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Abstract In regression, the objective is to explain the variation in one or more
response variables, by associating this variation with proportional variation in one or
more explanatory variables. A frequent obstacle is that several of the explanatory vari-
ables will vary in rather similar ways. As a result, their collective power of explanation
is considerably less than the sum of their individual powers. This phenomenon called
multicollinearity, is a common problem in regression analysis. Handling multicollinear-
ity problem in regression analysis is important because least squares estimations as-
sume that predictor variables are not correlated with each other. The performances of
ridge regression (RR), principal component regression (PCR) and partial least squares
regression (PLSR) in handling multicollinearity problem in simulated data sets are
compared to help and give future researchers a comprehensive view about the best
procedure to handle multicollinearity problems. PCR is a combination of principal
component analysis (PCA) and ordinary least squares regression (OLS) while PLSR
is an approach similar to PCR because a component that can be used to reduce the
number of variables need to be constructed. RR on the other hand is the modified
least square method that allows a biased but more precise estimator. The algorithm
is described and for the purpose of comparing the three methods, simulated data sets
where the number of cases were less than the number of observations used. The goal
was to develop a linear equation that relates all the predictor variables to a response
variable. For comparison purposes, mean square errors (MSE) were calculated. A
Monte Carlo simulation study was used to evaluate the effectiveness of these three
procedures. The analysis including all simulations and calculations were done using
statistical package S-Plus 2000 software.

Keywords Partial least squares regression, principal component regression, ridge
regression, multicollinearity.

1 The Problem of Multicollinearity

In the applications of regression analysis, multicollinearity is a problem that always occur
when two or more predictor variables are correlated with each other. This problem can
cause the value of the least squares estimated regression coefficients to be conditional upon
the correlated predictor variables in the model. As defined by Bowerman and O’Connell
[1], multicollinearity is a problem in regression analysis when the independent variables in
a regression model are intercorrelated or are dependent on each other.
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Multicollinearity is a condition in a set of regression data that have two or more regressors
that are redundant and have the same information. The linear dependencies among the
regressors can effect the model ability to estimate regression coefficients.

Redundant information means, what one variable explains about Y is exactly what the
other variable explains. In this case, the two or more redundant predictor variables would
be completely unreliable since the bi would measure the same effect of those xi and the same
goes for the other b. Furthermore (X′X)−1 would not exist because the denominators,
1 − r2

ik is zero. As a result, the values for bi cannot be found since the elements of the
inverse matrix and coefficients become quite large (Younger [2]).

The presence of multicollinearity in least squares regression can cause larger variances
of parameter estimates which means that the estimates of the parameters tend to be less
precise. As a result, the model will have insignificant test and wide confidence interval.
Therefore, the more the multicollinearity, the less interpretable are the parameters.

The problems of multicollinearity in regression analysis can have effects on least squares
estimated regression coefficients, computational accuracy, estimated standard deviation of
least squares estimated regression coefficients, t−test, extra sum of squares, fitted values
and predictions, and coefficients of partial determination.

There are a variety of informal and formal methods that have been developed for detect-
ing the presence of serious multicollinearity. One of the most commonly used method is the
variance inflation factor that measures how much the variances of the estimated regression
coefficients are inflated compared to when the independent variables are not linearly related
(Neter et al. [3]).

2 Methods for Handling Multicollinearity

Various methods have been developed to cope with multicollinearity problems. Among
such methods are Ridge Regression, Principal Component Regression, Partial Least Squares
Regression and Continuum Regression.

2.1 Ridge Regression

Ridge Regression is developed by Hoerl and Kennard [4] and this method is the modifica-
tion of the least squares method that allow biased estimators of the regression coefficients.
Although the estimators are biased, the biases are small enough for these estimators to be
substantially more precise than unbiased estimators. Therefore, these biased estimators are
prefered over unbiased ones since they will have a larger probability of being close to the
true parameter values.

The ridge regression estimator of the coefficient β is found by solving for bR in the
equation

(X′X + δ I)bR = X′y

where δ ≥ 0 is often referred to as a shrinkage parameter. Thus, the solution for ridge
estimator is given by

bR = (X′X + δ I)−1 X′y
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The matrix (X∗′X∗) considered is replaced by (X∗′X∗ + δ I), where δ is a small
positive quantity. Since the V matrix diagonalizes (X∗′X∗), it also diagonalizes
(X∗′X∗ + δ I). Thus

V ′(X∗′X∗ + δ I)V =


λ1 + δ 0 . . . 0

0 λ2 + δ . . . 0
...

...
. . .

...
0 0 · · · λk + δ


The eigenvalues of the new matrix (X∗′X∗ + δI) are λi + δ for i = 1, 2, . . . , k where

adding δ to the main diagonal effectively replaces λi by λi + δ.
From the properties of the ridge estimator, the role of δ are revealed in moderating

the variance of the estimators. The impact of eigenvalues on the variances of the ridge
regression coefficients can be illustrated as

∑
i

Var(bi,R)
σ2

=
∑

i

λi

(λi + δ)2

Therefore, the δ in ridge regression moderates the damaging impact of the small eigen-
values that result from collinearity (Myers [5]).

There are various procedures for choosing the shrinkage parameter δ. According to [5],
the ridge trace is a very pragmatic procedure for choosing the shrinkage parameter where
it allows δ to increase until stability is indicated in all coefficients. A plot of the coefficients
against δ that pictorially displays the trace often helps the analyst to make a decision
regarding the appropriate value of δ. However, stability does not imply that the regression
coefficients have converged. As δ grows, variances reduce and the coefficients become more
stable. Therefore, the value of δ is chosen at the point for which the coefficients no longer
change rapidly.

The Cp-like statistic that is based on the same variance-bias type trade-off is one of the
proposed procedures. The use of Cδ statistic is by a simple plotting of Cδ against δ, with
the use of δ-value for which Cδ is minimized. The statistic is given as

Cδ =
SSRe s,δ

σ̂2
− n + 2 + 2tr [Hδ]

where Hδ =
[
X∗(X∗′X∗ + δI)−1X∗′], SSRe s,δ is the residual sum of squares using

ridge regression and tr [Hδ] is the trace of Hδ. Notice that Hδ plays the same role as the
HAT matrix in ordinary least squares. In ordinary least squares, residuals are helpful in
identifying outliers which do not appear to be consistent with the rest of the data while
the HAT matrix is used to identify “high leverage” points which are outliers among the
independent variables. The HAT matrix H is given by H = X(X′X)−1X′. The trace is
tr{H} = p, where p is the m vector of adjustable model parameters to be estimated from
the available data set and for all diagonal elements, 0 < hi < 1. The statistic σ̂2 comes
from the residual mean square from ordinary least squares estimation.

The other criterion that represents a prediction approach is the generalized cross
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validation (GCV) that is given by

GCV =

n∑
i=1

e2
i,δ

{n− [1 + tr(Hδ)]}2

=
SSRe s,k

{n− [1 + tr(Hδ)]}2

where the value of 1 in 1 + tr(Hδ) accounts for the fact that the role of the constant is
not involved in Hδ. The use of this procedure is to choose δ so as to minimize GCV by a
simple plotting of GCV against δ.

2.2 Principal Component Regression

The development of Principal Component Regression was done by Massy [6] to handle the
problem of multicollinearity by eliminating model instability and reducing the variances of
the regression coefficients. Farebrother [7] stated that the Principal Component Regression
performs the Principal Component Analysis on the explanatory variables and then runs
a regression using the principal component scores as the explanatory variables with the
response variable of interest.

In the first step, one computes principal components which are linear combinations of
the explanatory variables while in the second step, the response variable is regressed to the
selected principal components. Combining both steps in a single method will maximize the
relation to the response variable (Filzmoser and Croux [8]).

Principal components are orthogonal to each other, so that it becomes quite easy to
attribute a specific amount of variance to each. Assuming the predictors are in a stan-
dard form, V denotes the orthogonal matrix of eigenvectors of the correlation matrix, and
Z = XV , where the variables are defined by the columns of Z, that are the principal
components (Hocking [9]).

The matrix of normalized eigenvectors considered are associated with the eigenvalues
λ1, λ2, ..., λk of X∗′X∗ (correlation form). V V ′ = I since V is an orthogonal matrix.
Hence, the original regression model are written in the form

y = β01 + X∗V V ′β + ε

y = β01 + Zα + ε (1)

where Z = X∗V with Z an n × k matrix, and α = V ′β with α a k × 1 vector of new
coefficients α1, α2, . . . , αk.

The columns of Z (typical element zij) can be visualized as representing readings on k
new variables, called principal components. The components are orthogonal to each other
as follows

Z′Z = (X∗V )′(X∗V )

= V ′X∗′X∗V

= diag(λ1, λ2, ..., λk)
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By performing the regression on the Z’s via the model in Eq. (1) the variables of the
coefficients, that is the diagonal elements of (Z′Z)−1 apart from σ2 are the reciprocals of
eigenvalues. Thus,

V ar(α̂j)
σ2

=
1
λj

j = 1, 2, ..., k

Note that, the α̂’s are least squares estimators. An elimination of at least one principal
component, that is associated with the small eigenvalue, may substantially reduce the total
variance in the model and thus produce an appreciably improved prediction equation [5].

According to Hwang and Nettleton [10], there are a few methods for using the principal
components. One popular method is to use the principal components corresponding to
the k largest eigenvalues. Xie and Kalivas [11] agreed that principal component regression
is widely used for analytical calibration and in most application of PCR, the principal
components are included in regression models in sequence according to respective variances.
The problem of this approach is that the magnitude of the eigenvalue depends on X only
and has nothing to do with the response variable.

2.3 Partial Least Squares Regression

Partial least squares (PLS) is a method for modeling relationships between a Y variable
and other explanatory variables (Garthwaite [12]). This method was first developed by
Wold [13]. An extension of this method is the SIMPLS method which was proposed by De
Jong [14]. The SIMPLS algorithm is the leading PLSR algorithm because of its speed and
efficiency. SIMPLS is based on the empirical cross-variance matrix between the response
variables and the regressors. This is based on linear least squares regression.

The goal of PLS regression is to predict Y from X and to describe their common structure
when X is likely to be singular and the regression approach is no longer possible to be
used because of multicollinearity problem. PLSR is also used to calculate the relationship
between two matrices (Boeris et al. [15]).

This method is similar to Principal Component Regression because components are first
extracted before being regressed to predict Y . However in contrast, PLS regression searches
for a set of components called latent vectors, factors or components from X that are also
relevant for Y that performs a simultaneous decomposition of X and Y with the constraint
that these components explain as much as possible of the covariance between X and Y
(Abdi [16]).

This step generalizes Principal Component Analysis (PCA) and it is followed by a
regression step where the decompositions of X is used to predict Y . In other words,
it combines features from PCA and multiple linear regression (MLR), and the sample
correlation for any pair of components is 0.

The SIMPLS method assumes that the x and y variables are related through a bilinear
model

xi = x̄ + P t̃i + gi

yi = ȳ + A′t̃i + fi

where, x̄ and ȳ denote the means of the x and y variables. The t̃i are called the scores which
are k-dimensional, with k ≤ p, where P = P p,k is the matrix of x-loadings. The residuals
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of each equation are represented by the gi and fi respectively. The matrix A = Ak,q

represents the slope matrix in the regression of yi on t̃i.
The elements of the scores t̃i are defined as a linear combination of the mean-centered

data, t̃ia = x̃′ira or equivalently T̃n,k = X̃n,pRp,k with Rp,k = (r1, ..., rk). The SIMPLS
weight vectors are in the pair of (ra,qa). The first pair of (r1,q1) is thus obtained as the
first left and right singular vector of Sxy. This implies that q1 is the dominant eigenvector
of SyxSxy and is the dominant eigenvector of SxySyx (with Syx = S′

yx). The following
pairs of SIMPLS weight vectors (ra,qa) where 2 ≤ a ≤ k are obtained as the dominant
eigenvectors of Sa

xySa
yx and Sa

yxSa
xy respectively where Sa

xy is the deflated cross-covariance
matrix

Sa
xy = Sa−1

xy − va(v′
aSa−1

xy ) = (Ip − vav′
a)Sa−1

xy

and S1
xy = Sxy. The {v1, . . . , va−1} represents an orthonormal basis of the x-loadings

{p1, ..., pa−1}. Thus, the iterative algorithm starts with Sxy = S1
xy and the process is

repeated until k components are obtained.
The optimal number of components is often selected as that k for which this RMSE

value is minimal. The Root Mean Squared Error (RMSE) defined as

RMSEk =

√√√√ 1
n

n∑
i=1

(yi − ŷi,k)2

with, ŷi,k the predicted y-value of observation i from the test set when the regression
parameter estimates are based on the training set (X, Y ) of size n and k scores are retained.
For the second stage of the algorithm, the responses are regressed onto these k components
and the following formal regression model is considered:

yi = α0 + A′
q,k t̃i + fi

where E(fi) = 0 and Cov(fi) = Σf where multiple linear regression (MLR) is performed on
the extracted components T1, T2, ..., Tk of the original y-variables. Multiple linear regression
provides estimates

Âk,q = (St)−1Sty = (R′
k,pSxR′

p,k)
−1R′

k,pSxy

α̂0 = ȳ − Â′
q,k̄̃t

Sf = Sy − Â′
q,kStÂk,q

where Sy and St stand for the empirical covariance matrix of the y-variables and t-variables.
Because¯̃t = 0, the intercept α0 is thus estimated by ȳ. By plugging in t̃i = R′

k,p(xi − x̄)
in the equation yi = ȳ + A′

q,kt̃i + f , the estimates for the parameters in the original
model yi = β0 + B′

q,pxi + ei are obtained. These are

B̂p,q = Rp,kÂk,q

β̂0 = ȳ − B̂′
q,px̄

Note that for a univariate response variable (q = 1), the parameter estimate B̂p,1 can
be rewritten as the vector β̂ ([12], [14] and [17]).
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3 Experimental Study

We will compare the efficiency of RR, PCR and PLSR by performing a simulation study
on simulated data sets. However, emphasis is on the parameter estimation and not on the
predictive performance of the methods. The experiments described in this section consider
only univariate responses (q = 1). Consider the regression model

yi = β0 + B′
1,pxi + ei

with B′
1,p = (β1, . . . , βp)′. The regression vector including the intercept is denoted as

β = (β0, β1, . . . , βp)′.

3.1 Comparing the Performances

The efficiency of the considered methods is evaluated by means of the MSE of the estimated
regression paramaters β̂. It is defined by

MSE(β̂) =
1
m

m∑
l=1

∥∥∥β̂(l) − β
∥∥∥2

where β̂(l) denotes the estimated parameter in the l-th simulation. The MSE indicates to
what extent the slope and intercept are correctly estimated. Therefore, the goal is to obtain
an MSE value close to zero.

3.2 Simulation Settings

For the purpose of comparing the three methods for handling multicollinearity problem,
simulated data sets were used in this study. These data consist of p = 2, 4, 6 and 50
predictors variables for n = 20, 30, 40, 60, 80 and 100. The goal was to develop a linear
equation that relates all the predictor variables to a response variables. The data was
analyzed using RR, PCR and SIMPLS and the analysis was done using S-Plus software.

The data were constructed as follows

x1 = N(0, 1)
xp−1 = N(0, 0.1) + x1

Y = x1 + ... + xp + N(0, 1)

where p = 2, 4, 6 and 50 that represent low, medium (4 and 6) and high number of cases.
For each situation, m = 100 data sets were generated.

3.3 Simulation Results

To determine whether multicollinearity exists or not, variance inflation factor (VIF) for
each predictor for all given cases are computed. VIF is the measure of the speed with
which variances and covariances increase and it is the most commonly used method for
detecting multicollinearity problem. VIF is a measure of multicollinearity in a regression
design matrix (that is, independent variables) in a scaled version of the multiple correlation
coefficient between the independent variable, and the rest of the dependent variables. The
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measure shows the number of times the variances of the corresponding parameter estimate
is increased due to multicollinearity as compared to as what it would be if there were
no multicollinearity. Therefore, this diagnostic is designed to indicate the strength of the
linear dependencies and how much the variances of each regression coefficient is inflated
above ideal [5]. The formula is

(V IF )j =
1

1−R2
j

where R2
j is the multiple correlation coefficient and measures the coefficient of correlation

between two variables with −1 < Rj < 1.
There is no formal cutoff value to use with the VIF for determining the presence of

multicollinearity but Neter et al. [3] recommended looking at the largest VIF value. A
value greater than 10 is often used as an indication of potential multicollinearity problem.

The VIF values for each predictor for all given cases in this study are greater than 50.
This shows that all the regression coefficients b1, . . . , bp appear to be affected by collinear-
ity. The efficiency test of the considered methods is evaluated by means of the estimated
regression parameters β̂. These values indicates to what extent the slope and intercept are
correctly estimated. According to Engelen et al. [18], an MSE value close to zero indicates
that the slope and intercept are correctly estimated. The results of the simulations are
listed in Tables 1 – 4.

Table 1: The efficiency tests for low-number of regressors data sets, p = 2.

n 20 30 40 60 80 100
RR 4.5158 4.0621 2.2457 1.3620 0.9296 0.7523
PCR 15.3422 8.6804 5.4349 4.5474 2.2499 2.2356
PLSR 15.2835 8.6362 5.4018 4.5244 2.2354 2.2250

Table 2: The efficiency tests for medium-number of regressors data sets, p = 4.

n 20 30 40 60 80 100
RR 24.06891 13.46989 9.30244 6.27415 5.36279 3.50251
PCR 25.14823 17.46042 12.11719 8.89374 6.15083 4.86143
PLSR 2.62392 1.39834 0.91491 0.49154 0.17670 0.12939

From Table 1 where p = 2 and the specified n observations, Ridge Regression performed
best compared to the other two methods which gives MSE= 4.52 for n = 20 and MSE= 0.75
for n = 100, followed by PLS regression with MSE= 15.28 for n = 20 and MSE= 2.23 for
n = 100, and PC regression with MSE= 15.34 for n = 20 and MSE= 2.24 for n = 100,
respectively. The Ridge Regression method is considered the best since it has the lowest
MSE values for all specified n observations and the differences from the other two methods
are quite big. On the other hand, there is a slight difference in the MSE for PLS and PC
regressions which are chosen at kopt = 1. The results are consistent for each n specified
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Table 3: The efficiency tests for medium-number of regressors data sets, p = 6.

n 20 30 40 60 80 100
RR 53.36859 26.6182 21.92014 13.13541 9.20576 6.37893
PCR 65.70394 28.93769 21.59502 13.69208 10.31598 7.130633
PLSR 5.35992 2.11927 0.68219 0.37051 0.17128 0.13095

Table 4: The efficiency tests for high-number of regressors data sets, p = 50.

n 60 80 100
RR 13.13541 9.20576 6.37893
PCR 13.69208 10.31598 7.130633
PLSR 0.37051 0.17128 0.13095

cases. These results showed that for a low number of regressor, p = 2, MSE decreases as
the number of observations increases.

PLS regression performed better than Ridge Regression and PC regression when the
components are chosen at the optimal kopt = 3 for p = 4 and the specified n observations
(Table 2). The MSE values for PLS regression differ a lot from the other two methods
where MSE= 2.62 for n = 20 and MSE= 0.13 for n = 100, MSE= 24.07 for n = 20 and
MSE= 3.50 for n = 100 for RR and MSE= 25.15 for n = 20 and MSE= 4.86 for n = 100 for
PC regression, respectively. The optimal number of components for PLS and PC regression
should be chosen at the smallest MSE [18]. These show that both methods performed well
with optimal number of components in handling multicolinearity for p = 4 regressors.

PLS performed best followed by Ridge Regression and PC regression when the com-
ponents for both PLS and PC regressions are chosen at the optimal kopt = 4 for p = 6
and the specified n observations (Table 3). The MSE values for PLS are 5.36 for n = 20
and 0.13 for n = 100, while for RR, the MSE values for the same n values are 53.37 and
6.38, respectively, and for PC, the MSE values are 65.70 and 7.13. The results also show
that MSE values decrease as n increases from 20 to 100. This shows that, as the num-
ber of observations becomes higher, the MSE values become smaller compared to a small
number of observations. The results are also consistent where PLS performed better than
RR followed by PC regression for every specified number of observations.

Ridge Regression performs best followed by PLS and PC respectively when the number
of regressors is high, p = 50 (Table 4). RR gives MSE values of 1.41, 0.94 and 0.74 for
n = 60, 80 and 100, respectively, followed by PLS which gives MSE values of 1.92, 1.19 and
0.81 and PC which gives MSE values of 9.35, 9.211 and 9.32.

4 Conclusions

In this paper, the number of dimensions is less than the number of cases. From the tables,
it appears that RR and PLSR methods are generally effective in handling multicollinearity
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problems in the specified cases with p = 2, 4, 6 (for low and moderate number of regressors)
and 50 (for high number of regressors). The performances of RR are most efficient than
others when p = 2 and p = 50, while PLSR is most efficient when p = 4 and p = 6.

The results also show that both PLSR and RR performed better than PCR in all the
cases. However, the differences between the PCR performance from PLSR and RR are only
slight. These confirmed Rougoor et. al.’s [19] findings that there is no one method that
dominates the other, and that the difference between the methods is typically small when
the number of observations is large.

In all the cases, it shows that the superior method performed well when the number of
observations, n are larger than the number of regressors. It also shows that the results
are consistent for every specified number of observations, n that were included in the
analysis. Generally, RR is approximately effective and efficient for a small and high number
of regressors.
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