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Abstract The classical Taguchi quality model only considers the control of quality.
Huang[9] proposed a model that took both quality and cost into account. Huang’s
model presents a trade-off problem between quality and cost, in which higher quality
is not the final aim but the profit. In Huang’s model, the symmetrical quadratic
quality loss function was employed to stand for the loss of profit. In this paper,
the process mean for the linear transformation is determined based on three types of
loss functions: the symmetrical quadratic, asymmetrical quadratic, and asymmetrical
linear loss functions. In addition, the application of Huang’s model is extended to the
process with constant coefficient of variation and the auto-correlated process. Some
numerical examples are given for illustration.
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1 Introduction

In 1986, Taguchi redefined product quality and presented quality loss function for evaluating
the quality losses of products and/or services. The general expression of quality loss function
for the characteristic Y is

L(y) =
{

k1(y − T )w, for y ≤ T,
k2(y − T )w, for y > T,

(1)

where T is the target of Y , k1 and k2 are the coefficients of quality loss to the left-hand
and right-hand sides of the target respectively, and w is the order of the function (generally,
w = 1 or 2). If k1 = k2 = k, equation (1) is called a symmetrical loss function; while if
k1 6= k2, equation (1) is called an asymmetrical loss function. If w = 1, equation (1) is
called a linear loss function, and if w = 2, equation (1) is called a quadratic loss function.
Recently, applications of some specific forms of quality loss function have been found in the
literature, such as Wu & Tang [1], Li [2,3], Li & Cherng [4], Maghsoodloo & Li [5], and
Duffuaa & Siddiqui [6].

The classical Taguchi quality model ([7]) only considers the control of quality. Huang
[8] proposed a model that took both quality and cost into account. Huang’s model presents
a trade-off problem between quality and cost, in which higher quality is not the final aim
but the profit. This model includes two components: the loss of profit and the cost to set
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the process mean and control the process variance. The loss of profit is assumed to be
proportional to the loss of quality, and thus can be described by the quality loss function.
Huang [8] applied the symmetrical quadratic loss function to measure the loss of profit. The
objective of Huang’s model is to determine the optimum process mean and variance such
that the total cost, including both the loss of profit and the cost to set the process mean
and control the process variance, is minimized.

In the general linear transformation system, given the input characteristic X, the output
characteristic Y can be expressed as a linear function of X, namely

Y = bX + c, (2)

where b and c are constants. In this paper, we will develop the procedure of determining the
process mean for the linear transformation system using Huang’s model. In the next section,
Huang’s model will be briefly reviewed. Then, Huang’s model will be modified based on
the symmetrical quadratic, asymmetrical quadratic and asymmetrical linear loss functions.
These modified models will be extended to both the process with constant coefficient of
variation and the auto-correlated process. Some numerical examples will be presented for
illustration.

2 Review of Huang’s Model

There are five assumptions in Huang’s model ([5]). These assumptions are as follows:

(i) The input quality characteristic, X, is a normally distributed random variable with
process mean µ and process variance σ2.

(ii) The output quality characteristic, Y , is nominal-the-best and has the target value T .

(iii) The relationships between X and Y are either linear or quadratic. That is, Y = bX+c
or Y = aX2 + bX + c where a, b, and c are all constants.

(iv) The cost of setting µ is proportional to |µ| or µ2, while the cost for controlling σ2

is proportional to 1/σ or 1/σ2. Thus, the sum of the cost for process adjustment,
denoted by CX(µ, σ) , may have one of the following four forms:

CX(µ, σ) = β1 |µ|+ β2
σ ,

CX(µ, σ) = β1 |µ|+ β2
σ2 ,

CX(µ, σ) = β1µ
2 + β2

σ , and

CX(µ, σ) = β1µ
2 + β2

σ2 ,

where β1 and β2 are positive constants.

(v) The loss of quality results in the loss of profit, which is assumed to be proportional
to the loss of quality.

According to Huang [8], the total cost of the trade-off problem, denoted by TC(µ, σ) , is
the sum of the loss of profit and the cost of process adjustment, and is the function of µ
and σ . Mathematically,

TC(µ, σ) = CX(µ, σ) + αkE[(Y − T )2] (3)
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where α is the coefficient of profit loss which is proportional to the quality loss. Huang’s
model is desirable to find the optimum process parameters µ∗ and σ∗ such that equation
(3) is minimized.

3 Process Mean Determination for the Linear Transformation System

In this section, we shall modify Huang’s model based on the symmetrical quadratic, asym-
metrical quadratic and asymmetrical linear loss functions. Assume that the output charac-
teristic Y is a linear function of the input characteristic X, i.e., Y = bX + c, where b and c
are constants, and X is normally distributed with unknown µ and known variance σ2. The
output characteristic, Y , is assumed to be nominal-the-best. The process with constant
standard deviation will be used as a base model, and then will be extended to both the
process with constant coefficient of variation and the auto-correlated process.

3.1 The Process with Constant Standard Deviation

3.1.1 Modified Huang’s model based on the symmetrical quadratic loss function

From Huang [8, p. 267], the expected loss per item of symmetrical quadratic quality loss
function, E[L(y)], and the Huang’s cost model with the symmetrical quadratic quality loss
function, TC(µ), for the linear transformation system are as follows:

E[L(y)] = E[(Y − T )2] =
∞∫
−∞

k(bx + c− T )2f(x)dx

= k[b2σ2 + (bµ + c− T )2]
(4)

TC(µ) = CX(µ, σ) + α[b2σ2 + (bµ + c− T )2] (5)

where α = αk.

3.1.2 Modified Huang’s model based on asymmetric quadratic loss function

From Chen and Chou [9, p. 77], the expected loss per item based on asymmetrical quadratic
quality loss function, E[L(y)], and the modified Huang’s cost model based on the asymmet-
rical quadratic loss function , TC(µ) , for the linear transformation system are as follows:

E[L(y)] = E[(Y − T )2] =
∫ T−c

b

−∞ k1(T − bx− c)2f(x)dx +
∫∞

T−c
b

k2(bx + c− T )2f(x)dx

= [b2σ2 + (bµ + c− T )2](k1 − k2)Φ
( T−c

b −µ

σ

)
+[b2σ(T − µ) + 2bσ(bµ + c− T )](k2 − k1)φ

( T−c
b −µ

σ

)
+[b2σ2 + (bµ + c− T )2]k2

(6)

TC(µ) = Cx(µ, σ) + α{[b2σ2 + (bµ + c− T )2](k1 − k2)Φ
( T−c

b −µ

σ

)
+[b2σ(T − µ) + 2bσ(bµ + c− T )](k2 − k1)φ

( T−c
b −µ

σ

)
+[b2σ2 + (bµ + c− T )2]k2}

(7)
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where Φ(z) is the cumulative distribution function for the standard normal random variable
with density function φ(z) and φ(z) = 1√

2π
e−

z2
2 for −∞ < z < ∞.

3.1.3 Modified Huang’s model based on asymmetric linear loss function

From Chen and Chou [9, p. 78], the expected loss per item based on asymmetrical linear
quality loss function, E[L(y)], and the modified Huang’s cost model based on the asymmet-
rical linear loss function, TC(µ), for the linear transformation system are as follows:

E[L(y)] = E[(y − T )] =
T−c

b∫
−∞

k1(T − bx− c)f(x)dx+
∞∫

T−c
b

k2(bx + c− T )f(x)dx

= k2(bµ + c− T ) + (k1 + k2)
[
(T − bµ− c)Φ

( T−c
b −µ

σ

)
+ bσφ

( T−c
b −µ

σ

)]
(8)

TC(µ) = CX(µ, σ) + α{k2(bµ + c− T )

+(k1 + k2)[(T − bµ− c)Φ(
T−c

b −µ

σ ) + bσφ(
T−c

b −µ

σ )]}
(9)

Given a set of model parameters, we can use the direct search method to obtain the optimal
values of µ in equations (5), (7) and (9).

3.2 The Process with Constant Coefficient of Variation

The process with constant coefficient of variation has been considered by Li [2] and Magh-
soodloo and Li [5] for unbalanced tolerance design. Assume that the standard deviation
of the quality characteristic is proportional to the process mean. Then, the coefficient of
variation can be defined as

r = σ/µ (10)

Substituting equation (10) into equations (5), (7), and (9) respectively, the optimal value
of process mean which minimizes the TC can be obtained by the direct search method.

3.3 The Auto-Correlated Process

Traditionally, we assume that the observations from the process are independent normal
random variables with constant mean and variance. However, the observations from many
processes exhibit autocorrelation that may be the result of dynamics that are inherent to the
process. Box and Luceno [10, p. 106] point out that a simple way to represent dependence of
successive values of a disturbance is by means of autoregressive models. Thus, a stationary
time series model - the first-order autoregressive model, denoted by AR(1), which may be
used to describe the relationship among the random variables, can be expressed as

Xt = (1− ϕ)µ + ϕXt−1 + δt, for t = 1, 2, ... (11)

where ϕ is the autoregressive coefficient for |ϕ| < 1 and δt is the random shock at time t,
(δt’s are assumed to be independent normal random variables with mean zero and variance
σ2). The process standard deviation of AR(1) model is

σt = σ/
√

1− ϕ2 (12)
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Substituting equation (12) into equations (5), (7), and (9) respectively, the optimal value
of process mean which minimizes the TC(µ) may be obtained by the direct search method.

4 Numerical Examples

In this section, some numerical examples will be given for illustration.

4.1 The Process with Constant Standard Deviation

Example 1 Consider the numerical example given in Huang [8, p. 274]. Let the target value
T = 100 and assume that CX(µ, σ) = 2µ2 + 1

σ2 , Y = 5X + 50, and α = αk = 5. The
optimal solution of Huang [8] is (µ∗, σ∗) = (9.82, 0.3) with TC(µ∗, σ∗) = 219.21.

Assume that the process standard deviation is constant. Let σ = 0.5. By solving
equation (5), we obtain the optimal process mean for symmetrical quadratic quality loss
function, that is µ∗ = 9.842 with TC(µ∗) = 232.1004.

We use the above data, except for α = 0.1, k1 = 50, andk2 = 100. By solving equation
(7), we obtain the optimal process mean for asymmetrical quadratic quality loss function is
µ∗ = 9.746 with TC(µ∗) = 239.737. By solving equation (9), we obtain the optimal process
mean for asymmetrical linear quality loss function, that is µ∗ = 6.248 with TC(µ∗) =
175.875.

4.2 The Process with Constant Coefficient of Variation

Example 2 Consider the data in Example 1, except for r = σ/µ = 0.2 (i.e., σ = 0.2µ).
By solving equation (5), we obtain the optimal process mean for symmetrical quadratic
quality loss function given by µ∗ = 9.470 with TC(µ∗) = 663.1576. By solving equation
(7), we obtain the optimal process mean for asymmetrical quadratic quality loss function,
that is µ∗ = 9.044 with TC(µ∗) = 768.3335. By solving equation (9), we obtain the
optimal process mean for asymmetrical linear quality loss function, that is µ∗ = 6.2567
with TC(µ∗) = 172.5492.

4.3 The Auto-Correlated Process

Example 3 Consider the data in Example 1, except for the auto-correlated process with
ϕ = 0.2 and consequently σt = 0.5103. By solving equation (5), we obtain the optimal
process mean for symmetrical quadratic quality loss function, which is µ∗ = 9.842 with
TC(µ∗) = 233.2425. By solving equation (7), we obtain the optimal process mean for
asymmetrical quadratic quality loss function, that is µ∗ = 9.473 with TC(µ∗) = 241.2785.
By solving equation (9), we obtain the optimal process mean for asymmetrical linear quality
loss function, that is µ∗ = 6.252 with TC(µ∗) = 175.715. Table 1 lists the summary of
optimal solutions for the above numerical examples. From Table 1, we have the following
conclusion: the modified Huang’s model based on the asymmetric linear loss function has
the smallest expected loss per item than those of other modified models.
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Table 1: The summary of optimal solutions.

Huang’s model
Symmetric quadratic loss function : (µ∗, σ∗) = (9.82, 0.3) , TC(µ∗, σ∗) = 219.21

Modified Huang’s model with constant standard deviation
Symmetric quadratic loss function : µ∗ = 9.842, TC(µ∗) = 232.1004
Asymmetric quadratic loss function : µ∗ = 9.746, TC(µ∗) = 239.737
Asymmetric linear loss function : µ∗ = 6.248, TC(µ∗) = 175.875

Modified Huang’s model with constant coefficient of variance (r = σ/µ = 0.2)
Symmetric quadratic loss function : µ∗ = 9.470, TC(µ∗) = 663.1576
Asymmetric quadratic loss function : µ∗ = 9.044, TC(µ∗) = 768.3335
Asymmetric linear loss function : µ∗ = 6.2567, TC(µ∗) = 172.5492

Modified Huang’s model with auto-correlated process (ϕ = 0.2)
Symmetric quadratic loss function : µ∗ = 9.842, TC(µ∗) = 233.2425
Asymmetric quadratic loss function : µ∗ = 9.473, TC(µ∗) = 241.2785
Asymmetric linear loss function : µ∗ = 6.252, TC(µ∗) = 175.715

5 Conclusions

In this paper, we employ Huang’s cost model to determine the optimum process mean for
the linear transformation system. Three types of quality loss functions are considered in
the model: symmetrical quadratic, asymmetrical quadratic, and asymmetrical linear loss
functions. Hereof we also determine the optimum process mean for the following three types
of processes: the process with constant standard deviation, the process with constant coeffi-
cient of variation, and the auto-correlated process. Further research may be extended to the
models of multiple input characteristics and the application to the quadratic transformation
system.
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