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Abstract In this paper, a family of geometric means for positive matrices is studied;
we discuss possible definitions of the geometric means of positive matrices, and some
counter examples are given. It is still an open problem to find a completely satisfactory
definition. Other problems are how to define the geometric, arithmetic, harmonic,
α−power and operator means of finitely many positive matrices. We generalize these
means of two positive matrices to arrive the definitions of the weighted means of
k positive matrices. We recover and develop the relationship between the Ando’s
geometric mean and the Kronecker product to the Tracy-Singh product and other
means. Some new attractive inequalities for the Tracy-Singh product, Khatri-Rao
product and geometric means of several positive matrices are established. The results
lead to the case of Kronecker and Hadamard products of any finite numbers of matrices.
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1 Introduction and Preliminary Results

Consider matrices A = [aij ] and C = [cij ] of order m× n and B = [bkl] of order p× q. Let
A and B be partitioned as A = [Aij ] and B = [Bkl] (1 ≤ i ≤ t, 1 ≤ j ≤ c), where Aij is an

mi × nj matrix and Bkl is a pk × ql matrix (m =
t∑

i=1

mi, n =
c∑

j=1

nj , p =
t∑

i=1

pi, q =
c∑

j=1

qj).

Let A⊗B, A ◦B, AΘB and A ∗B be the Kronecker, Hadamard, Tracy-Singh and Khatri-
Rao products, respectively. The definitions of the mentioned four matrix products are given
by Liu in [8, 9] as A ⊗ B = (aijB)ij , A ◦ C = (aijcij)ij = C ◦ A , A ∗ B = (Aij ⊗ Bij)ij

and AΘB = (AijΘB)ij = ((Aij⊗Bkl)kl)ij .Additionally, Liu [8] shows that the Khatri-Rao
product can be viewed as a generalized Hadamard product and the Tracy-Singh product
as a generalized Kronecker product, i.e., for non-partitioned matrices A and B, their AΘB
is A⊗ B and their A ∗ B is A ◦ B. The Khatri-Rao and Tracy-Singh products of matrices
Ai(1 ≤ i ≤ k, k ≥ 2) will be denoted by

k∏
i=1

∗Ai = A1 ∗A2 ∗ . . . ∗Ak and
k∏

i=1

ΘAi = A1ΘA2Θ...ΘAk,

respectively.
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For Hermitian matrices A and B, the relation A > B means that A−B > 0 is a positive
definite and the relation A ≥ B means A − B ≥ 0 is a positive semi-definite. Given a
positive definite matrix A, its positive definite square root is denoted by A1/2. Notice that
for positive definite matrices A and B, the relation A ≥ B implies A1/2 ≥ B1/2, A2 ≥ B2

and B−1 ≥ A−1.
Let us introduce some notations. The notation Mm,n(M+

m,n) is the set of all m ×
n (positive definite) matrices over M and when m = n, we write Mm(M+

m) instead of
Mm,n(M+

m,n) . The notations AT , A∗, A−1 are the transpose, conjugate transpose and
inverse of matrix A, respectively. The Khatri - Rao and Tracy - Singh products are related
by the following relation [5,14]:

k∏
i=1

∗Ai = ZT
1 (

k∏
i=1

ΘAi)Z2. (1-1)

Here, Ai ∈ Mm(i),n(i)(1 ≤ i ≤ k, k ≥ 2) are compatibly partitioned matrices,

(m =
k∏

i=1

m(i), n =
k∏

i=1

n(i) , r =
t∑

j=1

k∏
i=1

mj(i), s =
c∑

j=1

k∏
i=1

nj(i), m(i) =
t∑

j=1

mj(i),

n(i) =
t∑

j=1

nj(i)). Z1 and Z2 are real matrices of order m× r and n× s, respectively such

that ZT
1 Z = I1 , ZT

2 Z = I2, where I1 and I2 are identity matrices of order r × r and s× s,
respectively. In particular, if m(i) = n(i), we then have

k∏
i=1

∗Ai = ZT (
k∏

i=1

ΘAi)Z. (1-2)

We shall make frequent use the following properties of the Tracy-Singh and Khatri-
Rao products and their proofs are straightforward by using induction on k. Let Ai and
Bi(1 ≤ i ≤ k, k ≥ 2) be compatible partitioned matrices, we have

(a)

(
k∏

i=1

ΘAi

)(
k∏

i=1

ΘBi

)
=

(
k∏

i=1

Θ(AiBi)

)
. (1-3)

(b)

(
k∏

i=1

ΘAi

)∗

=
k∏

i=1

ΘA∗
i and

(
k∏

i=1

∗Ai

)∗

=
k∏

i=1

∗A∗
i . (1-4)

(c)

(
k∏

i=1

ΘAi

)r

=
k∏

i=1

ΘAr
i if Ai ∈ M+

mi
(1 ≤ i ≤ k, k ≥ 2) and r is any real number.

(1-5)

(d)

(
k∏

i=1

(AiΘBi)

)
=

(
k∏

i=1

Ai

)
Θ

(
k∏

i=1

Bi

)
. (1-6)

In this paper, the results are established in three ways. First, we discuss possible defi-
nitions of the geometric means of two matrices and weighted means of k positive matrices,
provided some counter examples are given. It is still an open problem to find a completely
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satisfactory definition. Second, we discover some interesting new inequalities involving
Tracy-Singh product, Khatri-Rao product and geometric means of several positive matri-
ces. Finally, the results lead to the case of Kronecker and Hadamard products of any finite
numbers of positive matrices.

2 Geometric Means of Two Positive Matrices

If A and B are arbitrary n× n matrices, then the arithmetic mean is defined by

A ∼ B =
1
2
(A + B). (2-1)

Similarly, when A and B are positive n×n matrices, their harmonic mean can be defined
as

A!B =
{

1
2
(A−1 + B−1)

}−1

. (2-2)

However, it is not at all obvious how to define the geometric mean of positive matrices. In
what follows, if A ∈ M+

n and α is any real number, then Aα will denote its unique positive
(semi)definite αth power. Ideally, the geometric mean A#B of two positive matrices and
should satisfy the following properties:

(i) A#B = (AB)1/2 (when A and B commute) (2-3)
(ii) A#B ≥ 0 (Positive property) (2-4)
(iii) A#B = B#A (Symmetry property)
(iv) A!B ≤ A#B ≤ A ∼ B (Arithmetic-Geometric-Harmonic inequality) (2-5)

The obvious candidates for A#B are not satisfactory. We now explain the problems
which arise with some of these candidates in the case that A and B are positive n × n
matrices.

Candidate (1) : A#1B = (AB)1/2 (2-6)

This has the drawback need not a positive semi definite square root unless AB = BA.
To see this, observe that if A > 0, B > 0 and AB ≥ 0, then

AB = (AB)∗ = B∗A∗ = BA

So, if AB 6= BA, we must conclude that AB � 0 and so it is impossible for any square root
of AB to be positive semi definite.

Candidate (2) : A#2B = A1/2B1/2 (2-7)

Again, there are problems with the positivity property. Notice that if A > 0, B > 0
and A1/2B1/2 = B1/2A1/2, then AB = BA. Hence if AB 6= BA, we must conclude that
A1/2B1/2 6= B1/2A1/2, and so, as above, A#2B � A1/2B1/2.

Candidate (3) : A#3B = A1/4B1/2A1/4 (2-8)
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Certainly A#3B satisfies property (i) and by design, also satisfies the positivity property
(ii). However, A#3B need not be symmetric. To see this, consider

A =
[

2 0
0 1

]
, B =

[
1.1 1
1 1

]
For these matrices, mathematica shows that:

A#3B =
[

1.21163 0.719418
0.719418 0.796259

]
, B#3A =

[
1.15706 0.732975
0.732975 0.850833

]
and these are clearly different. In 1979, Ando [2] gave an apparently complicated variant
of candidate3, which turns out to be very useful and satisfy all properties (i)-(iv). When A
and B are positive n× n matrices, Ando’s geometric mean is defined by

A#B = A1/2D1/2A1/2 with D = A−1/2BA−1/2. (2-9)

It is clear to show that Ando’s geometric mean enjoy the following properties:

(a)A#A = A. (b)Ap#Aq = A(p+q)/2, for all −∞ < p, q < ∞. (2-10)

(c)(A#B)A−1(A#B) = B (d)(AB−1A)#B = A. (2-11)

(e)A−1/2(A#B)B−1/2 is a unitary matrix. (2-12)

Now we use the fact that if X and Y are positive n × n matrices, then if and only if
X2 = Y 2. This follows from the observation that a positive n × n matrix has a unique
positive square root. Thus A#B = B#A is equivalent to(

B−1/2A1/2(A−1/2BA−1/2)1/2A1/2B−1/2
)2

= B−1/2AB−1/2. (2-13)

To see that this is indeed true, expand out the square(
B−1/2A1/2(A−1/2BA−1/2)1/2A1/2B−1/2

)2

=
(
B−1/2A1/2(A−1/2BA−1/2)1/2A1/2B−1/2

)(
B−1/2A1/2(A−1/2BA−1/2)1/2A1/2B−1/2

)
= B−1/2A1/2(A−1/2BA−1/2)1/2A1/2B−1/2B−1/2A1/2(A−1/2BA−1/2)1/2A1/2B−1/2

= B−1/2A1/2(A−1/2BA−1/2)1/2(A−1/2BA−1/2)−1(A−1/2BA−1/2)1/2A1/2B−1/2

= B−1/2A1/2A1/2B−1/2 = B−1/2AB−1/2. �

Ando’s geometric mean also satisfies the arithmetic-geometric-harmonic mean inequality.
The geometric-arithmetic means inequality can be established by taking inverses. Let A > 0
and B > 0 be n× n matrices and write D = A−1/2BA−1/2. It is clear that D > 0. Now

A#B ≤ A ∼ B ⇔ A1/2
{

A−1/2BA−1/2
}1/2

A1/2 ≤ 1
2
(A + B)

⇔ A1/2
{

A−1/2BA−1/2
}1/2

A1/2 ≤ 1
2
A1/2(I + A−1/2BA−1/2)A−1/2

⇔
{

A−1/2BA−1/2
}1/2

≤ 1
2
(I + A−1/2BA−1/2) ⇔ D1/2 ≤ 1

2
(I + D).

(2-14)
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This last inequality is the arithmetic-geometric mean inequality for the positive definite
matrix. Since A > 0, there are a unitary matrix U and a diagonal matrix S = diag[s1, ..., sn]
with si > 0 (1 ≤ i ≤ n) satisfying A = U∗SU . Thus D1/2 ≤ 1

2 (I + D) is equivalent to
s
1/2
i ≤ 1

2 (1 + si), for all (1 ≤ i ≤ n) and this is obviously true.
Ando [2] established further nice properties of his geometric mean of two positive n× n

matrices

(v)C∗(A#B)C = (C∗AC)#(C∗BC), for all C ∈ Mn. (Distributive property) (2-15)
(vi)(A1 ⊗B1)#(A2 ⊗B2) = (A1#A2)⊗ (B1#B2). (Mixed property) (2-16)

(vii)(A#B)−1 = A−1#B−1. (Inverse property) (2-17)

We examine these in the next section, where we will give some extensions and general-
izations. Now, we have

(A ∼ B)#(A!B) = A#B (2-18)

To see that this is indeed true:

(A ∼ B)#(A!B) = A1/2 {(I ∼ D)#(I!D)}A1/2

= A1/2
{

((1/2)(I + D))1/2 ((1/2)(I + D−1)
)−1/2

}
A1/2

= A1/2D1/2A1/2 = A#B.

Ando used his definition to study monotone functions of matrices and obtained many
nice results [2]. In spite of all this, Ando’s definition is not completely satisfactory. It fails
to satisfy one very desirable property:

(viii) (A#B)2 is similar to AB. (Eigenvalue property) (2-19)

To see why this is a problem, consider A =
[

2 0
0 1

]
and B =

[
2 1
1 1

]
. Then,

computing with Mathematica, we find

A#B =
[

1.84776 0.541196
0.541196 0.92388

]
, and AB =

[
4 2
1 1

]
Here, the eigenvalues of AB are 0.438447 and 4.56155, while the eigenvalues of (A#B)2

are 0.45466 and 4.39889 . Hence (A#B)2 is not similar to AB, since similar matrices must
have the same eigenvalues.

In 1997, Fiedler and Ptak [7] succeeded in finding a definition of geometric mean that
does satisfy the eigenvalue property. They used

A♦B = (A−1#B)1/2A(A−1#B)1/2, (2-20)

for positive matrices A and B. Unfortunately, this definition fails the arithmetic-geometric
-harmonic inequality. It satisfy properties from (i) to (iii) and from (v) to (viii). We give
a new direct proof of the eigenvalue property, assuming that A♦B = B♦A, for positive
matrices A and B. Observe that

A♦B = (A−1#B)1/2A(A−1#B)1/2 = (B−1#A)1/2B(B−1#A)1/2. (2-21)
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Thus, by property (iii) of Ando’s geometric mean, we have

(A♦B)2 = (A♦B)(B♦A) = (A−1#B)1/2A(A−1#B)1/2(B−1#A)1/2B(B−1#A)1/2

= (A−1#B)1/2A
(
(B−1#A)1/2

)−1

(B−1#A)1/2B(B−1#A)1/2

= (A−1#B)1/2AB(B−1#A)1/2 =
(
(B−1#A)1/2

)−1

(AB)(B−1#A)1/2

= Q−1(AB)Q (Q = (B−1#A)1/2).

Hence, (A♦B)2 is not similar to AB. �

In 1998, Ando and Hiai [4] succeeded in generalizing Ando’s geometric mean to the
α−power mean that satisfy properties from (i) to (vii). They used

A #
α

B = A1/2DαA1/2 with D = A−1/2BA−1/2, (2-22)

for any real number α and positive matrices A and B. In particular if α = 1
2 , we get Ando’s

geometric mean, i.e., A #
1/2

B = A#B.

It is clear to show that α− power mean enjoy the following new properties:

(a)A #
α

A = A (b)Ap #
α

Aq = A(1−α)p+αq, for all −∞ < p, q < ∞. (2-23)

In 2000, Micic, Pecaric and Seo [10] succeeded in generalizing the α− power mean to
the operator mean. They used

AσB = A1/2f(D)A1/2 with D = A−1/2BA−1/2, (2-24)

for any non-negative operator monotone function f(t) on [0,∞) and positive matrices A
and B. As a matter of fact, the α− power means are determined by the operator monotone
function f(t) = tα when 0 < α ≤ 1 or by the operator monotone function f(t) = t1/α when
1 ≤ α < ∞.

It remains an open question whether there is a definition of the geometric mean of
two positive n× n matrices that satisfies all of properties from (i) - (viii).

We extend the mixed property to include the Tracy-Singh product as in next result.

Lemma 2.1 Let Ai and Bi ∈ M+
n (i = 1, 2) be compatible partitioned matrices. Then

(a) (A1ΘB1)#(A2ΘB2) = (A1#A2)Θ(B1#B2) (2-25)
(b) (A1#B1)Θ(A2#B2) = (A1ΘA2)#(B1ΘB2) (2-26)
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Proof (a) By using (1-4) and (1-5), we have

(A1ΘB1)#(A2ΘB2)

= (A1ΘB1)1/2
{

(A1ΘB1)−1/2(A2ΘB2)(A1ΘB1)−1/2
}1/2

(A1ΘB1)1/2

= (A1/2
1 ΘB

1/2
1 )

{
(A−1/2

1 ΘB
−1/2
1 )(A2ΘB2)(A

−1/2
1 ΘB

−1/2
1 )

}1/2

(A1/2
1 ΘB

1/2
1 )

= (A1/2
1 ΘB

1/2
1

{
A
−1/2
1 A2A

−1/2
1 ΘB

−1/2
1 B2B

−1/2
1

}
(A1/2

1 ΘB
1/2
1 )

= (A1/2
1 ΘB

1/2
1 )

{
(A−1/2

1 A2A
−1/2
1 )1/2Θ(B−1/2

1 B2B
−1/2
1 )1/2

}
(A1/2

1 ΘB
1/2
1 )

= A
1/2
1

{
(A−1/2

1 A2A
−1/2
1 )1/2

}
A

1/2
1 ΘB

1/2
1

{
(B−1/2

1 B2B
−1/2
1 )1/2

}
B

1/2
1

= (A1#A2)Θ(B1#B2).

We can prove (b) in a similar manner. �

We extend also Lemma (2.1) to include the Fiedler and Ptak definition and α− power
mean definition related to the Tracy -Singh product as in next result.

Lemma 2.2 For any real number α and positive compatible partitioned matrices Ai and
Bi(i = 1, 2), we have

(a)(A1ΘB1) #
α

(A2ΘB2) = (A1 #
α

A2)Θ(B1 #
α

B2). (2-27)

(b)(A1ΘB1)♦(A2ΘB2) = (A1♦B1)Θ(A2♦B2). (2-28)
(c)A1 #

α
B1)Θ(A2 #

α
B2) = (A1ΘA2) #

α
(B1ΘB2). (2-29)

(d)A1♦B1)Θ(A2♦B2) = (A1ΘA2)♦(B1ΘB2). (2-30)

Proof (a) To see that this is indeed true, let

D1 = A
−1/2
1 A2A

−1/2
1 and D2 = B

−1/2
1 B2B

−1/2
1 .

Then

(A1ΘB1) #
α

(A2ΘB2)

= (A1ΘB1)1/2
(
(A1ΘB1)−1/2(A2ΘB2)(A1ΘB1)−1/2

)α

(A1ΘB1)1/2

= (A1/2
1 ΘB

1/2
1 )

(
(A−1/2

1 ΘB
−1/2
1 )(A2ΘB2)(A

−1/2
1 ΘB

−1/2
1 )

)α

(A1/2
1 ΘB

1/2
1 )

= (A1/2
1 ΘB

1/2
1 )

{(
A
−1/2
1 A2A

−1/2
1 )αΘ(B−1/2

1 B2B
−1/2
1

)α}
(A1/2

1 ΘB
1/2
1 )

= (A1/2
1 ΘB

1/2
1 )(Dα

1 ΘDα
2 )(A1/2

1 ΘB
1/2
1 ) = (A1/2

1 Dα
1 A

1/2
1 )Θ(B1/2

1 Dα
1 B

1/2
1 )

= (A1 #
α

A2)Θ(B1 #
α

B2).
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(b)(A1ΘB1)♦(A2ΘB2)

=
{
(A1ΘB1)−1#(A2ΘB2)

}1/2
(A1ΘB1)

{
(A1ΘB1)−1#(A2ΘB2)

}1/2

=
{
(A−1

1 ΘB−1
1 )#(A2ΘB2)

}1/2
(A1ΘB1)

{
(A−1

1 ΘB−1
1 )#(A2ΘB2)

}1/2

=
{
(A−1

1 #A2)Θ(B−1
1 #B2)

}1/2
(A1ΘB1)

{
(A−1

1 #A2)⊗ (B−1
1 #B2)

}1/2

=
{

(A−1
1 #A2)1/2Θ(B−1

1 #B2)1/2
}

(A1ΘB1)
{

(A−1
1 #A2)1/2Θ(B−1

1 #B2)1/2
}

=
{

(A−1
1 #A2)1/2A1(A−1

1 #A2)1/2
}

Θ
{

(B−1
1 #B2)1/2B1(B−1

1 #B2)1/2
}

= (A1♦B1)Θ(A2♦B2)

We can prove (c) and (d) in a similar manner. �

3 Geometric Means of Several Positive Matrices

Other problems are how to define the geometric, arithmetic, harmonic and operator means
of finitely many positive matrices. We generalize these means of two positive matrices to
arrive the definitions of the weighted means of k positive matrices.

Definition 3.1 Let w1, w2, ..., wk be positive numbers such that
k∑

i=1

wi = 1 and let Ai ∈ M+
n

(1 ≤ i ≤ k, k ≥ 2). The weighted geometric, weighted arithmetic and weighted harmonic
means of Ai(1 ≤ i ≤ k, k ≥ 2) are defined by
(a) Weighted geometric mean:

k∏
i=1

#
(w)

Ai

= A
1/2
k

{
A
−1/2
k A

1/2
k−1...(

A
−1/2
3 A

1/2
2

(
A
−1/2
2 A1A

−1/2
2

)u1

A
1/2
2 A

−1/2
3

)u2

... A
1/2
k−1A

−1/2
k

}uk−1

A
1/2
k , (3-1)

where us = 1−

ws+1/
s+1∑
j=1

wj

 for s = 1, 2, ..., k − 1.

(b) Weighted arithmetic mean:

k∏
i=1

∼
(w)

Ai = w1A1 + ... + wkAk =
k∑

i=1

wiAi. (3-2)

(c) Weighted harmonic mean:

k∏
i=1

!
(w)

Ai = (w1A
−1
1 + ... + w1A

−1
k )−1 =

(
k∑

i=1

wiA
−1
i

)−1

. (3-3)
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Definition 3.2 Let Ai ∈ M+
n (1 ≤ i ≤ k, k ≥ 2) and fj (1 ≤ j ≤ k − 1) be non-negative

operator monotone functions on [0,∞). The weighted operator mean of Ai (1 ≤ i ≤ k) is
defined by

k∏
i=1

σ
(w)

Ai

= A
1/2
k fk−1

{
A
−1/2
k A

1/2
k−1...f2

(
A
−1/2
3 A

1/2
2 f1

(
A
−1/2
2 A1A

−1/2
2

)
A

1/2
2 A

−1/2
3

)
...A

1/2
k−1A

−1/2
k

}
A

1/2
k . (3-4)

In fact, the weighted geometric means are determined by the operator monotone func-
tions

fk−1(t) = tuk−1 , fk−2(t) = tuk−2 , ..., f2(t) = tu2 , f1(t) = tu1

where uj = 1 −
(

wj+1/
j+1∑
r=1

wr

)
, 0 < uj ≤ 1, for j = 1, 2, · · · , k − 1 and w1, w2, · · · , wk

are positive numbers such that
k∑

i=1

wi = 1. Note that also the weighted geometric mean

becomes Ando’s geometric mean, weighted arithmetic mean becomes arithmetic mean and
weighted harmonic mean becomes harmonic mean when k = 2 and w1 = w2 = 1

2 . These
general definitions have many good properties analogous. The fundamental relationship is
no surprise.

Theorem 3.3 Let w1, w2, ..., wk be positive numbers such that
k∑

i=1

wi = 1 and let Ai ∈ Mn

(1 ≤ i ≤ k, k ≥ 2) be positive matrices. Then (see [12]).

k∏
i=1

!
(w)

Ai ≤
k∏

i=1

#
(w)

Ai ≤
k∏

i=1

∼
(w)

Ai (3-5)

All the inequalities are strict unless A1 = A2 = ... = Ak.
Surprisingly, it has not previously been observed that the geometric mean for more than

two matrices fails the symmetry property. For example, if k = 3 and w1 = w2 = w3 = 1
3 ,

corresponding geometric means of three positive matrices A1, A2 and A3 are

A3#A2#A1 = A
1/2
1

{
A
−1/2
1 A

1/2
2 (A−1/2

2 A3A
−1/2
2 )1/2A

1/2
2 A

−1/2
1

}2/3

A
1/2
1 ,

and

A1#A2#A3 = A
1/2
3

{
A
−1/2
3 A

1/2
2 (A−1/2

2 A1A
−1/2
2 )1/2A

1/2
2 A

−1/2
3

}2/3

A
1/2
3 .

But if A1 =
[

3 1
1 1

]
, A2 =

[
2 0
0 1

]
and A3 =

[
1 1
1 2

]
. Then, after computing with

mathematica, we find

A3#A2#A1 =
[

1.64446 0.614542
0.614542 1.19496

]
and A1#A2#A3 =

[
1.61321 0.605703
0.605703 1.21141

]
.

In other words, A3#A2#A1 6= A1#A2#A1.
Even though property (iii) fails, properties (vi) and (vii) are still applicable.
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4 Further Developments and Applications

In this section, we prove several theorems related to geometric means and Tracy-Singh
products for compatible partitioned matrices.
Theorem 4.1 Let Ai and Bi ∈ M+

n , (1 ≤ i ≤ k) be compatible partitioned matrices. Then

(a)
k∏

i=1

♦(AiΘBi) =

(
k∏

i=1

♦Ai

)
Θ

(
k∏

i=1

♦Bi

)
.

(b)
k∏

i=1

Θ(Ai♦Bi) =

(
k∏

i=1

ΘAi

)
♦

(
k∏

i=1

ΘBi

)
.

. (4-1)

Proof (a) The proof is by induction on k; we know by (2-28) that

(A1ΘB1)♦(A2ΘB2) = (A1♦B1)Θ(A2♦B2).

This gives the claimed when k = 2. Suppose that
k−1∏
i=1

♦(AiΘBi) =
(

k−1∏
i=1

♦Ai

)
Θ
(

k−1∏
i=1

♦Bi

)
holds. Then

k∏
i=1

♦(AiΘBi) =

(
k−1∏
i=1

♦(AiΘBi)

)
♦ (AkΘBk) =

((
k−1∏
i=1

♦Ai

)
Θ

(
k−1∏
i=1

♦Bi

))
♦ (AkΘBk)

=

((
k−1∏
i=1

♦Ai

)
♦Ak

)
Θ

((
k−1∏
i=1

♦Bi

)
♦Bk

)
=

(
k∏

i=1

♦Ai

)
Θ

(
k∏

i=1

♦Bi

)
.

We can prove (b) in a similar manner. �

In general case, for any real number α and positive matrices Ai and Bi(i = 1, 2). The
α− power mixed property related to the Tracy-Singh product can be extended to any finite
number of positive matrices as in next results (Theorem (4.2) and Theorem (4.3)).

Theorem 4.2 Let Ai and Bi ∈ M+
n (1 ≤ i ≤ k, k ≥ 2) be compatible partitioned

matrices. Then

(a)
k∏

i=1

#
α

(AiΘBi) =

(
k∏

i=1

#
α

Ai

)
Θ

(
k∏

i=1

#
α

Bi

)
.

(b)
k∏

i=1

Θ(Ai #
α

Bi) =

(
k∏

i=1

ΘAi

)
#
α

(
k∏

i=1

ΘBi

)
.

(4-2)

Proof Follows immediately by on induction on.
When Ai ∈ M+

n (1 ≤ i ≤ k, k ≥ 2) and αi are real scalars, we have defined

A1 #
α1

A2 = A
1
2
2 (A− 1

2
2 A1A

− 1
2

2 )α1A
1
2
2 (4-3)

Now continue recurrently, setting

k∏
i=1

#
α1,α2,...,αk−1

Ai = A1 #
α1,α2,...,αk−1

A2 #
α1,α2,...,αk−1

... #
α1,α2,...,αk−1

Ak
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= A
1/2
k

{
A
−1/2
k

(
k−1∏
i=1

#
α1,α2,...,αk−2

Ai

)
A
−1/2
k

}αk

A
1/2
k . (4-4)

Theorem 4.3 Let Ai and Bi ∈ M+
n (1 ≤ i ≤ k) and be compatible partitioned matrices

and let αi(1 ≤ i ≤ k) be real scalars. Then for any m ≥ 2,

m∏
i=1

#
α1,α2,...,αm−1

(AiΘBi) =

(
m∏

i=1

#
α1,α2,...,αm−1

Ai

)
Θ

(
m∏

i=1

#
α1,α2,...,αm−1

Bi

)
. (4-5)

Proof We use induction on m. In particular, when m = 2 we obtain Theorem (4.2). Sup-

pose that
k∏

i=1

#
α1,α2,...,αk−1

(AiΘBi) =

(
k∏

i=1

#
α1,α2,...,αk−1

Ai

)
Θ

(
k∏

i=1

#
α1,α2,...,αk−1

Bi

)
holds.

Then

k+1∏
i=1

#
α1,α2,...,αk

(AiΘBi) =

(
k∏

i=1

#
α1,α2,...,αk

(AiΘBi)

)
#

α1,α2,...,αk

(Ak+1ΘBk+1)

= (Ak+1ΘBk+1)
1/2

{
(Ak+1ΘBk+1)

−1/2

(
k∏

i=1

#
α1,α2,...,αk−1

(AiΘBi)

)
(Ak+1ΘBk+1)

−1/2

}αk

(Ak+1ΘBk+1)
1/2

=
(
A

1/2
k+1ΘB

1/2
k+1

){(
A
−1/2
k+1 ΘB

−1/2
k+1

)(( k∏
i=1

#
α1,α2,...,αk−1

)
Θ

(
k∏

i=1

#
α1,α2,...,αk−1

Bi

))
(
A
−1/2
k+1 ΘB

−1/2
k+1

)}αk
(
A

1/2
k+1ΘB

1/2
k+1

)
=
(
A

1/2
k+1ΘB

1/2
k+1

)((
A
−1/2
k+1

(
k∏

i=1

#
α1,α2,...,αk−1

Ai

)
A
−1/2
k+1

)αk

Θ

(
B
−1/2
k+1

(
k∏

i=1

#
α1,α2,...,αk−1

Bi

)
B
−1/2
k+1

)αk)(
A

1/2
k+1ΘB

1/2
k+1

)

=

(
A

1/2
k+1

{
A
−1/2
k+1

(
k∏

i=1

#
α1,α2,...,αk−1

Ai

)
A
−1/2
k+1

}αk

A
1/2
k+1

)

Θ

(
B

1/2
k+1

{
B
−1/2
k+1

(
k∏

i=1

#
α1,α2,...,αk−1

Bi

)
B
−1/2
k+1

}αk

B
1/2
k+1

)
.

=

(
k+1∏
i=1

#
α1,α2,...,αk

Ai

)
Θ

(
k+1∏
i=1

#
α1,α2,...,αk

Bi

)
. �

Theorem (4.3) can be extended by using induction as given in the following theorem.
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Theorem 4.4 Let Aij ∈ M+
n (1 ≤ i ≤ m, 1 ≤ j ≤ k) be compatible partitioned matrices

and let αi(1 ≤ i ≤ m) be real scalars. Then k∏
j=1

ΘA1j

 #
α1,α2,...,αm−1

... #
α1,α2,...,αm−1

 k∏
j=1

ΘAmj


=

k∏
j=1

Θ
(

A1j #
α1,α2,...,αm−1

... #
α1,α2,...,αm−1

Amj

)
. (4.6)

Property (vii) for two positive matrices namely (A # B)−1 = A−1 # B−1, can be extended
to α−power mean of two positive matrices:(

A #
α

B

)−1

= A−1 #
α

B−1 (4-7)

To see that this is indeed true:

A−1 #
α

B−1 = (A−1)
1
2

(
(A−1)−

1
2 B−1(A−1)−

1
2

)α

(A−1)
1
2

= (A
1
2 )−1

(
{A− 1

2 BA− 1
2 }−1

)α

(A
1
2 )−1 =

{
A

1
2

(
A− 1

2 BA− 1
2

)α1

A
1
2

}−1

=
(

A #
α

B

)−1

. �

A quick induction is sufficient to extend this to means of more than two matrices.
Lemma 4.5 Let Ai ∈ M+

n (1 ≤ i ≤ k, k ≥ 2) and let αi(1 ≤ i ≤ k) be real scalars. Then(
k∏

i=1

#
α1,α2,...,αk−1

A−1
i

)
=

(
k∏

i=1

#
α1,α2,...,αk−1

Ai

)−1

. (4-8)

We now turn to a generalization of the arithmetic-geometric-harmonic mean inequality
related to Tracy-Singh Product.
Theorem 4.6 Let Aij ∈ M+

n (1 ≤ i ≤ m, 1 ≤ j ≤ k) be compatible partitioned matrices and

let wi(1 ≤ i ≤ m) be positive scalars such that
∑m

i=1 wi = 1. Let ui = 1−
(
wi+1/

∑i+1
s=1 ws

)
,

i = 1, 2, ...,m− 1. Then

(a)

 m∑
i=1

wi

k∏
j=1

ΘA−1
ij

−1

≤
k∏

j=1

Θ

(
A1j #

(w)

· · · #
(w)

Amj

)
≤

m∑
i=1

wi

k∏
j=1

ΘAij . (4-9)

(b)

 m∑
i1,··· ,im=1

wi1···im

k∏
j=1

ΘA−1
ijj

−1

≤

 k∏
j=1

ΘAij

 #
(w)

· · ·

#
(w)

k∏
j=1

ΘAmj


≤

m∑
i1=1

· · ·
m∑

im=1

wi1 · · ·wim

k∏
j=1

ΘAijj (4-10)

Equalities in (4-9) and (4-10) hold if and only if
k∏

j=1

ΘA1j = ... =
k∏

j=1

ΘAmj .
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Proof By Theorem (3.3) and Theorem (4.4), we have

k∏
j=1

Θ

(
A1j #

(w)

... #
(w)

Amj

)
=

 k∏
j=1

ΘA1j

 #
(w)

... #
(w)

 k∏
j=1

ΘAmj

 ≤
m∑

i=1

wi

k∏
j=1

ΘAij .

Substituting A−1
ij for Aij and using Lemma (4.5), we obtain

k∏
j=1

Θ

(
A1j #

(w)

... #
(w)

Amj

)−1

=
k∏

j=1

Θ

(
A−1

1j #
(w)

... #
(w)

A−1
mj

)
≤

m∑
i=1

wi

k∏
j=1

ΘA−1
ij .

Now, we have  k∏
j=1

Θ

(
A1j #

(w)

... #
(w)

Amj

)−1

≤
m∑

i=1

wi

k∏
j=1

ΘA−1
ij ,

and hence  m∑
i=1

wi

k∏
j=1

ΘA−1
ij

−1

≤
k∏

j=1

Θ

(
A1j #

(w)

... #
(w)

Amj

)
.

Similarly, we have the second inequalities (b). Since k∏
j=1

ΘA1j

 #
(w)

... #
(w)

 k∏
j=1

ΘAmj

 =
k∏

j=1

Θ

(
A1j #

(w)

... #
(w)

Amj

)

≤
k∏

j=1

Θ

(
m∑

i=1

wiAij

)
=

m∑
i1=1

...

m∑
im=1

wi1 ...wim

k∏
j=1

ΘAijj . �

We shall use Theorem (4.6) to extend a result of Ando [2, pp. 229, Theorem 12] in the
following theorem.
Theorem 4.7 Let Ai ∈ M+

n (1 ≤ i ≤ m) be commutative matrices. Then (see [2])

m∏
j=1

◦

(
m∏

i=1

Ai

) 1
m

≤
m∏

i=1

◦Ai.. (4-11)

We need some further ingredients before we address Ando’s result. In 1997, Alic and others
[1] gave a generalization of Theorem (3.3) in the negative weight case. The various means
are defined just as before, even if there are negative weights.

Theorem 4.8 Let Ai(1 ≤ i ≤ k) be positive matrices and let wi(1 ≤ i ≤ k) be real numbers
such that w1 > 0, wi < 0(2 ≤ i ≤ k) and

∑k
i=1 wi = 1. Then (see [1])

k∏
i=1

∼
(w)

Ai ≤
k∏

i=1

#
(w)

Ai. (4-12)
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If
∑k

i=1 wiA
−1
i > 0, then

k∏
i=1

#
(w)

Ai ≤
k∏

i=1

!
(w)

Ai. (4-13)

Equalities hold if and only if A1 = ... = Ak.
Developing Theorem (4.8), we have the following.

Theorem 4.9 Let Aij ∈ M+
n (1 ≤ i ≤ m, 1 ≤ j ≤ k) and let wi(1 ≤ i ≤ m) be real numbers

such that w1 > 0, wi < 0(2 ≤ i ≤ m), and
∑k

i=1 wi = 1. Let ui = 1− (wi+1/
∑i+1

s=1 ws), for
i = 1, 2, · · · ,m− 1. Then

(a)
m∑

i=1

wi

k∏
j=1

ΘAij ≤
k∏

j=1

Θ

(
A1j #

(w)

... #
(w)

Amj

)
(4-14)

(b)
m∑

i1=1

...
m∑

im=1

wi1 ...wim

k∏
j=1

ΘAijj ≤

 k∏
j=1

ΘA1j

 #
(w)

... #
(w)

 k∏
j=1

ΘAmj

 . (4-15)

If w1

k∏
j=1

ΘA1j + ... + wm

k∏
j=1

ΘAmj > 0, then

(c)
k∏

j=1

Θ

(
A1j #

(w)

... #
(w)

Amj

)
≤

 m∑
i=1

wi

k∏
j=1

ΘA−1
ij

−1

(4-16)

(d)

 k∏
j=1

ΘAij

 #
(w)

... #
(w)

 k∏
j=1

ΘAmj

 ≤

 m∑
i1,...,im=1

wi1...im

k∏
j=1

ΘA−1
ijj

−1

. (4-17)

Equalities hold if and only if
k∏

j=1

ΘA1j = ... =
k∏

j=1

ΘAmj .

Using Theorem (4.6) and the connection between the Khatri-Rao and Tracy-Singh prod-
ucts in (1-1), we have the following two theorems:
Theorem 4.10 Let Aij ∈ M+

n (1 ≤ i ≤ m, 1 ≤ j ≤ k) be compatible partitioned
matrices and let wi(1 ≤ i ≤ m) be positive real numbers such that

∑m
i=1 wi = 1. Let

ui = 1− (wi+1/
∑i+1

s=1 ws), for i = 1, 2, · · · ,m− 1. Then

(a)
k∏

j=1

∗

(
A1j #

(w)

... #
(w)

Amj

)
≤

m∑
i=1

wi

k∏
j=1

∗Aij . (4-18)

(b)
k∏

j=1

∗

(
A1j #

(w)

... #
(w)

Amj

)
≤

m∑
i1=1

...
m∑

im=1

wi1 ...wim

k∏
j=1

∗Aijj (4-19)

Equalities hold if and only if
k∏

j=1

∗A1j = ... =
k∏

j=1

∗Amj .

Proof It follows immediately by using Theorem (4.6) and Eq.(1-1). �
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Finally, we arrive at our extension and generalization of Ando’s result quoted in Theo-
rem (4.7).

Theorem 4.11 Let Ai ∈ M+
n (1 ≤ i ≤ m) be compatible partitioned matrices. Then(

A1 #
(w)

... #
(w)

Am

)
∗

(
A2 #

(w)

... #
(w)

Am #
(w)

A1

)
∗ ...∗

(
Am #

(w)

A1 #
(w)

... #
(w)

Am−1

)

≤
m∏

i=1

∗Ai. (4-20)

Proof In Theorem (4.10), let

(A11, ..., Am1) = (A1, ..., Am)

(A12, ..., Am2) = (A2, ..., Am, A1)

·

·

·

(A1m, A2m, ..., Amm) = (Am, A1, ..., Am−1).

Then(
A1 #

(w)

... #
(w)

Am

)
∗

(
A2 #

(w)

... #
(w)

Am #
(w)

A1

)
∗ ... ∗

(
Am #

(w)

A1 #
(w)

... #
(w)

Am−1

)

=
k∏

j=1

∗

(
A1j #

(w)

... #
(w)

Amj

)
≤

m∑
i=1

wi

k∏
j=1

∗Aij =
m∑

i=1

wi

m∏
j=1

∗Aj =
m∏

i=1

∗Ai

To see how Ando’s result is a special case of Theorem (4.11), note that if Ai(1 ≤ i ≤ m)
commute and non-partitioned matrices, then

A1 #
(w)

... #
(w)

Am = A2 #
(w)

... #
(w)

Am #
(w)

A1

·

·

·

= Am #
(w)

A1 #
(w)

... #
(w)

Am−1 (4-21)

Theorem 4.12 Let Ai ∈ M+
n (i = 1, 2) be compatible partitioned matrices. Then for any

real number α and for all −∞ < p, q < ∞

(A1ΘA2)p #
α

(A1ΘA2)q = (A1ΘA2)(1−α)p+αq (4-22)
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In particular if α = 1
2 , we have

(A1ΘA2)p#(A1ΘA2)q = (A1ΘA2)(p+q)/2 (4-23)

Proof By using (1-5), (2-23) and Lemma (2.1), we have

(A1ΘA2)p #
α

(A1ΘA2)q = (Ap
1ΘAp

2) #
α

(Aq
1ΘAq

2) = (Ap
1 #

α
Aq

1)Θ(Ap
2 #

α
Aq

2)

= A
(1−α)p+αq
1 ΘA

(1−α)p+αq
2 = (A1ΘA2)(1+α)p+αq. �

Theorem 4.13 Let Ai ∈ M+
n (1 ≤ i ≤ k) be compatible partitioned matrices. Then for any

real number α and for all −∞ < p, q < ∞(
k∏

i=1

ΘAp
i

)
#
α

(
k∏

i=1

ΘAq
i

)
=

(
k∏

i=1

ΘA
(1−α)p+αq
i

)
(4-24)

In particular if α = 1
2 , we have(

k∏
i=1

ΘAp
i

)
#

(
k∏

i=1

ΘAq
i

)
=

(
k∏

i=1

ΘA
(p+q)/2
i

)
(4-25)

Proof The proof is a consequence of Theorem (4.12). This gives the claimed when k = 2.
We can now proceed by induction on k. Assume that the corollary holds for products of
k − 1 matrices. Then(

k∏
i=1

ΘAp
i

)
#
α

(
k∏

i=1

ΘAq
i

)
=

[(
k−1∏
i=1

ΘAp
i

)
#
α

(
k−1∏
i=1

ΘAq
i

)]
Θ[Ap

k #
α

Aq
k]

=

(
k−1∏
i=1

ΘA
(1−α)p+αq
i

)
ΘA

(1−α)p+αq
k =

(
k∏

i=1

ΘA
(1−α)p+αq
i

)
. �

Remark: The results obtained in Section 2, Section 3 and Section 4 are quite general. As
a special case, consider the matrices in above sections are non-partitioned, we then have
equalities and inequalities involving Kronecker and Hadamard products by replacing Θ by⊗

and ∗ by ◦.

5 Conclusion

In the present work we study a family of geometric means for positive matrices. It is still
an open problem to find a completely satisfactory definition that satisfies all properties
(i)-(viii). To find a completely satisfactory definition is subject for the future study. In
this study we have succeeded to find new connections between geometric means and Tracy-
Singh products and establish several equalities and inequalities for geometric means and
Tracy-Singh products of several positive matrices.
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