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Abstract The effect of control on the onset of Marangoni-Bénard convection in a
horizontal layer of fluid with internal heat generation heated from below and cooled
from above is investigated. The resulting eigenvalue problem is solved exactly. The
effects of control are studied by examining the critical Marangoni numbers and wave
numbers. It is found that the onset of Marangoni-Bénard convection with internal
heat generation can be delayed through the use of control.
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1 Introduction

Effect of buoyancy or surface tension can become a major mechanism of driving a possi-
ble convective instability for a horizontal fluid layer heated from below and cooled from
above. The instability of convection driven by buoyancy is referred to as the Rayleigh-
Bénard convection and the instability convection driven by surface tension is referred to as
the Marangoni-Bénard convection while the instability due to the combined effects of the
thermal buoyancy and surface tension is called the Bénard-Marangoni convection. The-
oretical analysis of Marangoni-Bénard convection was started with the linear analysis by
Pearson [7] who assumed an infinite fluid layer, nondeformable case and zero gravity in the
case of no-slip boundary conditions at the bottom. He showed that thermocapillary forces
can cause convection when the Marangoni number exceeds a critical value in the absence
of buoyancy forces. Pearson [7] obtained the critical Marangoni number, Mc = 79.607 and
the critical wave number ac = 1.99.

In the above Marangoni-Bénard instability analysis, the convective instability is induced
by the temperature gradient which is decreasing linearly with fluid layer height. Sparrow
et al. [9] and Roberts [8] analyze the thermal instability in a horizontal fluid layer with the
nonlinear temperature distribution which is created by an internal heat generation. The
effect of a quadratic basic state temperature profile caused by internal heat generation was
first addressed by Char and Chiang [4] for Bénard-Marangoni convection. Later, Wilson
[12] investigated the effect of the internal heat generation on the onset of Marangoni-Bénard
convection when the lower boundary is conducting and when it is insulating to temperature
perturbations. He found that the effect of increasing the internal heat generation is always
to destabilize the layer.
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The present work attempts to delay the onset of convection by applying the control.
The objective of the control is to delay the onset of convection while maintaining a state
of no motion in the fluid layer. Tang and Bau [10],[11] and Howle [5] have shown that
the critical Rayleigh number for the onset of Rayleigh-Bénard convection can be delayed.
Or et al. [6] studied theoretically the use of control strategies to stabilize long wavelength
instabilities in the Marangoni-Bénard convection. Bau [2] has shown independently how
such a control can delay the onset of Marangoni-Bénard convection on a linear basis with
no-slip boundary conditions at the bottom. Recently, Arifin et al. [1] have shown that a
control can also delay the onset of Marangoni-Bénard convection with free-slip boundary
conditions at the bottom. Therefore, in this paper, we use a linear controller to delay the
onset of Marangoni-Bénard convection in a fluid layer with internal heat generation. First,
we derive the analytical expressions for the critical Marangoni-Bénard convection, and next
we demonstrate that the no-motion state in the Marangoni-Bénard convection with internal
heat generation can controlled for a particular choice of parameter values.

2 The Mathematical Formulation

Consider a horizontal fluid layer of depth d with a free upper surface heated from below
and subject to a uniform vertical temperature gradient. The fluid layer is bounded below
by a horizontal solid boundary at a constant temperature T1 and above by a free surface
at constant temperature T2 which is in contact with a passive gas at constant pressure P0

and constant temperature T∞ (see Figure 1).

Figure 1: Problem set-up

We use Cartesian coordinates with two horizontal x-axis and y-axis located at the lower
solid boundary and a positive z-axis is directed towards the free surface. The surface tension,
τ is assumed to be a linear function of the temperature

τ = τ0 − γ (T − T0) , (1)

where τ0 is the value of τ at temperature T0 and the constant γ is positive for most fluids.
The density of the fluid is given by

ρ = ρ0[1− α(T − T0)], (2)
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where α is the positive coefficient of the thermal liquid expansion and ρ0 is the value of ρ
at the reference temperature T0.

The fluid is assumed to be an incompressible Newtonian Liquid satisfying the continuity
equation together with the Navier-Stokes and the heat equations. These equations are,
respectively

∇ · u = 0, (3)(
∂

∂t
+ u · ∇

)
u = −∇p

ρ
+ v∇u, (4)

(
∂

∂t
+ u · ∇

)
T = κ∇2T + q (5)

where u, T, p, ρ, v, κ and q denote the velocity , temperature, pressure, density, kine-
matic viscosity, thermal diffusivity and uniformly distributed volumetric internal heat gen-
eration in the fluid layer, respectively. When motion occurs, the upper free surface of
the layer will be deformable with its position at z = d + f (x, y, t) . At the free sur-
face, we have the usual kinematic condition together with the conditions of continuity
for the normal and tangential stresses. The temperature obeys the Newton’s law of cooling,
k∂T/∂n = h (T − T∞) , where k and h are the thermal conductivity of the fluid and the heat
transfer coefficient between the free surface and the air, respectively, and n is the outward
unit normal to the free surface. The boundary conditions at the bottom wall, z = 0, are
no-slip and conducting to the temperature perturbations.

To simplify the analysis, it is convenient to write the governing equations and the bound-
ary conditions in a dimensionless form. In the dimensionless formulation, scales for length,
velocity, time and temperature gradient are taken to be d, κ/d, d2/κ and ∆T, respectively.
Furthermore, six dimensionless groups appearing in the problem are the Marangoni num-
ber M = γ∆Td/(ρ0κv), the Biot number, Bi = hd/k, the Bond number, Bo = ρ0gd2/τ0,
the Prandtl number, Pr = ν/κ, the Crispation number, Cr = ρ0νκ/(τ0d) and the internal
heating, Q = qd2/(2κ ∆T ).

Our control strategy basically applies a principle similar to that used by Bau [2], which
is as follows:
Assumed that the sensors and actuators are continuously distributed and that each sensor
directs an actuator installed directly beneath it at the same {x, y} location. The sensor
detects the deviation of the free surface temperature from its conductive value. The actuator
modifies the heated surface temperature according to the following rule (Bau [2] ):

T (x, y, 0, t) =
1 + Bi

Bi
−K

(
T (x, y, 1, t)− 1

Bi

)
(6)

where K is the scalar controller gain. Equation (6) can be rewritten more conveniently as

T ′(x, y, 0, t) = −K (T ′(x, y, 1, t)) (7)

where T ′ is the deviation of the fluid’s temperature from its conductive value. The control
strategy in equation (7), in which K is a scalar will be used to demonstrate that our system
can be controlled.
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3 Linearized Problem

We study the linear stability of the basic state by seeking perturbed solutions for any
quantity Φ (x, y, z, t) in terms of normal modes in the form

Φ(x, y, z, t) = Φ0(x, y, z) + φ(z) exp[i(αxx + αyy) + st], (8)

where Φ0 is the value of Φ in the basic state, a = (α2
x + α2

y)1/2 is the total horizontal wave
number of the disturbance and s is a complex growth rate with a real part representing the
growth rate of the instability and the imaginary part representing its frequency. At marginal
stability, the growth rate s of perturbation is zero and the real part of s, <(s) > 0 represents
unstable modes while <(s) < 0 represents stable modes. Substituting equation (8) into
equations (3) - (5) and neglecting terms of the second and higher orders in the perturbations
we obtain the corresponding linearized equations involving only the z-dependent parts of
the perturbations to the temperature and the z-components of the velocity denoted by T
and w, respectively,

(
D2 − a2

) [(
D2 − a2

)
w − sP−1

r

]
= 0, (9)(

D2 − a2 − s
)
T + [1−Q (1− 2z)] w = 0, (10)

subject to

sf − w (1) = 0, (11)

Cr

[(
D2 − 3a2 − sP−1

r

)
Dw (1)

]− a2
(
a2 + Bo

)
f = 0, (12)(

D2 + a2
)
w(1) + a2M (T (1)− (1 + Q) f) = 0, (13)
DT (1) + Bi (T (1)− (1 + Q) f) = 0, (14)

w(0) = 0, (15)
Dw(0) = 0, (16)

and
T (0) + KT (1) = 0.. (17)

On the lower rigid boundary z = 0. The operator D = d/dz denotes the differentiation
with respect to the vertical coordinate z. The variables w, T and f denote respectively
the vertical variation of the z-velocity, temperature and the magnitude of the free surface
deflection of the linear perturbation to the basic state with total wave number a in the
horizontal x-y plane and complex growth rates.

4 Results and Discussion

We use the symbolic algebra package MAPLE 10 running on a Pentium PC to carry out
much of the tedious algebraic manipulations needed in the course of finding analytical solu-
tions. Closed form analytical expressions can be obtained for the Marginal stability curves
for the onset of steady convection. By substituting the general solution of equations (9) and
(10) into the boundary conditions (11) - (17) and requiring the existence of nontrivial solu-
tions, we obtain the expression for Marangoni number M in terms of a, Q, Cr, Bo and Bi
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on the marginal curve which can be conveniently written in the form of

M =

(
a2 + Bo

)
f1 (a,Bi,K)

(a2 + Bo) [f2 (a) + Qf3 (a)] + Cr (1 + Q) f4 (a,K)
, (18)

where

f1 (a,Bi, K) = 24a2 [aK + aC + BiS] (SC − a)

f2 (a) = 3a
(
S3 − a3C

)

f3 (a) = 3aS3 + 12aS + 4a3S − 6a2C − 6CS2 − a4C

f4 (a,K) = 24a6 (K + C)

where we have define C = cosh a and S = sinh a. When we set K = 0, the equation (18)
reduces to the expression given by Wilson [12] and when Q = 0, the equation (18) reduces
to the expression given by Bau [2].

Figure 2 shows the Marangoni number as a function of the wave number, a, for controller
gains: K = 0, 5 and 20. As a increases, the Marangoni number decreases, attains a minimum
at some critical wave number, and increases again. In the absence of the controller, K = 0,
we reproduce numerical result obtained by Boeck and Thess [3]. As the controller gain, K,
increases, the marginal stability curves shift upwards, shows that the controller stabilizes
the no-motion state for all wave numbers. The critical Marangoni number, M, increases
monotonically as the controller gain K increases. In the case of nondeformable free surface
(Cr = 0), the controller can suppress the modes and maintain a no-motion state, but this
situation is significantly different if the free surface is deformable. When Cr becomes large
the long-wavelength instability sets in as a primary one and the critical Marangoni numbers
are at a = 0.

Figure 3 shows the Marangoni number as a function of the wave number, a, in the case
Cr = 0.001 when Bi = 0 and Bo = 0 for a range of values of controller gains, K. The
situation here is significantly different than the case of Cr = 0 (Figure 2). At a = 0 (long
wavelengths), the critical Marangoni number is zero and a no-motion conductive state does
not exist. It is shown that the controller is not effective at the wave number a = 0.

5 Conclusions

The effect of control on the onset of Marangoni-Bénard convection in a horizontal layer of
fluid with internal heat generation heated from below and cooled from above is investigated.
The explicit analytical expressions for the critical Marangoni-Bénard number in the presence
of the effect of control have been obtained. We have shown numerically that the effect of
the controller gain, K is always to stabilize the layer in the case of a nondeforming surface.
However, the controller gain is not effective in the case of a deforming surface.
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Figure 2: Marginal stability curves when Bi = 0 , Bo = 0 , and Cr = 0 for a range of values
of controller gains K

Figure 3: Marginal stability curves in the case Cr = 0.001 when Bi = 0 and Bo = 0, for a
range of values of controller gains, K
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