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Abstract A basic model for a supply chain in which a vendor supplies a product to a
buyer is considered. The vendor manufactures the product at a finite rate and periodi-
cally ships the output to the buyer. The buyer then consumes the product at a linearly
decreasing time-varying rate. Costs are attached to manufacturing batch set up, the
delivery of a shipment and stockholding at the vendor and buyer. The objective is to
determine the shipment policy which minimises the total cost, assuming the vendor
and buyer collaborate and find a way of sharing the consequent benefits. How the op-
timal shipment policy may be derived when the shipments size and shipments interval
are identical is shown. These procedures are illustrated with numerical examples.
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1 Introduction

Much attention has been paid in recent years to manage supply chains. Over the years
mathematical models have been developed to describe the behaviour of such integrated
systems and to determine optimal control policies. Because such systems are complex
much of this research has concentrated on deterministic models with fixed demand rate.
The hope and expectation is that these models provide some degree of qualitative insight
into the behaviour of more complex real-world problems, which generally involves levels of
uncertainty.

Goyal [2] was probably one of the first papers to investigate the integrated single-supplier
single-customer problem. Bannerjee [1] considered the vendor manufacturing for stock at
a finite rate and delivering the whole batch to the buyer as a single shipment - a ‘lot for
lot” model. Goyal [3] demonstrated how lower-cost policies generally result from allowing
a production batch to be split and delivered as a number of shipments. Lu [6] set out
the optimal production and shipment policy when the shipment sizes are all equal. Goyal
[4] demonstrated how lower cost policies sometimes result when successive shipment sizes
increase by a ratio which is equal to production rate divided by the demand rate. Hill
[5] derived the form of the optimal policy if shipment sizes may vary. This consists of a
number of shipments which increase by the ratio used in Goyal [4] followed by a number of
equal-sized shipments.
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A common assumption that has been made is that the demand rate at the buyer is fixed
over an infinite horizon. The basic model considered here consists of a single vendor who
manufactures for stock in the last batch and then transfers the stock to a single customer
as a number of shipments. The buyer has to satisfy from stock a linearly decreasing and
continuous demand process for a finite horizon. There are costs associated with batch
set-up, delivering a shipment, and holding stock at either the vendor or the buyer. The
objective is to determine the shipment policy which minimises the total system cost.

At time 0 the vendor is about to manufacture the last batch at rate P. The size of batch
Q@ will be exactly what is required to meet all remaining demand. At time 0 the buyer holds
a quantity x in stock; z could be the amount at the beginning of the previous production
cycle based on a fixed shipment size policy or based on a variable shipment size policy or it
could just be an arbitrary amount of stock which we are considering in this paper.

The problem is to find the optimal number of shipments and the sizes of those shipments.
The shipments size could be all the same size but not evenly spaced in time or they could
be evenly spaced in time but not equal in size or they could be arbitrarily spaced in time
or arbitrarily size. In this paper we consider the first two cases.

In Section 2 we develop the mathematical formulation of the models. In Section 3 we
look at numerical examples and draw some conclusions in Section 4.

2 Mathematical Formulation

In this section a general cost model will be developed.

2.1 Definitions and Assumptions

To develop the model, the following terminology is used:

e The demand rate of finished product at time t is f(¢t) = a — bt for t € (0,H). H is
the time horizon.

e The finite production rate is P units per unit time and P > f(t).
e There is a fixed production set-up cost of A;.
e There is a fixed order/shipment cost of As.

e There is a carrying inventory cost for vendor of iy per unit per unit time for finished
product.

e There is a carrying inventory cost for buyer of he per unit per unit time.
e 7 is the number of shipments.
e ¢; is the size of the ith shipment in a batch production run.

e 1 is the initial stock in the system when the production of the last batch starts.

C is the total cost for the system.
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2.2 Total Time-weighted on System Stock

In Figure 1 the stock level, y; at time ¢ in (¢,, H) is ftH ftydt(= fOH ft)dt — fot f(t)dt)
and y2 in (0,t,) is Pt +x — fg f(t)dt where t, is the production up time. We also have

Pt, +x = fOH f(t)dt and so t, = (D — x). The total time-weighted system stock (see
Omar & Smith [7]) , T'SS, is

t H
P 1 ; 1 1
TSS = /0 yo(t)dt +/t yi (t)dt = 6bHd - inzt,, + at, + 5Ptp?. (1)
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Figure 1: Plot of inventory against time

2.3 Total Time-weighted Buyer Stock

The size of the i—shipment is ¢; = fttf"“ f(t)dt. Then the general total buyer stock from
the i—shipment is

i b o 2 a2 2
[a(tivs =) = 5t =)t = atipa(tiys —t) — 5 (80 — 1)
t
b

2

i

b
ot — t) + g(t?ﬂ — 7).

It follows that the total buyer stock from n—shipments, TB.S, is

n—1 n—1

a b - b, . .
TBS = GZ(t?H = titiy1) — §(H2 — ) - 5 Z(tfﬂ —titi) + G(HS —t1). (2

i=1 i=1
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Case 1: All the shipments size are the same after the first shipment

If = is a stock level at the buyer when the production is about to start, then
t, = %(a — +v/a? — 2bx). In this case we assume that the first shipment size is pt; which is
delivered at time ¢; to consume until time ¢5 where

b
a(ty —t1) — 5@3 —-1) = a,

a—y/a® —2b(aty — 3bt2 + q1)

ty = - . (3)

The total demand in the planning horizon is D = aH — bH /2. However, the production
size, @, for this policy is D — x. Then the total remaining demand, @Q,, after the first
shipment is @ — ¢q1. It follows

b
a(tiyr —ti) — i(t?ﬂ —t7) =

Then the remaining shipment times are

a— \/a2 — 2b(at; — 5bt? + (Qr/n — 1))
fipr = - . i=23. . (4)

n—1’

In equation (4), we assume P(t;11—t;) > Q,/n—1, that is, we have enough time to produce
the shipment size of @, /n — 1. Subtituting all values of ¢ in equation (2) will give the total
time-weighted buyer stock for this policy. Then a general total cost for the system is

C=A1+nAy+hTSS+ (hg — hl)TBS (5)
Case 2: All the time intervals between shipments are the same after the first
shipment

In this case the values of t1,q; and ty are the same as in the Case 1. The intervals of
shipments are identical after to, then the remaining shipment times for this policy are

T .
n2—1’ i=1,2,.n—1, (6)

tiyo =12+

where T,, = H — t».
Similarly, subtituting (6) in equation (2) will give the total time-weighted buyer stock
for this policy and a general total cost for the system is given by (5).

3 Numerical Illustration

To demonstrate the effectiveness of these models, we present numerical examples. For these
examples, f(t) = 100 — bt for ¢t € (0,5). The other parameters are Ay = 400, Ay = 25, hy =
4,hs =5 and P = 1000. The initial stock level, x, varies from 2 to 15.

Table 1 gives the optimal result for the Cases 1 and 2 when z = 15. The minimum cost
for the Case 1 is 2215.35 when n = 3. The shipments size for this policy are 152.32, 41.34
and 41.34. Similarly, the minimum cost for the Case 2 is 2220.45 with the shipment sizes
152.32, 62.01 and 20.67. Table 2 gives the minimum total cost for both cases when x takes
values from 2 to 12. Based on our numerical results, the model of Case 1 is always superior
to the model of Case 2.
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Table 1: Comparison between models of Case 1 and Case 2 when z = 15

’ \ Model for Case 1 \ Model for Case 2 ‘

TBS Cost TBS Cost
218.95 2225.17 | 218.95 2225.17
184.14 2215.35* | 189.24 2220.45*
170.92 2227.13 | 174.93 2231.14
163.87 2245.08 | 166.95 2248.16
159.46 2265.67 161.90 2268.11
156.43 2287.65 | 158.42 2289.63
154.22 2310.44 | 155.88 2312.10

0~ O U W NS

Table 2: Comparison between models of Case 1 and Case 2 for different values of x

’ \ Model for Case 1 \ Model for Case 2 ‘

z | n Cost n  Cost

2 |5 2181.34 5 2195.46
4 |5 2174.06 5 2186.17
6 |4 2170.55 5 2182.41
8 |4 2170.44 4 2181.37
10 | 4 2176.97 4 2185.71
12 | 3 2187.91 3 2196.44

4 Conclusion

In this paper we have presented the basic models for a single-vendor who manufactures
stock in the last batch and then transfers to a single-buyer when demand rate is linearly
decreasing with time. We proposed two models with the first shipment size is dependent
on the initial stock level. In our limited numerical examples, the model for Case 1 is always
superior to Case 2.

References

[1] A. Bannerjee, A joint economic lot size model for purchaser and vendor, Decision Sci-
ences, 17(1986), 292-311.

[2] S.K. Goyal, Determination of optimal production quantity for a two-stage production
system, Operational Research Quarterly, 28(1977), 865-870.

[3] S.K. Goyal, A joint economic lot size model for purchaser and vendor: a comment,
Decision Sciences, 19(1988), 236-241.

[4] S.K. Goyal, A one-vendor multi-buyer integrated inventory model: A comment, Euro-
pean Journal of Operational Research, 82(1995), 261-269.



160 Mohd Omar

[5] R.M. Hill, The optimal production and shipment policy for the single-vendor single-buyer
integrated production-inventory model, International Journal of Production Research,
37(1999), 2463-2475. Corrigenda, 2002, 40, 507 and 2003, 41, 1093.

[6] L. Lu, A one-vendor multi-buyer integrated inventory model, European Journal of Op-

erational Research, 81(1995), 312-323.

[7] M. Omar, M., & D.K. Smith, An optimal batch size for a production system under
linearly increasing time-varying demand process, Computer & Industrial Engineering,
42(2002), 35-42.



