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Abstract This paper shows that for an asymmetric primitive two-coloured (n, s)-
lollipop on n vertices with s ≤ n, its 2-exponent is at most (s2− 1)/2 + (s + 1)(n− s).
The (n, s)-lollipops whose 2-exponents achieving the bound is characterised and for
any asymmetric primitive two-coloured (n, s)-lollipop, a simple algorithm to find its
exponent is presented.
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1 Digraphs and Two-Coloured Digraphs

In this paper we discuss 2-exponents of a special type of primitive asymmetric two-coloured
digraphs. We follow notations and terminologies for digraphs in [3] and for two-coloured
digraphs in [10]. In particular a directed walk of length m from a vertex u to a vertex v is
a sequence of m arcs of the form

(v0, v1), (v1, v2), . . . , (vm−1, vm)

where v0 = u and vm = v. We denote a directed walk w from u to v by (u, v)-walk or wuv

and its length is denoted by `(wuv). A (u, v)-walk is closed provided u = v and is open
otherwise. A directed path from u to v is a directed walk with no repeated vertices except
possibly u = v. A directed cycle is a closed directed path. A loop is a closed directed cycle
of length 1. The distance of distinct vertices u and v in a digraph D, d(u, v), which length
is represent the shortest (u, v)-path in D.

A digraph D is strongly connected provided for each pair of vertices u and v in D there
is a (u, v)-walk and a (v, u)-walk of length exactly k. The smallest of such positive integer k
is the exponent of D and is denoted by exp(D). A strongly connected digraph D is primitive
if and only if the greatest common divisor of lengths of all directed cycles in D is 1 [3]. A
symmetric digraph D is a digraph such that the arc (u, v) is in D whenever the arc (v, u)
is in D. Since a symmetric digraph must have a directed cycle of length 2, a symmetric
digraph is primitive if and only if it contains a directed cycle of odd length. A directed
(n, s)-lollipop on n vertices is a symmetric strongly connected digraph consisting of directed
cycles (1, 2), (2, 3), . . . , (s − 1, s), (s, 1) and (1, s), (s, s − 1), . . . , (3, 2), (2, 1) of length s and
directed paths (s, s+1), (s+1, s+2), . . . , (n−1, n) and (n, n−1), (n−1, n−2), . . . , (s+1, s)
of length (n− s). Figure 1 shows a (9,5)-lollipop.

Research on exponent of digraph is initiated by Wielandt [9, 15]. Wielandt shows that
for primitive digraphs on n vertices the exp(D) ≤ (n − 1)2 + 1 and then characterized
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Figure 1: A (9,5)-lollipop

the digraph whose exponent attains the bound. Since then exponents of various classes of
primitive digraphs have been obtained (see [3]). In particular, Dulmage and Mendelsohn
[4] gave more general bound on exponents of primitive digraphs in term of the length
of the smallest cycle. They have shown that if D is a primitive digraph on n vertices
with the smallest cycle of length s, then exp(D) ≤ n + s(n − 2). Beasley and Kirkland
[1] discussed a bound on exponent of primitive digraphs in terms of the exponent of its
primitive subdigraphs. For primitive symmetric digraphs on n vertices, Shao [11] proved
that the exp(D) ≤ 2n − 2 and showed that the exponent 2n − 2 is attained if and only
if the digraph D is isomorphic to a symetric digraph that consists of the directed paths
(1, 2), (2, 3), . . . , (n− 1, n) and (n, n− 1), (n− 1, n− 2), . . . , (2, 1) of length (n− 1) and the
loop (1,1). Let D be a loopless primitive symmetric digraph on n vertices. Liu et.al [8]
show that the exp(D) ≤ 2n − 4 and prove that the upper bound is achieved if an only
if D is isomorphic to a directed (n, 3)-lollipop. Dulmage and Mendelsohn [4], Suwilo and
Mardiningsih [13] have shown that exponents of symmetric primitive digraphs are bounded
above by (s − 1) + 2` where s is the length of smallest directed cycle in the digraph, and
` is the length of the longest path connecting a vertex in the smallest directed cycle and a
vertex in D but not in the smallest directed cycle. In particular they have shown that the
exponent of a symmetric directed (n, s)-lollipop is 2n − s − 1 which then implies that the
exponent of a symmetric directed cycle of odd length n is (n− 1).

A two-coloured digraph, or a 2-digraph for short, is a digraph in which each of its arcs
is coloured by either red or blue. In a two-coloured digraph we differentiate a walk by how
many red and blue arcs it contains. By an (h, k)T -walk from u to v we mean a (u, v)-walk
of length h+k consisting of h red arcs and k blue arcs. So a (1, 2)T -walk could be a walk of
length 3 whose all arcs are blue except the first arc, or all arcs are blue except the second
arc, or all arcs are blue except the third arc. In general by a (r(w), b(w))T -walk w we mean a
walk w consisting of r(w) red arcs and b(w) blue arcs. The vector (r(w), b(w))T is called the
composition of the walk w. A two-coloured digraph D is strongly connected provided that
its underlying digraph, the digraph obtained from D by ignoring its arc color, is strongly
connected. An asymmetric two-coloured digraph is a symmetric two-coloured digraph for
which an arc (u, v) is coloured red whenever the arc (v, u) is coloured blue and vice versa.
A strongly connected two-coloured digraphs is primitive provided there are nonnegative
integers h and k such that for each pair of vertices u and v there is an (h, k)T -walk from u
to v. The smallest nonnegative integer h + k among all such nonnegative integers h and k
is called the 2-exponent of D, denoted by exp2(D).

Let D be a two-coloured digraph and let γ = {γ1, γ2, . . . , γt} be the set of all directed
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cycles in D. A cycle matrix M of D is a 2 by t matrix whose ith column is the composition
of the cycle γi, i = 1, 2, . . . , t. That is

M =
[

r(γ1) r(γ2) · · · r(γt)
b(γ1) b(γ2) · · · b(γt)

]
.

The content of M is defined to be 0 if the rank(M) = 1 and is the greatest common divisor
of the 2 by 2 minors of M, otherwise. The following result, due to Fornasini and Valcher
[5], gives necessary and sufficient conditions for primitive two-coloured digraph.

Theorem 1.1. Let D be a strongly connected two-coloured digraph with at least one arc of
each color. The two-coloured digraph D is primitive if and only if the content of its cycle
matrix is 1.

Let D be a strongly connected two-coloured digraph on n vertices. Let R = (rij) be the
n by n (0,1)-matrix with rij = 1 if and only if the arc (i, j) in D is a red arc. Similarly, let
B = (bij) be the n by n (0,1)-matrix with bij = 1 if and only if the arc (i, j) in D is a blue
arc. The matrices R and B are the red and the blue adjacency matrices of D, respectively.
Conversely for any pair (A,B) of nonnegative matrices we can find a two-coloured digraph
D on n vertices associated with (A,B) as follows. The arc (i, j) in D is a red arc if and
only if the entry aij > 0 and the arc (i, j) in D is a blue arc if and only if the entry bij > 0.

For any pair of nonnegative matrices (A, B) and nonnegative integers h and k define
the (h, k)-Hurwitz product, (A,B)(h,k), of A and B to be the sum of all matrices that are
a product of h A’s and k B’s. For example,

(A,B)(2,0) = A2, (A,B)(0,3) = B3

and

(A,B)(3,2) = A3B2 + A2BAB + A2B2A + ABA2B + ABABA

+ AB2A2 + BA3B + BA2BA + BABA2 + B2A3.

An (h, k)-Hurwitz product of matrices A and B can be computed using recurrence relation
as follows:

For any nonnegative integers h ≥ 1 and k ≥ 1, (A,B)(h,0) = Ah, (A,B)(0,k) = Bk, and

(A, B)(h,k) = A(A, B)(h−1,k) + B(A,B)(h,k−1).

Using induction on h + k one can show the following result:

Lemma 1.2. Let D be a two-coloured digraph on n vertices and let R and B, respectively,
be the red and the blue adjacency matrices of D. Then the (i, j)-entry of (R, B)(h,k) is the
number of (h,k)T-walk from i to j.

We note that by Lemma 1.2, the 2-exponent of a primitive two-coloured digraph can be
obtained by finding the smallest positive integer h + k such that all entries of the matrix
(R, B)(h,k) are positive for some nonnegative integers h and k.

Research on 2-exponents of two-coloured digraphs is initiated by Shader and Suwilo [10].
They prove that the largest 2-exponent of primitive two-coloured digraphs on n vertices lies
on the interval [(n3−5n2)/3, (3n3+2n2−2n)/2]. Since then many papers have been published
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on the subject (see [2, 6, 7, 14]). Suwilo [12] shows that for an asymmetric complete two-
coloured digraph D on n vertices, the 2-exponent of D lies on interval [2,4] and proves that
for each integer k, 2 ≤ k ≤ 4, there is an asymmetric complete two-coloured digraph whose
2-exponent is exactly k.

The purpose of this paper is to discuss bound on 2-exponent of asymmetric two-coloured
(n, s)-lollipops. For such two-coloured digraphs, in Section 2, we show the 2-exponent is
bounded above by (s2 − 1)/2 + (s + 1)(n− s) and the bound can be obtained by a (t, t)T -
walk where t = (s2 − 1)/4 + (s + 1)(n − s)/2. Furthermore, in Section 3, we characterize
asymmetric two-coloured digraphs whose 2-exponents attain the bound, and finally we give
a formula for finding 2-exponent of any asymmetric two-coloured (n, s)-lollipop in Section 4.

2 Bound for 2-Exponents of Two-coloured Lollipops

Let D be an asymmetric primitive two-coloured (n, s)-lollipop. Since D is primitive, then s
must be odd. Furthermore, since D is asymmetric, then D has directed cycles of length 2
with composition (1, 1)T , and has two directed cycles γ1 and γ2 of length s, say the cycles

(1, 2), (2, 3), . . . , (s− 1, s), (s, 1) and (1, s), (s, s− 1), . . . , (3, 2), (2, 1).

Hence, the compositions of the directed cycles of D are of the form (1, 1)T , (a, s − a)T , or
(s− a, a)T for some nonnegative integer a ≥ 0. This implies the cycle matrix of D is of the
form

M =
[

a s− a 1 1 · · · 1
s− a s 1 1 · · · 1

]
.

Since D is primitive, by Theorem 1.1 the content of M is 1. Hence

1 = gcd(s(2a− s), s− 2a, 2a− s) = ±(s− 2a).

This implies either a = (s + 1)/2 or a = (s − 1)/2, so without loss of generality we may
assume that

M =
[

(s− 1)/2 (s + 1)/2 1 1 · · · 1
(s + 1)/2 (s− 1)/2 1 1 · · · 1

]
.

We note that since D is asymmetric, every vertex of D lies on a (1, 1)T -walk. This implies
each (h, k)T -walk in D can be extended to a (h + t, k + t)T -walk for each positive integer
t ≥ 1.

Theorem 2.1. Let D be an asymmetric primitive two-coloured (n, s)-lollipop. Then

exp2(D) ≤ (s2− 1)/2 + (s + 1)(n− s).

Proof. For each pair of vertices u and v we show that there is a (t, t)T -walk with

t = (s2 − 1)/4 + (s + 1)(n− s)/2.

Since D is asymmetric it suffices to show that for each pair of vertices u and v in D there
is an (e, e)T -walk with e ≤ t. Since D is asymmetric, for each vertices u in D there is a
closed (1, 1)T -walk from u to itself. Let u and v be two distinct vertices in D and let puv
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be the shortest path from u to v. Then `(puv) ≤ (s − 1)/2 + (n − s). If r(puv) = b(puv),
then r(puv), b(puv) ≤ (s2 − 1)/4 + (s + 1)(n − s)/2 and we are done. So we assume that
r(puv) 6= b(puv) and without loss of generality we assume that r(puv) > b(puv).

We first assume that the path puv does not intersect the cycle γ1 (or γ2). In this case,
the walk that starts at u, moves to s along the path pus, moves (r(puv) − b(puv)) times
around the cycle γ1 and back to s, and finally moves to v along the path psv is the shortest
(e, e)T -walk from u to v. The composition of this walk is

[
r(wuv)
b(wuv)

]
=

[
r(puv)
b(puv)

]
+ `uv

[
1
1

]
+ (r(puv)− b(puv))

[
(s− 1)/2
(s + 1)/2

]

where `uv = d(u, s) if d(u, s) < d(v, s) and `uv = d(v, s) otherwise. We note that

r(puv) + b(puv) + `uv ≤ n− s.

Hence[
r(wuv)
b(wuv)

]
≤

[
r(puv)
b(puv)

]
+ `uv

[
(s + 1)/2
(s + 1)/2

]
+ (r(puv)− b(puv))

[
(s− 1)/2
(s + 1)/2

]

= (r(puv)− b(puv) + `uv)
[

(s + 1)/2
(s + 1)/2

]
≤ (n− s)

[
(s + 1)/2
(s + 1)/2

]

≤
[

(s2 − 1)/4 + (n− 1)(s + 1)/2
(s2 − 1)/4 + (n− 1)(s + 1)/2

]
.

We now assume that the path puv has vertices in common with the cycle γ1 (or cycle γ2).
The walk that starts at u, follows the path puv to v, and long the way moves (r(puv)−b(puv))
times around the cycle γ1 is an (e, e)T -walk with composition
[

r(wuv)
b(wuv)

]
=

[
r(puv)
b(puv)

]
+(r(puv)−b(puv))

[
(s− 1)/2
(s + 1)/2

]
= (r(puv)−b(puv))

[
(s + 1)/2
(s + 1)/2

]
.

We note in this cases that since the path puv is the shortest path form u to v,

(r(puv) + b(puv))((n− s) + 1
2 (s− 1).

This implies (r(puv)− b(puv)) ≤ r(puv)((n− s) + (s− 1)/2. Therefore, we now have
[

r(wuv)
b(wuv)

]
≤

[
(s2 − 1)/4 + (n− 1)(s + 1)/2
(s2 − 1)/4 + (n− 1)(s + 1)/2

]
.

Now using (1, 1)T -walks, we can extend the walk wuv into a (t, t)T -walk with

t = (s2 − 1)/4 + (s + 1)(n− s)/2.

Since for every of vertices u and v one can find a (t, t)T -walk from u to v with

t = (s2 − 1)/4 + (s + 1)(n− s)/2,

then
exp2(D) ≤ (s2 − 1)/2 + (n− s)(s + 1).

In the proof of Theorem 2.1, we assume that r(puv) > b(puv). If b(puv) > r(puv), then
the composition of the (e, e)T -walk wuv can be chosen as follows.
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• If puv has vertices in common with the cycle γ1 (or γ2), then
[

r(wuv)
b(wuv)

]
=

[
r(puv)
b(puv)

]
+ (b(puv)− r(puv))

[
(s + 1)/2
(s− 1)/2

]
.

• If puv has no vertices in common with the cycle γ1 (or γ2), then
[

r(wuv)
b(wuv)

]
=

[
r(puv)
b(puv)

]
+ `uv

[
1
1

]
+ (b(puv)− r(puv))

[
(s + 1)/2
(s− 1)/2

]
.

On both cases we move (b(puv) − r(puv)) times around the directed cycle γ2. For the rest
of the paper for a (u, v)-path puv we assume that r(puv) > b(puv).

Corollary 2.2. Let D be an asymmetric primitive two-coloured cycle on n vertices. Then
exp2(D) ≤ (n2 − 1)/2.

Proof. Notice that a two-coloured cycle can be thought of as a two-coloured (n, s)-lollipop
with s = n.

We end this section by setting up an upper bound for 2-exponent of asymmetric two-
coloured (n, s)-lollipop in term of n, the number of vertices in D.

Corollary 2.3. Let D be an asymmetric primitive two-coloured (n, s)-lollipop. Then

exp2(D) ≤
{

(n2 − 1)/2, if n is odd
n2/2, if n is even.

Proof. Let f(s) = (s2 − 1)/2 + (s + 1)(n− s). Notice that f achieves its global optima at
s = n− 1. Since f(s) is quadratic and s is odd, f(s) has global optima at s = n− 1 when
n is even, and has global optimal at s = n or at s = n− 2 when n is odd. This implies

exp2(D) ≤
{

(n2 − 1)/2, if n is odd
n2/2, if n is even.

3 Two-coloured (n, s)-lollipops Achieving the Bound

In this section, we discuss classes of asymmetric primitive two-coloured (n, s)-lollipops whose
2-exponents are exactly (s2 − 1)/2 + (s + 1)(n− s).

Theorem 3.1. Let D be a primitive asymmetric two-coloured (n, s)-lollipop. If D has a
red path of length (s + 1)/2 + (n− s), then exp2(D) = (s2 − 1)/2 + (s + 1)(n− s).

Proof. Let p′uv be a red path of length (s + 1)/2 + (n − s) in D. Since there are only
(n− s) vertices not in γ1 (or γ2), one of the vertices u or v must lie on the cycle γ1 (or γ2).
Since D is asymmetric D has a blue path of length (s + 1)/2 + (n − s). Since the length
of the cycle γ1 (or γ2) is odd, there is a red shortest path puv from u to v in D of length
q = (s− 1)/2 + (n− s). Again since D is asymmetric, this implies there is a blue shortest
path pvu from v to u of length q = (s − 1)/2 + (n − s). Let wuv and wvu, respectively, be
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the walk from u to v and the walk from v to u that have the same composition. Hence the
composition of wuv and wvu, respectively, are of the form

[
r(wuv)
b(wuv)

]
=

[
q
0

]
+ ε

[
1
0

]
+ x1

[
1
1

]
+ x2

[
(s− 1)/2
(s + 1)/2

]
+ x3

[
(s + 1)/2
(s− 1)/2

]
(3.1)

for some nonnegative integers x1, x2, x3, and ε = 0, 1, and
[

r(wvu)
b(wvu)

]
=

[
0
q

]
+ δ

[
0
1

]
+ y1

[
1
1

]
+ y2

[
(s− 1)/2
(s + 1)/2

]
+ y3

[
(s + 1)/2
(s− 1)/2

]
(3.2)

for some nonnegative integers y1, y2, y3, and δ = 0, 1. We note that if ε = 0, then we use
the red path of length q = (s+1)/2+ (n− s) in constructing the walk wuv. If ε = 1, we use
the red path of length (s + 1)/2 + (n− s) in constructing the walk wuv. Similar argument
applies for δ.

If ε = δ = 0, setting Equation (3.1) and Equation (3.2) equals we have
[ −q

q

]
= (x1 − y1)

[
1
1

]
+ (x2 − y2)

[
(s− 1)/2
(s + 1)/2

]
+ (x3 − y3)

[
(s + 1)/2
(s− 1)/2

]
. (3.3)

Subtracting the second by the first component of Equation 3.3 we have (x2−y2)+(y3−x3) ≥
2q. This implies x2 + y3 > 2q and hence x2 ≥ q or y3 ≥ q.

It is not hard to see the following results. If ε = 1 and δ = 0 or if ε = 0 and δ = 1, then
x2 ≥ q or y3 ≥ q. Finally if ε = δ = 1, then x2 ≥ q + 1 and y3 ≥ q + 1.

Therefore, in each case we have
[

r(wuv)
b(wuv)

]
≥

[
(s2 − 1)/4 + (s + 1)(n− s)/2
(s2 − 1)/4 + (s + 1)(n− s)/2

]
.

Hence we now have that exp2(D) ≥ (s2−1)/2+(s+1)(n−s). This and Theorem 2.1 imply
that the 2-exponent of D is exp2(D) = (s2 − 1)/2 + (s + 1)(n− s).

Example 3.2. Let D be a primitive asymmetric two-coloured (n, s)-lollipop with the
coloring as follows. Color the path pns from vertex n to vertex s by red and color the
arcs (s, 1), (1, 2), . . . , ((s − 1)/2, (s + 1)/2) by red. Notice that D has a red path of length
(s + 1)/2 + (n− s), namely the directed path

(n, n− 1), (n− 1, n− 2), . . . , (s + 1, s), (s, 1), (1, 2), . . . , ((s− 1)/2, (s + 1)/2)

from n to (s + 1)/2. This implies the directed path

(n, n− 1), (n− 1, n− 2), . . . , (s + 1, s), (s, s− 1), (s− 1, s− 2), . . . , ((s + 3)/2, (s + 1)/2)

is a red path from n to (s + 1)/2 of length exactly (s− 1)/2 + (n− s). Theorem 3.1 implies
that exp2(D) = (s2 − 1)/2 + (s + 1)(n− s).

As a consequence of Theorem 3.1 and Corollary 2.3 we have (n,s)-lollipop with the
largest 2-exponent as follows.

Corollary 3.3. Let D be a primitive asymmetric two-coloured (n, s)-lollipop with a red
path of length (s + 1)/2 + (n− s).

(a) If n is odd and s = n or s = n− 2, then exp(D) = (n2 − 1)/2.

(b) If n is even and s = n− 1, then exp2(D) = n2/2.
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4 Formula for 2-exponents of Two-coloured (n, s)-lollipops

We have discussed that Lemma 1.2 together with the definition of (h, k)-Hurwitz product
can be used to find the 2-exponent of an asymmetric primitive two-coloured digraph. In this
section, we discuss a way of finding the 2-exponent of asymmetric primitive two-coloured
(n, s)-lollipop without using the (h, k)-Hurwitz product. First, we introduce some notations
necessary for our result. Let u and v be any vertices in D and let puv be a (u, v)-path.
Notice that for each pair of vertices u and v in D, except if both u and v lie on the path
pns, there are two paths from u to v. One passes through the cycle γ1 and the other passes
through the cycleγ2. Let u and v be vertices in D such that u lies on cycle and v does not
lie on cycle. Then a path puv from u to v consists of a path pus from u to s and the path psv

from s to v. Assume that the composition of the path pus that passes through the cycle γ1

is (r1, b1)T and the composition of the path psv is (r, b)T . The composition of the path puv

that passes through the cycle γ1 and the composition of the path pvu that passes through
the cycle γ2, respectively, are

[
r(puv)
b(puv)

]

γ1

=
[

r1 + r
b1 + b

]
and

[
r(pvu)
b(pvu)

]

γ2

=
[

b1 + b
r1 + r

]
.

This implies the composition of the path puv that passes through the cycleγ2 and the
composition of the path pvu that passes through the cycleγ1 are

[
r(puv)
b(puv)

]

γ2

=
[

(s + 1− 2b1)/2 + r
(s− 1− 2r1)/2 + b

]
and

[
r(pvu)
b(pvu)

]

γ1

=
[

(s− 1− 2r1) + b
(s + 1− 2b1) + r

]
,

respectively. Note that if both vertices u and v lie on the cycle then the composition of
paths puv and pvu depend only on r1 and b1. Similarly if both vertices u and v lie on the
path pns, then there is only one path puv and only one path pvu and their composition
depend only on r(puv) and b(puv).

For any pair of vertices u and v, let w′uv be the shortest (e, e)T -walk from u to v. We
note that the composition of w′uv is of the form

[
r(puv)
b(puv)

]
+ `uv

[
1
1

]
+ (r(puv)− b(puv))

[
(s− 1)/2
(s + 1)/2

]

for some path puv such that r(puv) ≥ b(puv), or
[

r(puv)
b(puv)

]
+ `uv

[
1
1

]
+ (b(puv)− r(puv))

[
(s + 1)/2
(s− 1)/2

]

for some path puv with b(puv) > r(puv). We also note that

`uv =





d(v, s), if d(v, s) < d(u, s)
d(u, s), if d(u, s) < d(v, s)

0, if r(puv) = b(puv) or at least one of u or v is on the cycle.

Define [
hmax

kmax

]
= max

u,v∈V

{[
r(w′uv)
b(w′uv)

]}
.



2-Exponents of Two-Coloured Lollipops 19

Then we have the following formula for 2-exponent of an (n, s)-lollipop.

Theorem 4.1. Let D be an asymmetric primitive two-coloured (n,s)-lollipop. Then

exp2(D) = hmax + kmax.

Proof. Let u and v be any vertices in D and let w′uv be a shortest (e, e)T -walk from u to
v. Notice by the definition of [

hmax

kmax

]

for any shortest (e, e)T -walk w′uv from u to v we have
[

r(w′uv)
b(w′uv)

]
≤

[
hmax

kmax

]
.

Since r(w′uv) = b(w′uv) and hmax = kmax, using (1, 1)T -walks we can extend the walk w′uv

to a walk wuv such that [
r(wuv)
b(wuv)

]
=

[
hmax

kmax

]
.

This implies for any pair of vertices u and v in D there is a (hmax, kmax)T -walk from u to
v. Hence exp2(D) ≤ hmax + kmax. It remains to show that exp2(D) ≥ hmax + kmax.

Let u0and v0 be the vertices in D such that the shortest (e, e)T -walk w′u0v0 in D has
composition (hmax, kmax)T . Let p′u0v0

be the path from u0 to v0 contained in the walk
w′u0v0 . Let wu0v0 and wv0u0 , respectively, be the walk from u0 to v0 and from v0 to u0 that
have the same composition. We consider four cases.

Case 1. The path p′u0v0
passes through γ1 and the path p′v0u0

passes through γ2.
The composition of the walk wu0v0 is of the form

[
r1 + r
b1 + b

]
+ x1

[
1
1

]
+ x2

[
(s− 1)/2
(s + 1)/2

]
+ x3

[
(s + 1)/2
(s− 1)/2

]
(4.1)

for some nonnegative integers x1, x2 and x3. The composition of the walk wv0u0 is of the
form [

b1 + b
r1 + r

]
+ y1

[
1
1

]
+ y2

[
(s− 1)/2
(s + 1)/2

]
+ y3

[
(s + 1)/2
(s− 1)/2

]
(4.2)

for some nonnegative integers y1, y2 and y3. Since wu0v0 and wv0u0 have the same compo-
sition, from Equation (4.1) and Equation (4.2) we have
[

(b1 + b)− (r1 + r)
(r1 + r)− (b1 + b)

]
= (x1−y1)

[
1
1

]
+(x2−y2)

[
(s− 1)/2
(s + 1)/2

]
+(x3−y3)

[
(s + 1)/2
(s− 1)/2

]
.

(4.3)
From the last equation, subtracting the second component by the first component, we have
that

(x2 − y2) + (y3 − x3) = 2((r1 + r)− (b1 + b)).

This implies x2 + y3 ≥ 2((r1 + r) − (b1 + b)) and hence x2 ≥ (r1 + r) − (b1 + b) or
b3 ≥ (r1 + r)− (b1 + b).
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Case 2. The path p′u0v0
passes through γ1 and the path p′v0u0

passes throughγ1.
The composition of the walk wu0v0 is of the form

[
r1 + r
b1 + b

]
+ x1

[
1
1

]
+ x2

[
(s− 1)/2
(s + 1)/2

]
+ x3

[
(s + 1)/2
(s− 1)/2

]
(4.3)

for some nonnegative integers x1, x2 and x3. The composition of the walk wv0u0 is of the
form [

(s− 1− 2r1) + b
(s + 1− 2b1) + r

]
+ y1

[
1
1

]
+ y2

[
(s− 1)/2
(s + 1)/2

]
+ y3

[
(s + 1)/2
(s− 1)/2

]
(4.4)

for some nonnegative integers y1, y2 and y3. From Equation (4.3) and Equation (4.4) we have
(x2 +y3) ≥ 2((r1 +r)− (b1 +b))+1, hence x2 ≥ (r1 +r)− (b1 +b) or y3 ≥ (r1 +r)− (b1 +b).

Case 3. The path p′u0v0
passes through γ2 and the path p′v0u0

passes through γ1.
The composition of the walk wu0v0 is of the form

[
(s + 1− 2b1)/2 + r
(s− 1− 2r1)/2 + b

]
+ x1

[
1
1

]
+ x2

[
(s− 1)/2
(s + 1)/2

]
+ x3

[
(s + 1)/2
(s− 1)/2

]
(4.5)

for some nonnegative integers x1, x2 and x3. The composition of the walk is wv0u0 of the
form [

b1 + b
r1 + r

]
+ y1

[
1
1

]
+ y2

[
(s− 1)/2
(s + 1)/2

]
+ y3

[
(s + 1)/2
(s− 1)/2

]
(4.6)

for some nonnegative integers y1, y2 and y3. Since wu0v0 and wv0u0 have the same com-
position, Equations (4.5) and (4.6) imply x2 + y3 ≥ 2((r1 + r) − (b1 + b)) + 1, and hence
x2 ≥ (r1 + r)− (b1 + b) or y3 ≥ (r1 + r)− (b1 + b).

Case 4. The path p′u0v0
passes through γ2 and the path p′v0u0

passes throughγ2.
The composition of the walk wu0v0 is of the form

[
(s + 1− 2b1)/2 + r
(s− 1− 2r1)/2 + b

]
+ x1

[
1
1

]
+ x2

[
(s− 1)/2
(s + 1)/2

]
+ x3

[
(s + 1)/2
(s− 1)/2

]
(4.7)

for some nonnegative integers x1, x2 and x3. The composition of the walk wv0u0 is of the
form [

(s− 1− 2r1) + b
(s + 1− 2b1) + r

]
+ y1

[
1
1

]
+ y2

[
(s− 1)/2
(s + 1)/2

]
+ y3

[
(s + 1)/2
(s− 1)/2

]
(4.8)

for some nonnegative integers y1, y2 and y3. Equating Equations (4.7) and (4.8) we have
x2 + y3 ≥ 2((r1 + r) − (b1 + b)) + 2 and hence x2 ≥ (r1 + r) − (b1 + b) + 1 or
y3 ≥ (r1 + r)− (b1 + b) + 1.

Therefore, in all cases we have x2 ≥ (r1 + r)− (b1 + b) which then implies
[

r(wu0v0)
b(wu0v0)

]
≥

[
r(p′u0v0

)
b(p′u0v0

)

]
+ x1

[
1
1

]
+ (r(p′u0v0

)− b(p′u0v0
))

[
(s− 1)/2
(s + 1)/2

]

+ x3

[
(s + 1)/2
(s− 1)/2

]
.
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Notice that by definition
[

hmax

kmax

]
= min

p′u0v0

{[
r(p′u0v0

)
b(p′u0v0

)

]
+ a1

[
1
1

]
+ (r(p′u0v0

)− b(p′u0v0
))

[
(s− 1)/2
(s + 1)/2

]}
,

where the minimum is taken over all paths p′u0v0
. Hence we have that

[
r(wu0v0)
b(wu0v0)

]
≥

[
hmax

kmax

]
,

and consequently exp2(D) ≥ hmax + kmax.
Theorem 4.1 actually guarantees that the following way of determining the 2-exponent

of an asymmetric primitive two-coloured (n, s)-lollipop works.

• Step 1. For each pair of vertices u and v find the shortest (e, e)T -walk w′uv from u
to v for some positive integer e ≥ 1.

• Step 2. Among all walks w′uv in Step 1, find the longest walk wuv.

• Step 3. The 2-exponent of D is the length of the walk wuv.

Example 4.2. Let D be the asymmetric primitive two-coloured (9,5)-lollipop as follows.
Color the arcs (5,1), (2,1), (2,3), (4,3), (4,5), (5,6), (7,6), (8,7) and (9,8) with red and color
the others with blue. One can check that the longest (e, e)T -walk wuv in Step 2 is the
(10, 10)T -walk from 6 to 9. Hence the 2-exponent of D is 20.
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