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Abstract This paper describes the development of a 4-point diagonally implicit block
method for solving first order Ordinary Differential Equations (ODEs) using variable
step size. This method will estimate the solutions of Initial Value Problems (IVPs)
at four points simultaneously. The method developed is suitable for the numerical
integration of non stiff and mildly stiff differential systems. The performances of the
4-point block method are compared in terms of maximum error and total number of
steps to the non block method 1PVSO.
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1 Introduction

Block method for numerical solution had been proposed by several researchers such as
Rosser [8], Shampine and Watts [9], Worland [12], Chu and Hamilton [3] and Omar [7]. A
block method will computes simultaneously the solution values at several distinct points on
the x-axis in the block.

The present codes of changing the step size with multistep method involved tedious
computations of divided difference and recurrence relation in computing the integration
coefficients. (See Omar [7] and Suleiman [11] for detail). In this paper, we are interested in
the numerical integration of IVPs of the form

y′ = f(x, y), y(a) = y0 a ≤ x ≤ b. (1)

There are many existing methods for solving the ODEs as in (1) but those methods will
only approximate the numerical solutions at one point sequentially. Therefore we need a
faster method that can give faster solution to the problem. The aim of this paper is to
introduce the 4-point block code in Majid [6] presented as in the simple form of Adams
Moulton Method for solving (1) using variable step size. The method will avoid using the
divided difference and integration coefficients that can be very costly. Hence, the codes will
store all the coefficients of the formulae.
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2 4-Point Diagonally Implicit Block Formulae

In Figure 1, the interval [a, b] is divided into a series of blocks with each block containing 4
steps for the 4-point block method. The solutions of yn+1, yn+2, yn+3 and yn+4 at the points
xn+1, xn+2, xn+3 and xn+4 respectively with step size h were approximated simultaneously
in a block using the five back values at the points xn, xn−1, xn−2, xn−3 and xn−4 of the
previous block with step size rh. The method will compute four points concurrently using
one earlier block that has four steps in the block. The method is called diagonally implicit
because the coefficients of the upper triangular matrix entries are zero.

The formulae of the 4-point 1 block diagonally implicit method were derived using La-
grange interpolation polynomial. The interpolation points involved for yn+1 are
(xn−4, fn−4), ..., (xn+1, fn+1). The first point yn+1 will be derive by integrating (1) and
therefore gives

xn+1∫

xn

y′dx =

xn+1∫

xn

f (x, y) dx

which is equivalent to

y (xn+1) = y (xn) +

xn+1∫

xn

f (x, y) dx. (2)

The function f(x, y) in (2) will be replaced by the Lagrange polynomial which interpolates at
the set of points {xn−4, xn−3, xn−2,xn−1, xn, xn+1}. The procedure is by taking s = x−xn+1

h ;
replacing dx = h ds and changing the limit of integration from -1 to 0 in (2). Evaluating
the integrals using MAPLE, refer to Char et al. [2] will gives the formula of the first point
in terms of r as follows,

First point:

y (xn+1)

= y (xn) + h

[
(4r + 1)

(
9r2 + 8r + 2

)

12 (3r + 1) (2r + 1) (r + 1)
fn+1 +

(
2 + 30r + 175r2 + 500r3 + 720r4

)

1440r4
fn

− (6r + 1)
(
2 + 15r + 40r2

)

360r4 (r + 1)
fn−1 +

(
2 + 24r + 95r2 + 120r3

)

240r4 (2r + 1)
fn−2−

(
2 + 21r + 70r2 + 80r3

)

360r4 (3r + 1)
fn−3 +

(
15r2 + 10r + 2

)

1440r4
fn−4

]
(3)
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Now taking xn+2 = xn +2h and integrating f in (2) from xn to xn+2. The interpolation
points involved for the second point yn+2 are (xn−4, fn−4) , ..., (xn+2, fn+2). The process is
the same as the derivation of the first point. Evaluating the integrals using MAPLE gives
the formula of the second point,

Second point:

y (xn+2)

= y (xn) + h

[(
224r + 441r2 + 40 + 84r4 + 350r3

)

42 (2r + 1) (3r + 2) (r + 1) (r + 2)
fn+2

+
8

(
8 + 56r + 147r2 + 175r3 + 84r4

)

21 (4r + 1) (3r + 1) (2r + 1) (r + 1)
fn+1 +

(−140r − 245r2 + 420r4 − 24
)

1260r4
fn

+
4

(
12 + 63r + 91r2

)

315r4 (r + 1) (r + 2)
fn−1 −

(
24 + 112r + 133r2

)

210r4 (2r + 1) (r + 1)
fn−2 +

4 (7r + 4) (7r + 3)
315r4 (3r + 1) (3r + 2)

fn−3

−
(
24 + 84r + 77r2

)

1260r4 (4r + 1) (2r + 1)
fn−4

]
. (4)

The third point yn+3 and the fourth point yn+4 will be derived similarly as the process
above. The interpolation points involved for yn+3 and yn+4 are (xn−4, fn−4) , ..., (xn+3, fn+3)
and (xn−4, fn−4) , ..., (xn+4, fn+4) respectively. Both points can be obtained by integrating
(2) over the interval [xn, xn+3] and [xn, xn+4] respectively using MAPLE and the following
corrector formulae of yn+3 and yn+4 in terms of r can be obtained:-

Third point:

y (xn+3)

= y (xn) + h

[(
261 + 588r + 392r2 + 84r3

)

112 (r + 1) (2r + 3) (r + 3)
fn+3

+
27

(
135 + 576r + 882r2 + 560r3 + 112r4

)

448 (2r + 1) (3r + 2) (r + 1) (r + 2)
fn+2

− 9
(
297 + 1080r + 1470r2 + 1400r3 + 1680r4

)

560 (r + 1) (2r + 1) (3r + 1) (4r + 1)
fn+1

+

(
297 + 1080r + 1470r2 + 1400r3 + 1680r4

)

4480r4
fn

− 9 (2r + 1)
(
99 + 126r + 112r2

)

560r4 (r + 1) (r + 2) (r + 3)
fn−1 +

27
(
99 + 288r + 266r2 + 112r3

)

2240r4 (2r + 1) (r + 1) (2r + 3)
fn−2

−
(
297 + 756r + 588r2 + 224r3

)

560r3 (3r + 1) (3r + 2) (r + 1)
fn−3 +

9
(
33 + 28r + 14r2

)

4480r4 (2r + 1) (4r + 1)
fn−4

]
. (5)
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Fourth point:

y (xn+4) = y (xn) + h

[
2

(
4000 + 10560r + 9765r2 + 3675r3 + 441r4

)

945 (r + 1) (3r + 4) (r + 2) (r + 4)
fn+4

+
128

(
160 + 480r + 510r2 + 225r3 + 36r4

)

405 (r + 1) (2r + 3) (r + 3) (4r + 3)
fn+3

+
8

(−320− 480r + 210r2 + 525r3 + 126r4
)

315 (r + 1) (3r + 2) (r + 2)
fn+2

+
128

(
160 + 480r + 630r2 + 525r3 + 252r4

)

945 (r + 1) (2r + 1) (3r + 1) (4r + 1)
fn+1 +

2
(−224− 600r − 525r2 + 441r4

)

2835r4
fn

+
128

(
112 + 270r + 195r2

)

945r4 (r + 1) (r + 2) (r + 3) (r + 4)
fn−1 −

8
(
224 + 480r + 285r2

)

315r4 (2r + 1) (r + 1) (2r + 3) (r + 2)
fn−2

+
128

(
16 + 30r + 15r2

)

405r4 (3r + 1) (3r + 2) (r + 1) (3r + 4)
fn−3

− 2
(
224 + 360r + 165r2

)

945r4 (4r + 1) (2r + 1) (r + 1) (4r + 3) (r + 1)
fn−4

]
. (6)

The predictor formulae were derived similarly and the order is one less. The step size
strategy in the code is a modified version of Shampine and Gordon [10]. The choices for the
next step size will be restricted to half, double or the same as the current step size. The
successful step size will be allowed to double the step size at most two blocks or remain
constant for at least two blocks.

In the code developed, when the next successful step size is doubled, the ratio r is 0.5
and if the next successful step size remain constant, r is 1. In case of step size failure, r is
2. Taking r = 1, 2 and 0.5 in (2), (3), (4) and (5) will produce the first, second, third and
fourth points of the corrector formulae for the 4-point 1 block diagonally implicit method.

3 Absolute Stability

For a method to be of practical importance it must have a region of absolute stability which
will ensure that the method will be able to solve at least for the mildly stiff problems. Here
we will discussed the absolute stability of the 4-point 1 block diagonally implicit method
(4P1DI) derived earlier using a linear first order test problem,

y′ = f = λy (7)

The stability region is investigated when the step size is constant, doubled and halved for
the method. The test equation (7) is substituted into the corrector formulae of the block
method. Setting the determinant of the corrector formulae written in matrix form to zero
will give the stability polynomial. The stability polynomial of the 4-point 1 block diagonally
implicit method at r = 1, 2, 0.5 are as follows,
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For r = 1 we have,

Q1

(
h
)

= t8
(
1− 2201909

1814400h + 30273877343
54867456000h

2 − 308040964291
2765319782400h

3
+ 4660151299

553063956480h
4
)

+

t7
(
−1− 173959

129600h− 27785856419
3657830400 h

2
+ 12214000212727

8641624320000 h
3 − 1489558174942897

345664972800000 h
4
)

+

t6
(

524053
362880h− 94997600323

54867456000h
2 − 9280464283337

11522165760000h
3

+ 18567284336021
19203609600000h

4
)

+

t5
(
− 1606484099

10973491200h
2 − 883848736217

4320812160000h
3 − 15713664812651

172832486400000h
4
)

+

t4
(
− 7006548641

9876142080000h
3 − 30541773371

49380710400000h
4
)

+ 12041501
115221657600000h

4
t3 = 0

(8)

For r = 2 we have,

Q2

(
h
)

= t8
(
1− 390389

297675h + 5141883893
8001504000h

2 − 11718654239
84015792000h

3
+ 49307639719

4356374400000h
4
)

+

t7
(
−1− 5142030287

2011806720h− 13917162413647
3621252096000 h

2 − 102092874793689167
55894026101760000 h

3 − 890091753032073749
479091652300800000h

4
)

+

t6
(
− 200888867

1437004800h− 33176068161349
304185176064000h

2
+ 1853940061285363

42926612046151680h
3

+ 14185005483525081361
160974795173068800000

)
+

t5
(
− 38171926871

12167407042560h
2 − 20527852145506099

7154435341025280000h
3 − 65818261516994621

91985597241753600000h
4
)

+

t4
(
− 244509809187731

21463306023075840000h
3 − 4534234387582093

643899180692275200000h
4
)
− 297160486963

643899180692275200000h
4
t3 = 0

(9)
Finally, for r = 0.5 we have,

Q3

(
h
)

= t8
(
1− 351373483

314344800h + 288670408457
616115808000h

2 − 1355129070299
15526118361600h

3
+ 21513951671

3528663264000h
4
)

+

t7
(
−1 + 4886737

352800 h− 224869887833089
5545042272000 h

2
+ 8908191874265417

317579693760000 h
3 − 394216564731636641

26200324735200000 h
4
)

+

t6
(
− 164377762

9823275 h− 2179871724829
115521714000 h

2 − 4188043185673
108301606875 h

3
+ 2325175906995547

145557359640000 h
4
)

+

t5
(
− 32028975326

3094331625 h
2 − 119275461129926

6823001233125 h
3 − 43616723698406

4093800739875 h
4
)

+

t4
(
− 227946967904

758111248125h
3 − 674614306972

2274333744375h
4
)

+ 42830214016
102345018496875h

4
t3 = 0

(10)
where h = hλ and the stability regions are shown in Figure 2, 3 and 4 respectively.

The stability region is inside the boundary of the dotted points. The stability region is
larger when the step size is half (r = 2) compared to the step size being double (r = 0.5) or
constant (r = 1). This is expected because the region should get larger with smaller step
sizes. The smallest stability region is when the step size being double for the method.

4 Numerical Results

In order to study the efficiency of the new method, we present some numerical experiments
for the following problems:
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Problem 1: Negative exponential problem. (Mildly stiff)
y′1 = −0.5y1,
y1 (0) = 1,
x ∈ [0, 20]
Exact Solution: y1(x) = e−0.5x

Source: Burden [1]

Problem 2: Nonlinear Krogh’s problem (Non stiff)
y′i = −βiyi + y2

i i = 1, 2, 3, 4 yi(0) = −1, x ∈ [0, 20],
β1 = 0.2, β2 = 0.2, β3 = 0.3, β4 = 0.4

Exact Solution: yi (x) =
βi

1 + cieβix
, ci = − (1 + βi)

Source: Johnson and Barney [5]

Problem 3: A two-body orbit problem (Mildly stiff)
y′1 = y3, y′2 = y4, y′3 = −y1

r3
, y′4 = −y2

r3
, r =

√
y2
1 + y2

2 , x ∈ [0, 20]

y1 (0) = 1, y2 (0) = 0, y3 (0) = 0, y4 (0) = 1,
Exact Solution: y1 (x) = cos x, y2 (x) = sin x, y3 (x) = − sin x,
y4 (x) = cosx.
Source: Hairer, et al. [4]

The following notations are used in the tables:
TOL Tolerance
MTD Method employed
TS Total steps taken
FS Total failure steps
MAXE Magnitude of the maximum error of the computed solution
RSTEP The ratio steps of 4P1DI compared to 1PVSO
1PVSO Implementation of the 1-point implicit method (non block) using

variable step and order in Omar [7]
4P1DI Implementation of the 4 point 1 block diagonally implicit

method using variable step size
The errors calculated are defined as

(ei)t =
∣∣∣∣
(yi)t − (y (xi))t

A + B (y (xi))t

∣∣∣∣
where (y)t is the t- th component of the approximate y. A = 1, B = 0 corresponds to
the absolute error test, A = 1, B = 1 corresponds to the mixed test and finally A = 0,
B = 1 corresponds to the relative error test. The mixed error test is used for all the above
problems.

The maximum error is defined as follows:-

MAXE = max
1≤i≤SSTEP

(
max

1≤i≤N
(Ei)t

)

where N is the number of equations in the system and SSTEP is the number of successful
steps. In the code, we iterate the corrector to convergence. The convergence test employed
were
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∥∥∥y
(s+1)
n+4 − y

(s)
n+4

∥∥∥ < 0.1× TOL

and s is the number of iterations. The error controls for the code was at the fourth point
in the block because in general it had given us better results.

The codes were written in C language and executed on DYNIX/ptx operating system.
The results for the three given problems when solved using the 1PVSO and 4P1DI are
presented in the tables below.
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From Table 1 through 3, it is observed that the method 4P1DI required less number of
steps compared to the method 1PVSO when solving the same given problems. These results
are expected since the four point block method would approximate the solutions at four
points simultaneously. The ratios of steps (RSTEP) are greater than one show that 4P1DI
is efficient compared to 1PVSO. In fact, in most cases the ratios are greater than three,
which indicates a clear advantage of method 4P1DI over 1PVSO. In terms of maximum
error, method 4P1DI is comparable or better compared to 1PVSO.

5 Conclusion

In this paper, we have shown the efficiency of the developed 4-point block method presented
as in the simple form of Adams Moulton Method using variable step size is suitable for
solving ODEs. The method has shown the superiority in terms of total steps and maximum
error over the non block method 1PVSO.
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