.1) = 00 + (01 — o) (@
al0, =y i Qo b+]7

where oy and o7 represent the minimum and maximum recovery rates, respectively. The
formulation of equation (4) is inspired by the previous study of [2] and interested readers are
referred to this work on the salient features of the recovery rate function. Since R did not
appear in equations (1)-(2), it is sufficient to use system (5)-(6) for this analysis:

ds 8SI
@ A T e M (5)
il BSI b
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Based on equations (5)-(6), the solution of the epidemiological system can be shown to be
bounded, as follows:

N
O = A= uN(t) — a(b, DT ~71(1), (7)
A —ut
N(t) £ N+ 21— e, (8)
A . A
tlim N(t) < " and N <0, if N> " 9)

Thus, N(t) is bounded and every solution of the system lies within a finite region. It can also
be demonstrated that the solutions of this epidemiological system lie in the positively invariant
region i.e., we define the feasible region as:

Q={(S@),I(t)) e R2U{0}:S(t)+1(t) <=,t>0}. (10)

=

From Equation (9), the total population cannot exceed A/yu, since N < 0 whenever N >
A/p. Therefore, Q) is positively invariant, i.e., any positive trajectory starting in € remains in
Q for all t > O:

(S(0),I(0) € = (S(t).I(t)eQ Vt>0.

Furthermore, €2 is an absorbing set i.e., any trajectory with arbitrary nonnegative initial con-
ditions eventually enters €2 and remains there permanently.

Biologically, the boundedness of N(t) ensures that the total population never grows un-
boundedly, while the positive invariance of ¢} guarantees epidemiological feasibility of all tra-
jectories. Biologically, this means that the disease and population dynamics remain within
realistic limits governed by demographic balance (A/u) and natural plus disease-induced mor-
tality. This property is essential for subsequent analysis of equilibria, basic reproduction number
and bifurcation analysis.

4 Existence of Equilibria and Stability Analysis

4.1 Disease-Free (E;) and Endemic Equilibra (FE)

To establish the presence of equilibrium points within the model defined by system (5)-(6),
we equate the time derivatives of Susceptible (S) and Infected (I) populations to zero. This
process yields the following set of equations:

A— 222 s —o, (11)

)[—(7+u)1:0. (12)
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ﬁ and this is denoted

A disease-free equilibrium (DFE) emerges when I = 0, yielding S =
as by = (ﬁ, O). At this equilibrium, the system exhibits maximal recovery alongside optimal

susceptibility to the infection. An endemic equilibrium (EE) can also be calculated by solving
the nonlinear simultaneous equations, which yields F; = (S*,I*). We refer interested readers
to the work of [1] on the stability analysis results of these equilibria.

To further examine the model’s dynamics, this study established the derivation of the basic
reproduction number, Ry, a pivotal metric in epidemiological models. This quantity highlights
the (on-average) number of secondary cases produced by a primary index case in a wholly
susceptible population. Employing the next-generation matrix method at FEy, where a(b,I)

approaches a; asymptotically, we compute Ry by taking F = <%> and V = (a1 + v+ p).

Then, the basic reproduction number R is derived as the spectral radius of FV !, which
simplifies to:
_ pA
kplon +v+p)
The formulation of Ry highlights its reliance on the parameters governing the transmission
rate (), the intervention intensity (k), as well as the recovery rate («;) and the mortality rates
(v, ). If Ry < 1 the transmission dies out illustrating the stability of DFE (Ej) and the disease
persists when Ry > 1 indicating that the transmission converges to the model’s EE (E).

Ry (13)

4.2 Codimension 1 Bifurcation Analysis

We conducted a bifurcation analysis in XPPAUT using parametrisation as in Table 1. The aim
is to explore how variations in the epidemiological parameters influence the system’s behaviour.
In codimension 1 bifurcation analysis, Figure 2 is obtained where the vertical axis represents
the infected population (/). The horizontal axis represents the intervention levels (k), which
often include measures like vaccination policy, quarantine efforts, or social distancing intensity
in an epidemiological system.

Table 1: Table of Parameter Values [1]

Parameter Value Dimension
A 1.75 Individuals/Time
6 0.01  (individualsxtime)™*
k 2 Individual ~!
L 0.005 Time™!
Qg 0.2 Time ™!
o2 0.21 Time™!
b 0.2 Individuals
v 0.2 Time !

The system exhibits a threshold at kgp, i.e., the critical value of the parameter k, which
corresponds to a transcritical (or forward) bifurcation. There are two key types of equilibria: (i)
disease-free equilibrium (DFE) and (ii) endemic equilibrium (EE). Generally, the red (respec-
tively, black) line indicates stable (respectively, unstable) DFE. With high (respectively, low)
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intervention levels, k > kgp (respectively, k < kpp), the spread of disease can (respectively,
cannot) be controlled in a long run. Similar observations hold for EE, where red (respectively,
black) line indicates stable (respectively, unstable) equilibrium.

Unstable DFE kgp Stable DFE

Unstable EE

Figure 2: Codimension 1 using k as the bifurcation parameter.

At the threshold point kgp, the system undergoes an exchange of stability between equi-
libria. When the intervention level crosses this threshold from left to right, the stability of
the disease-free equilibrium shifts from unstable to stable. This indicates that as control mea-
sures surpass a certain effectiveness threshold i.e., k > kgp, the system will move towards
disease elimination. Below this threshold i.e., £ < kgp, the system remains in an endemic state
where the disease persists in the population (stable EE). This means that without sufficient
intervention, the infection continues to circulate within the population.

To better understand the effect of distinct factors in determining the dynamics of the system,
in the next codimension 1 bifurcation analysis, represented by Figure 3, we examine how the
changes in recovery rate, aq, can lead to different epidemiological outcomes of the system. This
bifurcation diagram is divided into several regions, each representing a different qualitative
behaviour of the system. The x-axis represents the recovery rate «y, while the y-axis shows the
infected population, I. Several bifurcation points such as transcritical («; gp), Hopf bifurcation
(o1 gp) and saddle-node (ay rp) bifurcations, and different equilibrium states (both stable and
unstable) are observed.
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Figure 3: Codimension 1 using «; as the bifurcation parameter.

Region oy < a1 gp: For small values of recovery force, i.e., to the left of transcritical
bifurcation (a; pp), the system exhibits a stable endemic equilibrium (EE), where the infected
population maintains a positive density. This observation is indicated by the red curve in this
region. As «; increases, the infected population slowly decreases, suggesting that a higher
recovery rate leads to a reduction in the endemic level of the infection.

Region a1 gpp < ay < a1 gr: As shown by Figure 3, the system exhibits alternative stable
states between disease-free and endemic equilibria, along with oscillatory solutions, depending
on initial conditions. The oscillation is induced by a Hopf bifurcation (o gp) where this
bifurcation gives rise to oscillations in the infected population, as indicated by Figure 4 with
stable (green) and unstable (blue) oscillatory dynamics. At the collision point of stable and
unstable oscillations, a saddle-node bifurcation of limit cycles (LPC) arises. These oscillatory
solutions (represented by Figure 5) correspond to the aforementioned limit cycles, which suggest
periodic outbreaks of the infection as a; varies within this realistic range. The presence of both
stable and unstable equilibria together with limit cycles indicates complex dynamical behaviour
in this epidemiological system.

Region a1 > a1 gp: As «; further increases beyond Hopf bifurcation (HB) point, the
system transitions toward a stable disease-free equilibrium (DFE). The population oscillations
disappear, and the infected population converges to zero, marking the eradication of the disease
in the population. This is indicated by the flat line at I = 0. For high values of a;, the system
remains in a stable disease-free state (DFE). In this situation, the recovery rate is sufficiently
high that the infection cannot persist in the population.

This co-dimension 1 bifurcation analysis reveals that the dynamical behaviours of the system
are highly sensitive to changes in the recovery rate a;. For low values of oy, the infection
persists in the population (endemic equilibrium). As «; increases, the system undergoes several
bifurcations, leading alternative stable states between DFE, EE and oscillatory behavior. At
higher recovery rates, the eradication of the disease is possible. Understanding these is crucial
for designing effective intervention strategies to control the spread of the infection.
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Figure 4: Existence of both stable and unstable limit cycles.
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Figure 5: Oscillatory dynamics in this epidemiological system.
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4.3 Codimension 2 Bifurcation Analysis

To better understand the combined influences between distinct intervention levels k and recov-
ery forces ay, we performed codimension 2 bifurcation analysis by varying these two epidemio-
logical parameters simultaneously. Figure 6 illustrates the possible dynamical behaviours using
different colored curves to represent various types of bifurcations.

The blue curve indicates Hopf bifurcation (HB), where the system transitions from a stable
state to oscillatory behavior, potentially leading to periodic outbreaks. The red curve represents
saddle-node bifurcation, where two endemic equilibria collide and annihilate each other. Then,
the cyan curve denotes transcritical bifurcation, where the stability of EE and DFE equilibrium
points is swapped.

5 L L L L L L
DBP s Hopf bifurcation
\ Transcritical bifurcation
I". s 5addle-node bifurcation
4p \ -
ip r
oy
2k o
1§ -
D B L i 2 i A
0 | 4 3 5 6 7 B

Figure 6: Codimension 2 bifurcation analysis combining both k and «; as bifurcation param-
eters.

The figure also highlights the emergence of codimension two bifurcation points correspond-
ing to degenerate transcritical bifurcations (DBP) at the intersection of the saddle-node and
transcritical bifurcation curves. This type of bifurcation indicates that small changes in the
transmission and recovery rates can lead to significant alterations in the system’s behavior,
potentially causing sudden shifts in disease dynamics.

Additionally, there emerges another codimension two point corresponding to a Gavrilov
Guckenheimer bifurcation (GG): at this point, the Hopf bifurcations intersect the transcritical
bifurcation. This complex bifurcation scenario demonstrates that the system can exhibit both
stable and unstable limit cycles together with the existence of alternative stable states between
distinct equilibria, leading to the (dis-)appearance of endemic equilibria and periodic outbreaks.
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Overall, the codimension two bifurcations that emerge in this system act as organising
centers and separate the parameter space into several regions with different epidemiological
outcomes. The analysis also reveals that even slight variations in important epidemiological
parameters like recovery rates can have profound impacts on the stability and behavior of the
system, highlighting the need for adaptive and dynamic intervention strategies in public health
policy.

5 Conclusion

This study demonstrates a numerical bifurcation analysis of an STR model incorporating a
Monod-type nonlinear incidence rate and a nonlinear recovery rate. The analysis reveals critical
insights into the system’s dynamics and stability.

The bifurcation analysis is essential for identifying the epidemiological tipping (or bifur-
cation) points during outbreaks. The appearance of stable and unstable equilibria due to
transcritical bifurcation, along with the emergence of limit cycles from Hopf bifurcation points,
demonstrate the complexity of disease dynamics. Additionally, the presence of degenerate
transcritical and Gavrilov-Guckenheimer bifurcations illustrates the potential for sudden and
dramatic changes in disease dynamics, emphasising the need for adaptive and dynamic inter-
vention strategies.

Overall, this analysis offers valuable insights for public health policy, particularly in un-
derstanding how variations in intervention levels and recovery rates can influence the stability
and prevalence of infectious diseases. This work also highlights the importance of mathemat-
ical modeling and dynamical systems techniques in investigating the interplay among various
epidemiological factors, thereby offering valuable insights to guide effective epidemic control
strategies.
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