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Abstract For integers p, ¢, s with p > ¢ > 2 and s > 0, let K5 *(p, ¢) denote the set
of 2—connected bipartite graphs which can be obtained from K, 4 by deleting a set of
s edges. In this paper, we prove that for any graph G € K5 *(p,q) with p > ¢ > 3 and
1 < s < g — 1, if the number of 3-independent partitions of G is 2P7 4+ 297! 4 5 4 3,
then G is chromatically unique. This result extends the similar theorem by Dong et
al. (Discrete Math. vol. 224 (2000) 107-124).
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1 Introduction

All graphs considered here are simple graphs. For a graph G, let V(G), E(G), §(G),
A(G) and P(G, \) be the vertex set, edge set, minimum degree, maximum degree and the
chromatic polynomial of G, respectively.

Two graphs G and H are said to be chromatically equivalent (or simply x—equivalent),
symbolically G ~ H, if P(G,\) = P(H,\). The equivalence class determined by G under
~ is denoted by [G]. A graph G is chromatically unique (or simply y—unique) if H 2 G
whenever H ~ G, i.e, [G] = {G} up to isomorphism. For a set G of graphs, if [G] C G
for every G € G, then G is said to be xy—closed. For two sets G; and Gs of graphs, if
P(G1,\) # P(Gay, ) for every G1 € G and Ga € G, then G; and Gy are said to be
chromatically disjoint, or simply x—disjoint.

For integers p, ¢, s with p > ¢ > 2 and s > 0, let K=*(p, q) (resp. K5 °(p,q)) denote the
set of connected (resp. 2—connected) bipartite graphs which can be obtained from K, 4 by
deleting a set of s edges.

For a bipartite graph G = (A, B; E) with bipartition A and B and edge set E, let
G' = (A’, B’; E’) be the bipartite graph induced by the edge set £ = {zy | zy ¢ E, x €
A,y € B}, where A’ C Aand B’ C B. We write G’ = K, ; — G, where p = |A| and ¢ = |B|.

In [1], Dong et al. proved the following result.

Theorem 1.1 For integers p, q, s withp > q > 2 and s > 0, K5 °(p, q) is x—closed.
Throughout this paper, we fix the following conditions for p, g and s:

p>q>3 and 1<s<qg—1.
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For a graph G and a positive integer k, a partition { Ay, As,..., A } of V(G) is called a
k-independent partition in G if each A; is a non-empty independent set of G. Let a(G, k)
denote the number of k—independent partitions in G.

For any bipartite graph G = (A, B; E), define

o (G,3) = @G, 3) — (2171 4 2lBI=1 _9),
In [1], the authors found the following sharp bounds for o/(G, 3).
Theorem 1.2 For G € K5%(p,q) withp>¢>3 and0<s<q—1,
s <d(G,3) <2° -1,
where o' (G,3) = s iff A(G') =1 and /(G,3) =2° — 1 iff A(G') = s.

Fort=0,1,2,...,let B(p,q, s, t) denote the set of graphs G € K~*(p, ¢) with ¢/(G, 3) =
s+ t. Thus, K~%(p, q) is partitioned into the following subsets:

B(p7Qasa0)7 B(p7Qa871)7 "'7B(p7Q7Sa2s_5_1)'

Assume that B(p,q,s,t) =0 for t > 25 — s — 1.

Lemma 1.1 (Dong et al. [2]) Forp>qg>3 and0<s<q—1,if0<t <2071 —¢g—1,
then

B(p,q,s,t) € K5°(p, q).

Dong et al. [1] have shown that if G is a 2-connected graph in B(p, ¢, s,0)UB(p, g, s,2° —
s — 1), then G is y—unique. In [2], Dong et al. proved that every 2-connected graph in
B(p,q,s,t) is x—unique for 1 < ¢ < 4. In this paper, we extend this result by examining
the chromatic uniqueness of 2-connected graph in B(p, g, s, 5).

2 Preliminary results and notation
For any graph G of order n, we have (see [3]):
P(G,A) =Y a(GRAN—1)---(A—k+1).
k=1

Thus, we have

Lemma 2.1 If G ~ H, then «(G,k) = a(H, k) fork=1,2,....

By Theorem 1.1,the following two results were obtained in [2].
Theorem 2.1 The set B(p,q,s,t) N K5 °(p,q) is x—closed for all t > 0.

Corollary 2.1 If0 <t <297t —q—1, then B(p,q,s,t) is x—closed.
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Let 3;(G), or simply f3;, denote the number of vertices in G with degree i, n;(G) denote
the number of i-cycles in G and P,, denote the path with n vertices. Then Dong et al. [2]
established the next two results.

Lemma 2.2 For G = (A,B;E) € K~ %(p,q),
(i) if A(G') <2, then o/(G,3) = s+ B2(G') + ny(G');

(it) if A(G') =3, then o/(G,3) > s+ B2(G') + 405(G’) + na(G'), where equality holds iff
|Ng/(u) N Nev (v)| <2 for all u, ve A" oru, ve B';

(iii) o/ (G,3) >28(E) 45 -1 - A(GQ").

For two disjoint graphs H; and Hs, let H; U Hy denote the graph with vertex set
V(H1) UV (Hz) and edge set E(Hy,)U E(Hs). Let kH =HU---UH for k> 1 and let kH

k
be null if £k = 0.

Lemma 2.3 Let G € K~ °(p,q). If &/(G,3) = s+t < s+ 4, then either
(i) each component of G' is a path and 32(G') =t, or
(ZZ) G/ = K1’3 @] (8 - 3)K2

Now for convenient we define the graphs Y;, and Z; as in Figure 1.

Y, : e o o — AR

n vertices

Figure 1: The graphs Y,, and Z;
The following result is an extension of Lemma 2.3.

Lemma 2.4 Let G € K™%(p,q). If &/(G,3) = s+ 5, then either

(i) each component of G’ is a path and B2(G') =5, or

(ZZ) G/ = K1,3 @] P3 U (8 — 5)K2, or

(iii) G' =2 CyU (s —4)Ka, or

(iv) G 2Y;U (S — 4)K2
Proof. Since ¢/(G,3) = s+5, A(G’) < 3 by Lemma 2.2(iii). If A(G’) = 3,by Lemma 2.2(ii),
we have B2(G') = 1, ny(G') = 0 and B3(G’') = 1. Thus G’ =2 K;3U P3 U (s — 5)K» or
G 2Y3U(s—4)Ky. If A(G') =2, we have §3(G’) +n4(G’') = 5 by Lemma 2.2(i), and thus

either G’ contain no cycles or only have one cycle. Hence, when A(G’) = 2, either each
component of G’ is a path, and 32(G’) =5, or G’ =2 Cy U (s — 4) K3, by Lemma 2.2(i). [
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By Lemma 2.4, we establish the following result.

Theorem 2.2 Let G € K~%(p,q) and o/ (G,3) = s+ 5, then

G/G{P7U(S*6)K2, P@UPgU(S*?)KQ, P5UP4U(877)K2,
P5U2P3U(S—8)K2, _P4U3]33U(S—9)‘K'27 2P4UP3U(S—8)K2,
5P3U(S—10)K2, K173UP3U(S—5)K2, C4U(8—4)K2, }/3U(8—4)K2}

where H U (s — i) Ky does not exist if s < i.
For a bipartite graph G = (A, B; F), let
Q(G)={ Q| Q is an independent sets in G with QNA#0,QNB £ }.

For a bipartite graph G = (A, B; E), the number of 4—independent partitions { Ay, A, A3, A4 }
in Gwith A;, CAor A; C Bforalli=1,2,3,41is

@A —1)@!Bl-t 1) + %(3“" —3.2141 1-3) + %(3”?' —3.2181 1 3)
— (211 _9ylBI-t _g) 4 %(3\,4\_1 43181y g
Define
o (G,4) = (G, 4) — { (24171 —2)(21BI=1 —2) 4 %(3'/*'—1 +3I1BI=1) 21,
Observe that for G, H € K~*(p, q),
a(G,4) = a(H,4) iff o(G,4)=d'(H,4).

The following five lemmas (see [2]) will be used to prove our main results.
Lemma 2.5 For G = (A,B;E) € K~*(p,q) with |A] =p and |B| = ¢,

o (G,4) = Z (2v=1-1QNAI 4 ga—1-1QNB| _ 9y 4
QeQ(@)

‘{{Q17Q2} | Q1,Q2 € UG), Q1N Q2 =10}

Lemma 2.6 For a bipartite graph G = (A, B; E), if wvw is a path in G' with dg/(u) = 1
and dgs(v) = 2, then for any k > 2,
a(G, k) = a(G+uv, k) + a(G —{u,v}, k= 1) + (G — {u,v,w}, k — 1).

For a bipartite graph G = (A, B; E), let 8;(G, A) (resp., 8;(G, B)) be the number of
vertices in A (resp., B) with degree i.
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Lemma 2.7 For G € B(p,q, s,t), if each component of G’ is a path, then
Z (2P~ 171QOAL 4 9a—1-1QOBI _ 9)
QReN(G)
=s(2P72 42077 —2) 4 1(2P7F 42972 — 2) 4+ (2P73 4297335 (G", A).
Let p;(G) denote the number of paths P; in G.

Lemma 2.8 For G € B(p, q,s,t), if each component of G' is a path, then

s+t

9 ) — 3t — 3p4(G/) —p5(G/).

{{Q1,Q2} 1 Q1,Q2 € 2G),Q1 N Q2 :(z)}‘ — <
For G € B(p, g, s,t), define

o'(G,4) = d(G,4)— [ $(2P72 42972 —2) 4 (2P + 2972 —2) +

(s+t)(s+t—1)/2—3t]. (1)

Observe that for G, H € B(p,q, s,t),
a"(G,4) =d"(H,4) iff «(G,4)=a(H,4).
Lemma 2.9 For G € B(p,q, s,t), if each component of G’ is a path, then

(G, 4) = (2077 +2777)B2(G", A) = 3pa(G") — ps ().

3 Main result

Dong et al. [1] have shown that any graph G in B(p,q,s,0) U B(p,q,s,2° —s — 1), if G
is 2-connected, is x—unique. In [2], Dong et al. proved that every 2-connected graph in
B(p, q,s,t) is x—unique for 1 < ¢ < 4. In this section, we shall prove that every 2-connected
graph in B(p, g, s,t) is x—unique for ¢t = 5.

Our main result is Theorem 3.1.

Theorem 3.1 Let p, q and s be integers with p > q¢ > 3 and 0 < s < g — 1. For every
G € B(p,q,s,5), if G is 2-connected, then G is x—unique.

Proof. By Theorem 2.1, B(p,q,s,t) N K3%(p,q) is x—closed for all ¢ > 0. Hence, to
show that every 2-connected graph in B(p,q,s,t) is x—unique, it suffices to show that
for every two graphs G and H in B(p,q,s,t), if G 2 H, then either «(G,4) # «a(H,4)
or a(G,5) # «(H,5). Recall that for o/(G,4) = o"(H,4) iff o(G,4) = a(H,4) and
o' (G,4) = o/ (H,4) iff a(G,4) = o(H,4).

The set B(p,q,s,5) contain 31 graphs by Theorem 2.2, named as G51, G52, Gs3,
Gs,4,..., G531 (see table in [5]). These graphs are shown in this table with the values
a"(Gs,1,4), a"(G52,4),...,a" (G5 31,4). For each graph G5 ;, if every component of Gy ; is
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a path, then o’ (G5 ;,4) can be obtained by Lemma 2.9; otherwise, we must find /(G5 ;,4)
by Lemma 2.5, and then find o” (G5, 4) by Equation (1).
Partition B(p, q, s,5) into the following ten subsets:

i = {G51,G52}

T, = {Gs53,Gs54}

T3 = {Gs55Gs6}

7. = {Gs57,G58,G59,G510,G5,11,G5,12 }
Ts = {G513,G514 }

Ts = {G5,15,G516,G517,Gs5,18 }

T = {Gs10}

Ts = {G52,G521}

Ty = {Gs522,G523,G524,G525 }

Tio = {Gs,:26,G5.27,G528, G520, G5.30,G5.31 }

For non-empty sets Wi, Wa, ..., Wy of graphs, let n(Wy, Ws, ... , W) =0 if a(G1,4) #
a(Ga, 4) for every two graphs G1 € W; and G € W, where i # j, and let (W1, Wo,. .., W) =
1 otherwise.

The values of a”(G5,19,4), &"(G5,20,4), ..., & (G525,4) cannot be computed using
Lemma 2.9, but it can be obtained by Lemma 2.5 and Equation (1). For example, we
calculate

(i) 0" (Gs10,4) = [s(zp—2+2q—2—2)+2<2p-3+zq—2_2>+

2(2073 4 2P72 —2) - (2P73 42973 —9) ¢

{9(8—4)+(854)+2H - [s(2p—2+2q—2—2)+

i)

= 2772 -3.207% —19.

Similarly, we obtain the following (as shown in the table [5]):
(ii) " (Gs,20,4) =2P74 — 2973 —18.
(iii) «”’(Gs01,4) =2P71 —9.297% —18.
(v

(vi

)
)

(iv) O//(G5,22,4) — _9p—4 _ g
) (G5 03,4) =2P74 — 2973 9,
) «”(Gs04,4) =2P71 —9.297% 9,
)

(vii) a'(Gs95,4) =5-2P73 —11.2974 -9,
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7C1alm 1. n(ﬂay—?a%7ﬂa%a%7%7?—8a%7ﬂ0) =0:

Proof of Claim 1. Note that if 2% (k is an integer > 1) is not a factor of x, then 2" is also
not a factor of = for any integer h > k. Similarly, if 2¥ (k is an integer > 1) is a factor of
x, then 2" is also a factor of = for any integer 1 < h < k.

(a) For s < 4, only 77 and Tg are non-empty. Observe that 22 is a factor of o’/ (G, 4) + 19
for G € 77 but 22 is not a factor of o’ (G, 4) + 19 for G € Tg. Hence 1(77,7g) = 0.

(b) Fors >5,a"(G,4) isodd if G € T{UT,UTUTgUT;UTy and even if G € T3UT;UTgUTqg.
Hence n(T; UT, UTy U T UT; U7y, T3 UTs UTg UTy) = 0.

(c) For s > 5, 22 is a factor of o/(G,4) + 9 for every G € Ty, but 4 is not a factor of
o (G,4)+9 for every G € T UT,UT,UTgUT7. Hence n(TUT,UT,UTgUT7,Tg) = 0.

(d) For s > 5, 2% is a factor of o/(G,4) + 15 for G € T, 23 is not a factor of o’/ (G, 4) + 15
for every G € To U T U T7, and 23 is a factor of o’/ (G, 4) + 15 but 2% is not a factor
for G € 7y. Hence n(71,74, 75 U7 UT7) = 0.

(e) For s > 5, 2% is a factor of o”/(G,4) + 11 for G € T, but 2* is not a factor of
o (G,4) + 11 for every G € T U T7. Hence n(72, T U77) = 0.

(f) For s > 5, 2% is a factor of o/ (G, 4)+3 for G € Tg, but 25 is not a factor of o(G,4)+3
for every G € 77. Hence 1(7g,77) = 0.

(g) For s > 5, 2% is a factor of o”/(G,4) + 10 for G € T3, 22 is not a factor of o/(G,4) + 10
for G' € Ty, but 22 is a factor of o’’(G,4) + 10 and 22 is not a factor for G € 75, and
23 is a factor o//(G,4) + 10 but 2% is not for G € Tz. Hence n(73, 75, Tz, T10) = 0.

By (a)—(g), Claim 1 holds.

The remaining work is to compare every two graphs in each 7;, except 7; which contain
only one graph. We shall establish several inequalities of the form (G5 ;,4) < &' (G5 ;, 4)
for some ¢, 5. Since the methods used to obtain these inequalities are standard, long and
rather repetitive, we shall not discuss all of them here. In the following we shall only show
two examples of detailed comparisons. In the first example, we compare all graphs in 7
when p = ¢ and in the second example, we compare all graphs in 7, when p > q.

(1) T
When p = ¢, G515 = G515, G516 = G517 and from the table (see [5]), we can easily see

that a”(G5,15,4) = &'(Gs.16,4). Thus, we need to calculate a(Gs,15,5) — a(Gs,16,5). By
using Lemma 2.6,we have

a(Gs,15,5) — a(Gs 16, 5)

= {Q(Gam + asbs, 5) + (G515 — {as,b5},4) + a(Gs,15 — {as, b5, c5},4) ] -

{ a(Gs,16 + asbs, 5) + (G516 — {ae, be },4) + a(Gs,16 — {as, b, c6},4) }

= o(G5,15 — {as, b5, ¢5},4) — (G516 — {as, bs, 6}, 4)
since G,15 + asbs = G516 + asbg, and Gs15 — {as,bs} = G516 — {as, b }

=a"(Gs5,15 — {as, b5, c5},4) — & (G516 — {as, b, c6 1, 4).
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Since G515 —{as,bs,c51 € B(p— 2,9 — 1,5 —2,4), and
Gs,16 — {ae. be,c6} € B(p — 1, — 2,5 — 2,4),

by Lemma 2.9, we have
a(Gs.15,5) — a(G5.16,5)
=" (G515 —{as,b5,¢5},4) — o' (G516 — {as, b6, ¢6 1, 4)
= (2?5—2“)-1—3-1] - [(2?’4—2‘15).1—3-1
=2p=5 =4 _op—4 4 94=5
= —297% <0 (since p=q and ¢ > 10)

(2) Ta
When p > ¢, from the table (see [5]), we can easily see that
C) o’ G5 9,

(a
(b) o G5,87 4
(

(

(c) a(Gs9,4
d) a”(Gss,4
(e) a(Gs,4

~

Since o'(Gs5,4) = o' (G510,4) and " (Gs,9,4) = o’(G511,4), we need to compare
a(Gs.8,5) with a(Gs10,5) and a(Gs9,5) with a(Gs,11,5). Hence, we have the following
claim:

Claim 2. OL(G578, 5) — OZ(G5710, 5) = 3(21)75 — 2q75).
Proof of Claim 2.

By Lemma 2.6,
a(G57875)
=a(Gs 8+ a1b1,5) + a(Gs s —{a1,b1},4) + a(Gs s — {a1,b1,¢1},4)

= |:OZ(G578 + albl + blcl, 5) + OZ(G578 — {bl,cl}, 4) + O[(G578 — {bl, Ci, dl}, 4) :| +

a(Gs s —{a1,b1},4) + «(Gs s —{a1,b1,c1},4), and
OZ(G5,10a5)
= a(Gs,10 + a2b2,5) + (G510 — {az2,b2},4) + a(Gs,10 — {az, b2, c2},4)

= {Q(Gs,m + agby + baca, 5) + a(Gs 10 — {ba2, c2},4) + a(Gs5,10 — {b2,¢2,d2}, 4) } +

a(Gs,10 — {az,b2},4) + (G510 — {az, b2, 2}, 4).
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Observe that

Gs.s +aibr +bicy = Gs 10 + a2ba + baca,
G5 — {a1,b1} = G510 — {az, b2},
a(Gsg — {b1,c1},4) — (G510 — {ba, c2},4) = 2P~4 — 2074, (2)
Since
Gss —{a1,b1,at € B(p—2,q—1,5s—3,2), and
G5,10 - {an C2, dQ} c B(p - 27q - 17 s — 47 2)a
by Lemmas 2.5, 2.7, and 2.8, we have

a(Gsg —{a1,b1,c1},4) — a(Gs,, — {b2,c2,d2}, 4)
=d' (G55 —{a1,b1,c1},4) — ' (G5, — {b2, 2, d2}, 4)

= { (5 —3)(2P7* 4+ 2973 —2) 4 2(2P75 42973 _2) 4 (2P7° —297%) ¢

(50} -
R (eyN)

=21 20 —2) 4 (2P0 — 297 4 (s —4) + 2
=9p~4 L op=5 L 9a—4 | 5 4 (3)

Similarly, since

Gsg —{b1,c1,d1} € Blp—1,¢—2,5—4,2), and
G5710 - {a2762762} € B(p - 1aq - 2a5 - 372)7

by Lemmas 2.5, 2.7, and 2.8, we have

a(Gsg —{b1,c1,d1},4) — a(Gs,,, — {a2, b2, 2}, 4)
= O/(G5,8 - {bla C1, d1}74) - O/(G5710 - {a27 b2vc2}a 4)

= [ (s —4)(2P73 42974 —2) 4 2(2P7% 2974 —2) 4 (2P7% - 2975)

(A
2(2P—4+2Q‘4—2)+{<S;1) —6}]

= 2P 9074 _ 9475 _ 514 (4)
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By (2) — (4), we have
a(Gs,s,5) — a(G5,10,5)

— {a(Gas +aiby +bic1,5) + a(Gss — {b1,c1},4) + a(Gs 8 — {b1,c1,d1},4) +
a(Gas ~ an b)) + aGas — lan b}, 0 | -
[ a(Gs,10 + a2bz + baca, 5) + (G510 — {b2, c2},4) + a(G5,101{b2, c2,d2},4) +
(G510 — {az,b2},4) + a(Gs,10 — {az, b2, c2},4) ]

- {Q(G&S —{b1,a1},4) — a(Gs,10 — {b2, 2}, 4) } +
[a(Gag —{a1,b1,c1},4) — a(Gs,10 — {b2, c2,d2}, 4) } +

{Oé(Gas —{b1,c1,d1},4) — a(Gs,10 — {az, b2, c2},4) }

= (2P 207 (2Pt 4 2P 4 27 s 4y +
(—2P~4 — 2974 2975 _ 5 1 4)
= 3(2P7° —2077)
Hence, Claim 2 is proved.
Claim 3. «a(Gs9,5) — a(Gs.11,5) = 3(2P~5 — 2975).

Proof of Claim 3. Similar to the proof of Claim 2.
Similarly, we can show that for G5, and G5 ; in B(p,q,s,t), if G5; % G5 ;, then either
o (Gs,i,4) # (G5 4,4) or a(Gs,:,5) # a(Gs,j,5) (see [4]).

This completes the proof of Theorem 3.1.
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