# 2-Exponents of Two-Coloured Lollipops 

Saib Suwilo<br>Department of Mathematics, University of Sumatera Utara Medan 20155, Indonesia<br>e-mail: saib@karet.usu.ac.id


#### Abstract

This paper shows that for an asymmetric primitive two-coloured ( $n, s$ )lollipop on $n$ vertices with $s \leq n$, its 2 -exponent is at most $\left(s^{2}-1\right) / 2+(s+1)(n-s)$. The ( $n, s$ )-lollipops whose 2-exponents achieving the bound is characterised and for any asymmetric primitive two-coloured ( $n, s$ )-lollipop, a simple algorithm to find its exponent is presented.


Keywords Two-coloured digraphs; primitive; 2-exponents; ( $n, s$ )-lollipops.

## 1 Digraphs and Two-Coloured Digraphs

In this paper we discuss 2-exponents of a special type of primitive asymmetric two-coloured digraphs. We follow notations and terminologies for digraphs in [3] and for two-coloured digraphs in [10]. In particular a directed walk of length $m$ from a vertex $u$ to a vertex $v$ is a sequence of $m$ arcs of the form

$$
\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{m-1}, v_{m}\right)
$$

where $v_{0}=u$ and $v_{m}=v$. We denote a directed walk $w$ from $u$ to $v$ by $(u, v)$-walk or $w_{u v}$ and its length is denoted by $\ell\left(w_{u v}\right)$. A $(u, v)$-walk is closed provided $u=v$ and is open otherwise. A directed path from $u$ to $v$ is a directed walk with no repeated vertices except possibly $u=v$. A directed cycle is a closed directed path. A loop is a closed directed cycle of length 1 . The distance of distinct vertices $u$ and $v$ in a digraph $D, d(u, v)$, which length is represent the shortest $(u, v)$-path in $D$.

A digraph $D$ is strongly connected provided for each pair of vertices $u$ and $v$ in $D$ there is a $(u, v)$-walk and a $(v, u)$-walk of length exactly $k$. The smallest of such positive integer $k$ is the exponent of $D$ and is denoted by $\exp (D)$. A strongly connected digraph $D$ is primitive if and only if the greatest common divisor of lengths of all directed cycles in $D$ is 1 [3]. A symmetric digraph $D$ is a digraph such that the $\operatorname{arc}(u, v)$ is in $D$ whenever the $\operatorname{arc}(v, u)$ is in $D$. Since a symmetric digraph must have a directed cycle of length 2 , a symmetric digraph is primitive if and only if it contains a directed cycle of odd length. A directed ( $n, s$ )-lollipop on $n$ vertices is a symmetric strongly connected digraph consisting of directed cycles $(1,2),(2,3), \ldots,(s-1, s),(s, 1)$ and $(1, s),(s, s-1), \ldots,(3,2),(2,1)$ of length $s$ and directed paths $(s, s+1),(s+1, s+2), \ldots,(n-1, n)$ and $(n, n-1),(n-1, n-2), \ldots,(s+1, s)$ of length $(n-s)$. Figure 1 shows a (9,5)-lollipop.

Research on exponent of digraph is initiated by Wielandt [9, 15]. Wielandt shows that for primitive digraphs on $n$ vertices the $\exp (D) \leq(n-1)^{2}+1$ and then characterized


Figure 1: A (9,5)-lollipop
the digraph whose exponent attains the bound. Since then exponents of various classes of primitive digraphs have been obtained (see [3]). In particular, Dulmage and Mendelsohn [4] gave more general bound on exponents of primitive digraphs in term of the length of the smallest cycle. They have shown that if D is a primitive digraph on n vertices with the smallest cycle of length s , then $\exp (D) \leq n+s(n-2)$. Beasley and Kirkland [1] discussed a bound on exponent of primitive digraphs in terms of the exponent of its primitive subdigraphs. For primitive symmetric digraphs on $n$ vertices, Shao [11] proved that the $\exp (D) \leq 2 n-2$ and showed that the exponent $2 n-2$ is attained if and only if the digraph $D$ is isomorphic to a symetric digraph that consists of the directed paths $(1,2),(2,3), \ldots,(n-1, n)$ and $(n, n-1),(n-1, n-2), \ldots,(2,1)$ of length $(n-1)$ and the loop $(1,1)$. Let $D$ be a loopless primitive symmetric digraph on $n$ vertices. Liu et.al [8] show that the $\exp (D) \leq 2 n-4$ and prove that the upper bound is achieved if an only if $D$ is isomorphic to a directed $(n, 3)$-lollipop. Dulmage and Mendelsohn [4], Suwilo and Mardiningsih [13] have shown that exponents of symmetric primitive digraphs are bounded above by $(s-1)+2 \ell$ where $s$ is the length of smallest directed cycle in the digraph, and $\ell$ is the length of the longest path connecting a vertex in the smallest directed cycle and a vertex in $D$ but not in the smallest directed cycle. In particular they have shown that the exponent of a symmetric directed $(n, s)$-lollipop is $2 n-s-1$ which then implies that the exponent of a symmetric directed cycle of odd length $n$ is $(n-1)$.

A two-coloured digraph, or a 2-digraph for short, is a digraph in which each of its arcs is coloured by either red or blue. In a two-coloured digraph we differentiate a walk by how many red and blue arcs it contains. By an $(h, k)^{T}$-walk from $u$ to $v$ we mean a $(u, v)$-walk of length $h+k$ consisting of $h$ red arcs and $k$ blue arcs. So a $(1,2)^{T}$-walk could be a walk of length 3 whose all arcs are blue except the first arc, or all arcs are blue except the second arc, or all arcs are blue except the third arc. In general by a $(r(w), b(w))^{T}$-walk $w$ we mean a walk $w$ consisting of $r(w)$ red arcs and $b(w)$ blue arcs. The vector $(r(w), b(w))^{T}$ is called the composition of the walk $w$. A two-coloured digraph $D$ is strongly connected provided that its underlying digraph, the digraph obtained from $D$ by ignoring its arc color, is strongly connected. An asymmetric two-coloured digraph is a symmetric two-coloured digraph for which an $\operatorname{arc}(u, v)$ is coloured red whenever the $\operatorname{arc}(v, u)$ is coloured blue and vice versa. A strongly connected two-coloured digraphs is primitive provided there are nonnegative integers $h$ and $k$ such that for each pair of vertices $u$ and $v$ there is an $(h, k)^{T}$-walk from $u$ to $v$. The smallest nonnegative integer $h+k$ among all such nonnegative integers $h$ and $k$ is called the 2 -exponent of $D$, denoted by $\exp _{2}(D)$.

Let $D$ be a two-coloured digraph and let $\gamma=\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{t}\right\}$ be the set of all directed
cycles in $D$. A cycle matrix $M$ of $D$ is a 2 by $t$ matrix whose $i$ th column is the composition of the cycle $\gamma_{i}, i=1,2, \ldots, t$. That is

$$
M=\left[\begin{array}{llll}
r\left(\gamma_{1}\right) & r\left(\gamma_{2}\right) & \cdots & r\left(\gamma_{t}\right) \\
b\left(\gamma_{1}\right) & b\left(\gamma_{2}\right) & \cdots & b\left(\gamma_{t}\right)
\end{array}\right] .
$$

The content of $M$ is defined to be 0 if the $\operatorname{rank}(M)=1$ and is the greatest common divisor of the 2 by 2 minors of $M$, otherwise. The following result, due to Fornasini and Valcher [5], gives necessary and sufficient conditions for primitive two-coloured digraph.

Theorem 1.1. Let $D$ be a strongly connected two-coloured digraph with at least one arc of each color. The two-coloured digraph $D$ is primitive if and only if the content of its cycle matrix is 1 .

Let $D$ be a strongly connected two-coloured digraph on n vertices. Let $R=\left(r_{i j}\right)$ be the $n$ by $n(0,1)$-matrix with $r_{i j}=1$ if and only if the $\operatorname{arc}(i, j)$ in $D$ is a red arc. Similarly, let $B=\left(b_{i j}\right)$ be the $n$ by $n(0,1)$-matrix with $b_{i j}=1$ if and only if the $\operatorname{arc}(i, j)$ in $D$ is a blue arc. The matrices $R$ and $B$ are the red and the blue adjacency matrices of $D$, respectively. Conversely for any pair $(A, B)$ of nonnegative matrices we can find a two-coloured digraph $D$ on $n$ vertices associated with $(A, B)$ as follows. The $\operatorname{arc}(i, j)$ in $D$ is a red arc if and only if the entry $a_{i j}>0$ and the $\operatorname{arc}(i, j)$ in $D$ is a blue arc if and only if the entry $b_{i j}>0$.

For any pair of nonnegative matrices $(A, B)$ and nonnegative integers $h$ and $k$ define the $(h, k)$-Hurwitz product, $(A, B)^{(h, k)}$, of $A$ and $B$ to be the sum of all matrices that are a product of $h A$ 's and $k B$ 's. For example,

$$
(A, B)^{(2,0)}=A^{2},(A, B)^{(0,3)}=B^{3}
$$

and

$$
\begin{aligned}
(A, B)^{(3,2)}= & A^{3} B^{2}+A^{2} B A B+A^{2} B^{2} A+A B A^{2} B+A B A B A \\
& +A B^{2} A^{2}+B A^{3} B+B A^{2} B A+B A B A^{2}+B^{2} A^{3}
\end{aligned}
$$

An (h,k)-Hurwitz product of matrices A and B can be computed using recurrence relation as follows:

For any nonnegative integers $h \geq 1$ and $k \geq 1,(A, B)^{(h, 0)}=A^{h},(A, B)^{(0, k)}=B^{k}$, and

$$
(A, B)^{(h, k)}=A(A, B)^{(h-1, k)}+B(A, B)^{(h, k-1)}
$$

Using induction on $h+k$ one can show the following result:
Lemma 1.2. Let $D$ be a two-coloured digraph on $n$ vertices and let $R$ and $B$, respectively, be the red and the blue adjacency matrices of $D$. Then the $(i, j)$-entry of $(R, B)^{(h, k)}$ is the number of $(h, k) T$-walk from $i$ to $j$.

We note that by Lemma 1.2, the 2-exponent of a primitive two-coloured digraph can be obtained by finding the smallest positive integer $h+k$ such that all entries of the matrix $(R, B)^{(h, k)}$ are positive for some nonnegative integers $h$ and $k$.

Research on 2-exponents of two-coloured digraphs is initiated by Shader and Suwilo [10]. They prove that the largest 2-exponent of primitive two-coloured digraphs on $n$ vertices lies on the interval $\left[\left(n^{3}-5 n^{2}\right) / 3,\left(3 n^{3}+2 n^{2}-2 n\right) / 2\right]$. Since then many papers have been published
on the subject (see $[2,6,7,14]$ ). Suwilo [12] shows that for an asymmetric complete twocoloured digraph $D$ on $n$ vertices, the 2-exponent of D lies on interval $[2,4]$ and proves that for each integer $k, 2 \leq k \leq 4$, there is an asymmetric complete two-coloured digraph whose 2 -exponent is exactly $k$.

The purpose of this paper is to discuss bound on 2-exponent of asymmetric two-coloured $(n, s)$-lollipops. For such two-coloured digraphs, in Section 2, we show the 2 -exponent is bounded above by $\left(s^{2}-1\right) / 2+(s+1)(n-s)$ and the bound can be obtained by a $(t, t)^{T}$ walk where $t=\left(s^{2}-1\right) / 4+(s+1)(n-s) / 2$. Furthermore, in Section 3, we characterize asymmetric two-coloured digraphs whose 2-exponents attain the bound, and finally we give a formula for finding 2-exponent of any asymmetric two-coloured ( $n, s$ )-lollipop in Section 4.

## 2 Bound for 2-Exponents of Two-coloured Lollipops

Let $D$ be an asymmetric primitive two-coloured $(n, s)$-lollipop. Since $D$ is primitive, then $s$ must be odd. Furthermore, since $D$ is asymmetric, then $D$ has directed cycles of length 2 with composition $(1,1)^{T}$, and has two directed cycles $\gamma_{1}$ and $\gamma_{2}$ of length $s$, say the cycles

$$
(1,2),(2,3), \ldots,(s-1, s),(s, 1) \text { and }(1, s),(s, s-1), \ldots,(3,2),(2,1)
$$

Hence, the compositions of the directed cycles of $D$ are of the form $(1,1)^{T},(a, s-a)^{T}$, or $(s-a, a)^{T}$ for some nonnegative integer $a \geq 0$. This implies the cycle matrix of $D$ is of the form

$$
M=\left[\begin{array}{cccccc}
a & s-a & 1 & 1 & \cdots & 1 \\
s-a & s & 1 & 1 & \cdots & 1
\end{array}\right]
$$

Since $D$ is primitive, by Theorem 1.1 the content of $M$ is 1 . Hence

$$
1=\operatorname{gcd}(s(2 a-s), s-2 a, 2 a-s)= \pm(s-2 a)
$$

This implies either $a=(s+1) / 2$ or $a=(s-1) / 2$, so without loss of generality we may assume that

$$
M=\left[\begin{array}{llllll}
(s-1) / 2 & (s+1) / 2 & 1 & 1 & \cdots & 1 \\
(s+1) / 2 & (s-1) / 2 & 1 & 1 & \cdots & 1
\end{array}\right]
$$

We note that since $D$ is asymmetric, every vertex of $D$ lies on a $(1,1)^{T}$-walk. This implies each $(h, k)^{T}$-walk in $D$ can be extended to a $(h+t, k+t)^{T}$-walk for each positive integer $t \geq 1$.

Theorem 2.1. Let $D$ be an asymmetric primitive two-coloured ( $n, s$ )-lollipop. Then

$$
\exp _{2}(D) \leq(s 2-1) / 2+(s+1)(n-s)
$$

Proof. For each pair of vertices $u$ and $v$ we show that there is a $(t, t)^{T}$-walk with

$$
t=\left(s^{2}-1\right) / 4+(s+1)(n-s) / 2
$$

Since $D$ is asymmetric it suffices to show that for each pair of vertices $u$ and $v$ in $D$ there is an $(e, e)^{T}$-walk with $e \leq t$. Since $D$ is asymmetric, for each vertices $u$ in $D$ there is a closed $(1,1)^{T}$-walk from $u$ to itself. Let $u$ and $v$ be two distinct vertices in $D$ and let $p_{u v}$
be the shortest path from $u$ to $v$. Then $\ell\left(p_{u v}\right) \leq(s-1) / 2+(n-s)$. If $r\left(p_{u v}\right)=b(p u v)$, then $r\left(p_{u v}\right), b\left(p_{u v}\right) \leq\left(s^{2}-1\right) / 4+(s+1)(n-s) / 2$ and we are done. So we assume that $r\left(p_{u v}\right) \neq b\left(p_{u v}\right)$ and without loss of generality we assume that $r\left(p_{u v}\right)>b\left(p_{u v}\right)$.

We first assume that the path $p_{u v}$ does not intersect the cycle $\gamma_{1}$ (or $\gamma_{2}$ ). In this case, the walk that starts at $u$, moves to $s$ along the path $p_{u s}$, moves $\left(r\left(p_{u v}\right)-b\left(p_{u v}\right)\right)$ times around the cycle $\gamma_{1}$ and back to $s$, and finally moves to $v$ along the path $p_{s v}$ is the shortest $(e, e)^{T}$-walk from $u$ to $v$. The composition of this walk is

$$
\left[\begin{array}{l}
r\left(w_{u v}\right) \\
b\left(w_{u v}\right)
\end{array}\right]=\left[\begin{array}{l}
r\left(p_{u v}\right) \\
b\left(p_{u v}\right)
\end{array}\right]+\ell_{u v}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left(r\left(p_{u v}\right)-b\left(p_{u v}\right)\right)\left[\begin{array}{c}
(s-1) / 2 \\
(s+1) / 2
\end{array}\right]
$$

where $\ell_{u v}=d(u, s)$ if $d(u, s)<d(v, s)$ and $\ell_{u v}=d(v, s)$ otherwise. We note that

$$
r\left(p_{u v}\right)+b\left(p_{u v}\right)+\ell_{u v} \leq n-s
$$

Hence

$$
\begin{aligned}
& {\left[\begin{array}{c}
r\left(w_{u v}\right) \\
b\left(w_{u v}\right)
\end{array}\right] \leq\left[\begin{array}{l}
r\left(p_{u v}\right) \\
b\left(p_{u v}\right)
\end{array}\right]+\ell_{u v}\left[\begin{array}{c}
(s+1) / 2 \\
(s+1) / 2
\end{array}\right]+\left(r\left(p_{u v}\right)-b\left(p_{u v}\right)\right)\left[\begin{array}{l}
(s-1) / 2 \\
(s+1) / 2
\end{array}\right]} \\
& \quad=\left(r\left(p_{u v}\right)-b\left(p_{u v}\right)+\ell_{u v}\right)\left[\begin{array}{c}
(s+1) / 2 \\
(s+1) / 2
\end{array}\right] \leq(n-s)\left[\begin{array}{c}
(s+1) / 2 \\
(s+1) / 2
\end{array}\right] \\
& \quad \leq\left[\begin{array}{c}
\left(s^{2}-1\right) / 4+(n-1)(s+1) / 2 \\
\left(s^{2}-1\right) / 4+(n-1)(s+1) / 2
\end{array}\right]
\end{aligned}
$$

We now assume that the path $p_{u v}$ has vertices in common with the cycle $\gamma_{1}$ (or cycle $\gamma_{2}$ ). The walk that starts at $u$, follows the path $p_{u v}$ to $v$, and long the way moves $\left(r\left(p_{u v}\right)-b\left(p_{u v}\right)\right)$ times around the cycle $\gamma_{1}$ is an $(e, e)^{T}$-walk with composition

$$
\left[\begin{array}{l}
r\left(w_{u v}\right) \\
b\left(w_{u v}\right)
\end{array}\right]=\left[\begin{array}{l}
r\left(p_{u v}\right) \\
b\left(p_{u v}\right)
\end{array}\right]+\left(r\left(p_{u v}\right)-b\left(p_{u v}\right)\right)\left[\begin{array}{l}
(s-1) / 2 \\
(s+1) / 2
\end{array}\right]=\left(r\left(p_{u v}\right)-b\left(p_{u v}\right)\right)\left[\begin{array}{l}
(s+1) / 2 \\
(s+1) / 2
\end{array}\right]
$$

We note in this cases that since the path $p_{u v}$ is the shortest path form $u$ to $v$,

$$
(r(p u v)+b(p u v))\left((n-s)+\frac{1}{2}(s-1)\right.
$$

This implies $\left(r\left(p_{u v}\right)-b\left(p_{u v}\right)\right) \leq r\left(p_{u v}\right)((n-s)+(s-1) / 2$. Therefore, we now have

$$
\left[\begin{array}{l}
r\left(w_{u v}\right) \\
b\left(w_{u v}\right)
\end{array}\right] \leq\left[\begin{array}{l}
\left(s^{2}-1\right) / 4+(n-1)(s+1) / 2 \\
\left(s^{2}-1\right) / 4+(n-1)(s+1) / 2
\end{array}\right]
$$

Now using $(1,1)^{T}$-walks, we can extend the walk $w_{u v}$ into a $(t, t)^{T}$-walk with

$$
t=\left(s^{2}-1\right) / 4+(s+1)(n-s) / 2
$$

Since for every of vertices $u$ and $v$ one can find a $(t, t)^{T}$-walk from $u$ to $v$ with

$$
t=\left(s^{2}-1\right) / 4+(s+1)(n-s) / 2
$$

then

$$
\exp _{2}(D) \leq\left(s^{2}-1\right) / 2+(n-s)(s+1)
$$

In the proof of Theorem 2.1, we assume that $r\left(p_{u v}\right)>b\left(p_{u v}\right)$. If $b\left(p_{u v}\right)>r\left(p_{u v}\right)$, then the composition of the $(e, e)^{T}$-walk $w_{u v}$ can be chosen as follows.

- If $p_{u v}$ has vertices in common with the cycle $\gamma_{1}\left(\right.$ or $\left.\gamma_{2}\right)$, then

$$
\left[\begin{array}{l}
r\left(w_{u v}\right) \\
b\left(w_{u v}\right)
\end{array}\right]=\left[\begin{array}{l}
r\left(p_{u v}\right) \\
b\left(p_{u v}\right)
\end{array}\right]+\left(b\left(p_{u v}\right)-r\left(p_{u v}\right)\right)\left[\begin{array}{c}
(s+1) / 2 \\
(s-1) / 2
\end{array}\right]
$$

- If $p_{u v}$ has no vertices in common with the cycle $\gamma_{1}\left(\right.$ or $\left.\gamma_{2}\right)$, then

$$
\left[\begin{array}{l}
r\left(w_{u v}\right) \\
b\left(w_{u v}\right)
\end{array}\right]=\left[\begin{array}{l}
r\left(p_{u v}\right) \\
b\left(p_{u v}\right)
\end{array}\right]+\ell_{u v}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left(b\left(p_{u v}\right)-r\left(p_{u v}\right)\right)\left[\begin{array}{l}
(s+1) / 2 \\
(s-1) / 2
\end{array}\right]
$$

On both cases we move $\left(b\left(p_{u v}\right)-r\left(p_{u v}\right)\right)$ times around the directed cycle $\gamma_{2}$. For the rest of the paper for a $(u, v)$-path puv we assume that $r\left(p_{u v}\right)>b\left(p_{u v}\right)$.

Corollary 2.2. Let $D$ be an asymmetric primitive two-coloured cycle on $n$ vertices. Then $\exp _{2}(D) \leq\left(n^{2}-1\right) / 2$.

Proof. Notice that a two-coloured cycle can be thought of as a two-coloured $(n, s)$-lollipop with $s=n$.

We end this section by setting up an upper bound for 2-exponent of asymmetric twocoloured ( $n, s$ )-lollipop in term of $n$, the number of vertices in $D$.

Corollary 2.3. Let $D$ be an asymmetric primitive two-coloured ( $n, s$ )-lollipop. Then

$$
\exp _{2}(D) \leq\left\{\begin{aligned}
\left(n^{2}-1\right) / 2, & \text { if } n \text { is odd } \\
n^{2} / 2, & \text { if } n \text { is even }
\end{aligned}\right.
$$

Proof. Let $f(s)=\left(s^{2}-1\right) / 2+(s+1)(n-s)$. Notice that $f$ achieves its global optima at $s=n-1$. Since $f(s)$ is quadratic and $s$ is odd, $f(s)$ has global optima at $s=n-1$ when $n$ is even, and has global optimal at $s=n$ or at $s=n-2$ when $n$ is odd. This implies

$$
\exp _{2}(D) \leq\left\{\begin{aligned}
\left(n^{2}-1\right) / 2, & \text { if } n \text { is odd } \\
n^{2} / 2, & \text { if } n \text { is even }
\end{aligned}\right.
$$

## 3 Two-coloured (n,s)-lollipops Achieving the Bound

In this section, we discuss classes of asymmetric primitive two-coloured $(n, s)$-lollipops whose 2 -exponents are exactly $\left(s^{2}-1\right) / 2+(s+1)(n-s)$.
Theorem 3.1. Let $D$ be a primitive asymmetric two-coloured $(n, s)$-lollipop. If $D$ has a red path of length $(s+1) / 2+(n-s)$, then $\exp _{2}(D)=\left(s^{2}-1\right) / 2+(s+1)(n-s)$.

Proof. Let $p^{\prime}{ }_{u v}$ be a red path of length $(s+1) / 2+(n-s)$ in $D$. Since there are only $(n-s)$ vertices not in $\gamma_{1}\left(\right.$ or $\left.\gamma_{2}\right)$, one of the vertices $u$ or $v$ must lie on the cycle $\gamma_{1}$ (or $\gamma_{2}$ ). Since $D$ is asymmetric $D$ has a blue path of length $(s+1) / 2+(n-s)$. Since the length of the cycle $\gamma_{1}$ (or $\gamma_{2}$ ) is odd, there is a red shortest path $p_{u v}$ from $u$ to $v$ in $D$ of length $q=(s-1) / 2+(n-s)$. Again since $D$ is asymmetric, this implies there is a blue shortest path $p_{v u}$ from $v$ to $u$ of length $q=(s-1) / 2+(n-s)$. Let $w_{u v}$ and $w_{v u}$, respectively, be
the walk from $u$ to $v$ and the walk from $v$ to $u$ that have the same composition. Hence the composition of $w_{u v}$ and $w_{v u}$, respectively, are of the form

$$
\left[\begin{array}{l}
r\left(w_{u v}\right)  \tag{3.1}\\
b\left(w_{u v}\right)
\end{array}\right]=\left[\begin{array}{l}
q \\
0
\end{array}\right]+\varepsilon\left[\begin{array}{l}
1 \\
0
\end{array}\right]+x_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{c}
(s-1) / 2 \\
(s+1) / 2
\end{array}\right]+x_{3}\left[\begin{array}{c}
(s+1) / 2 \\
(s-1) / 2
\end{array}\right]
$$

for some nonnegative integers $x_{1}, x 2, x 3$, and $\varepsilon=0,1$, and

$$
\left[\begin{array}{l}
r\left(w_{v u}\right)  \tag{3.2}\\
b\left(w_{v u}\right)
\end{array}\right]=\left[\begin{array}{l}
0 \\
q
\end{array}\right]+\delta\left[\begin{array}{l}
0 \\
1
\end{array}\right]+y_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+y_{2}\left[\begin{array}{c}
(s-1) / 2 \\
(s+1) / 2
\end{array}\right]+y_{3}\left[\begin{array}{c}
(s+1) / 2 \\
(s-1) / 2
\end{array}\right]
$$

for some nonnegative integers $y_{1}, y_{2}, y_{3}$, and $\delta=0,1$. We note that if $\varepsilon=0$, then we use the red path of length $q=(s+1) / 2+(n-s)$ in constructing the walk $w_{u v}$. If $\varepsilon=1$, we use the red path of length $(s+1) / 2+(n-s)$ in constructing the walk $w_{u v}$. Similar argument applies for $\delta$.

If $\varepsilon=\delta=0$, setting Equation (3.1) and Equation (3.2) equals we have

$$
\left[\begin{array}{c}
-q  \tag{3.3}\\
q
\end{array}\right]=\left(x_{1}-y_{1}\right)\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left(x_{2}-y_{2}\right)\left[\begin{array}{c}
(s-1) / 2 \\
(s+1) / 2
\end{array}\right]+\left(x_{3}-y_{3}\right)\left[\begin{array}{c}
(s+1) / 2 \\
(s-1) / 2
\end{array}\right] .
$$

Subtracting the second by the first component of Equation 3.3 we have $\left(x_{2}-y_{2}\right)+\left(y_{3}-x_{3}\right) \geq$ $2 q$. This implies $x_{2}+y_{3}>2 q$ and hence $x_{2} \geq q$ or $y_{3} \geq q$.

It is not hard to see the following results. If $\varepsilon=1$ and $\delta=0$ or if $\varepsilon=0$ and $\delta=1$, then $x_{2} \geq q$ or $y_{3} \geq q$. Finally if $\varepsilon=\delta=1$, then $x_{2} \geq q+1$ and $y_{3} \geq q+1$.

Therefore, in each case we have

$$
\left[\begin{array}{l}
r\left(w_{u v}\right) \\
b\left(w_{u v}\right)
\end{array}\right] \geq\left[\begin{array}{l}
\left(s^{2}-1\right) / 4+(s+1)(n-s) / 2 \\
\left(s^{2}-1\right) / 4+(s+1)(n-s) / 2
\end{array}\right]
$$

Hence we now have that $\exp _{2}(D) \geq\left(s^{2}-1\right) / 2+(s+1)(n-s)$. This and Theorem 2.1 imply that the 2-exponent of $D$ is $\exp _{2}(D)=\left(s^{2}-1\right) / 2+(s+1)(n-s)$.
Example 3.2. Let $D$ be a primitive asymmetric two-coloured $(n, s)$-lollipop with the coloring as follows. Color the path pns from vertex $n$ to vertex $s$ by red and color the $\operatorname{arcs}(s, 1),(1,2), \ldots,((s-1) / 2,(s+1) / 2)$ by red. Notice that $D$ has a red path of length $(s+1) / 2+(n-s)$, namely the directed path

$$
(n, n-1),(n-1, n-2), \ldots,(s+1, s),(s, 1),(1,2), \ldots,((s-1) / 2,(s+1) / 2)
$$

from $n$ to $(s+1) / 2$. This implies the directed path

$$
(n, n-1),(n-1, n-2), \ldots,(s+1, s),(s, s-1),(s-1, s-2), \ldots,((s+3) / 2,(s+1) / 2)
$$

is a red path from $n$ to $(s+1) / 2$ of length exactly $(s-1) / 2+(n-s)$. Theorem 3.1 implies that $\exp _{2}(D)=\left(s^{2}-1\right) / 2+(s+1)(n-s)$.

As a consequence of Theorem 3.1 and Corollary 2.3 we have ( $\mathrm{n}, \mathrm{s}$ )-lollipop with the largest 2-exponent as follows.
Corollary 3.3. Let $D$ be a primitive asymmetric two-coloured ( $n, s$ )-lollipop with a red path of length $(s+1) / 2+(n-s)$.
(a) If $n$ is odd and $s=n$ or $s=n-2$, then $\exp (D)=\left(n^{2}-1\right) / 2$.
(b) If $n$ is even and $s=n-1$, then $\exp _{2}(D)=n^{2} / 2$.

## 4 Formula for 2-exponents of Two-coloured ( $n, s$ )-lollipops

We have discussed that Lemma 1.2 together with the definition of $(h, k)$-Hurwitz product can be used to find the 2-exponent of an asymmetric primitive two-coloured digraph. In this section, we discuss a way of finding the 2 -exponent of asymmetric primitive two-coloured $(n, s)$-lollipop without using the $(h, k)$-Hurwitz product. First, we introduce some notations necessary for our result. Let $u$ and $v$ be any vertices in $D$ and let $p_{u v}$ be a $(u, v)$-path. Notice that for each pair of vertices $u$ and $v$ in $D$, except if both $u$ and $v$ lie on the path $p_{n s}$, there are two paths from $u$ to $v$. One passes through the cycle $\gamma_{1}$ and the other passes through the cycle $\gamma_{2}$. Let $u$ and $v$ be vertices in $D$ such that $u$ lies on cycle and $v$ does not lie on cycle. Then a path $p_{u v}$ from $u$ to $v$ consists of a path $p_{u s}$ from $u$ to $s$ and the path $p_{s v}$ from $s$ to $v$. Assume that the composition of the path $p_{u s}$ that passes through the cycle $\gamma_{1}$ is $\left(r_{1}, b_{1}\right)^{T}$ and the composition of the path $p_{s v}$ is $(r, b)^{T}$. The composition of the path $p_{u v}$ that passes through the cycle $\gamma_{1}$ and the composition of the path $p_{v u}$ that passes through the cycle $\gamma_{2}$, respectively, are

$$
\left[\begin{array}{l}
r\left(p_{u v}\right) \\
b\left(p_{u v}\right)
\end{array}\right]_{\gamma_{1}}=\left[\begin{array}{l}
r_{1}+r \\
b_{1}+b
\end{array}\right] \text { and }\left[\begin{array}{l}
r\left(p_{v u}\right) \\
b\left(p_{v u}\right)
\end{array}\right]_{\gamma_{2}}=\left[\begin{array}{l}
b_{1}+b \\
r_{1}+r
\end{array}\right]
$$

This implies the composition of the path puv that passes through the cycle $\gamma_{2}$ and the composition of the path $p_{v u}$ that passes through the cycle $\gamma_{1}$ are

$$
\left[\begin{array}{l}
r\left(p_{u v}\right) \\
b\left(p_{u v}\right)
\end{array}\right]_{\gamma_{2}}=\left[\begin{array}{c}
\left(s+1-2 b_{1}\right) / 2+r \\
\left(s-1-2 r_{1}\right) / 2+b
\end{array}\right] \text { and }\left[\begin{array}{l}
r\left(p_{v u}\right) \\
b\left(p_{v u}\right)
\end{array}\right]_{\gamma_{1}}=\left[\begin{array}{c}
\left(s-1-2 r_{1}\right)+b \\
\left(s+1-2 b_{1}\right)+r
\end{array}\right]
$$

respectively. Note that if both vertices $u$ and $v$ lie on the cycle then the composition of paths $p_{u v}$ and $p_{v u}$ depend only on $r_{1}$ and $b_{1}$. Similarly if both vertices $u$ and $v$ lie on the path $p_{n s}$, then there is only one path $p_{u v}$ and only one path $p_{v u}$ and their composition depend only on $r\left(p_{u v}\right)$ and $b\left(p_{u v}\right)$.

For any pair of vertices $u$ and $v$, let $w^{\prime}{ }_{u v}$ be the shortest $(e, e)^{T}$-walk from $u$ to $v$. We note that the composition of $w^{\prime}{ }_{u v}$ is of the form

$$
\left[\begin{array}{l}
r\left(p_{u v}\right) \\
b\left(p_{u v}\right)
\end{array}\right]+\ell_{u v}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left(r\left(p_{u v}\right)-b\left(p_{u v}\right)\right)\left[\begin{array}{l}
(s-1) / 2 \\
(s+1) / 2
\end{array}\right]
$$

for some path puv such that $r\left(p_{u v}\right) \geq b\left(p_{u v}\right)$, or

$$
\left[\begin{array}{l}
r\left(p_{u v}\right) \\
b\left(p_{u v}\right)
\end{array}\right]+\ell_{u v}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left(b\left(p_{u v}\right)-r\left(p_{u v}\right)\right)\left[\begin{array}{l}
(s+1) / 2 \\
(s-1) / 2
\end{array}\right]
$$

for some path $p_{u v}$ with $b\left(p_{u v}\right)>r\left(p_{u v}\right)$. We also note that

$$
\ell_{u v}=\left\{\begin{array}{cc}
d(v, s), & \text { if } d(v, s)<d(u, s) \\
d(u, s), & \text { if } d(u, s)<d(v, s) \\
0, & \text { if } r\left(p_{u v}\right)=b\left(p_{u v}\right) \text { or at least one of } u \text { or } v \text { is on the cycle. }
\end{array}\right.
$$

Define

$$
\left[\begin{array}{l}
h_{\max } \\
k_{\max }
\end{array}\right]=\max _{u, v \in V}\left\{\left[\begin{array}{l}
r\left(w_{u v}^{\prime}\right) \\
b\left(w_{u v}^{\prime}\right)
\end{array}\right]\right\} .
$$

Then we have the following formula for 2-exponent of an $(n, s)$-lollipop.
Theorem 4.1. Let $D$ be an asymmetric primitive two-coloured ( $n, s$ )-lollipop. Then

$$
\exp _{2}(D)=h_{\max }+k_{\max }
$$

Proof. Let $u$ and $v$ be any vertices in $D$ and let $w^{\prime} u v$ be a shortest $(e, e)^{T}$-walk from $u$ to $v$. Notice by the definition of

$$
\left[\begin{array}{l}
h_{\max } \\
k_{\max }
\end{array}\right]
$$

for any shortest $(e, e)^{T}$-walk $w^{\prime}{ }_{u v}$ from $u$ to $v$ we have

$$
\left[\begin{array}{c}
r\left(w^{\prime}{ }_{u v}\right) \\
b\left(w^{\prime}{ }_{u v}\right)
\end{array}\right] \leq\left[\begin{array}{l}
h_{\max } \\
k_{\max }
\end{array}\right] .
$$

Since $r\left(w^{\prime}{ }_{u v}\right)=b\left(w^{\prime}{ }_{u v}\right)$ and $h_{\max }=k_{\max }$, using $(1,1)^{T}$-walks we can extend the walk $w^{\prime}{ }_{u v}$ to a walk wuv such that

$$
\left[\begin{array}{l}
r\left(w_{u v}\right) \\
b\left(w_{u v}\right)
\end{array}\right]=\left[\begin{array}{l}
h_{\max } \\
k_{\max }
\end{array}\right] .
$$

This implies for any pair of vertices $u$ and $v$ in $D$ there is a $\left(h_{\max }, k_{\max }\right)^{T}$-walk from $u$ to $v$. Hence $\exp _{2}(D) \leq h_{\max }+k_{\max }$. It remains to show that $\exp _{2}(D) \geq h_{\max }+k_{\text {max }}$.

Let $u_{0}$ and $v_{0}$ be the vertices in $D$ such that the shortest $(e, e)^{T}$-walk $w^{\prime} u_{0} v_{0}$ in $D$ has composition $\left(h_{\max }, k_{\max }\right)^{T}$. Let $p_{u_{0} v_{0}}^{\prime}$ be the path from $u_{0}$ to $v_{0}$ contained in the walk $w^{\prime}{ }_{u_{0} v_{0}}$. Let $w_{u_{0} v_{0}}$ and $w_{v_{0} u_{0}}$, respectively, be the walk from $u_{0}$ to $v_{0}$ and from $v_{0}$ to $u_{0}$ that have the same composition. We consider four cases.

Case 1. The path $p_{u_{0} v_{0}}^{\prime}$ passes through $\gamma_{1}$ and the path $p_{v_{0} u_{0}}^{\prime}$ passes through $\gamma_{2}$.
The composition of the walk $w_{u_{0} v_{0}}$ is of the form

$$
\left[\begin{array}{l}
r_{1}+r  \tag{4.1}\\
b_{1}+b
\end{array}\right]+x_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{c}
(s-1) / 2 \\
(s+1) / 2
\end{array}\right]+x_{3}\left[\begin{array}{c}
(s+1) / 2 \\
(s-1) / 2
\end{array}\right]
$$

for some nonnegative integers $x_{1}, x_{2}$ and $x_{3}$. The composition of the walk $w_{v_{0} u_{0}}$ is of the form

$$
\left[\begin{array}{l}
b_{1}+b  \tag{4.2}\\
r_{1}+r
\end{array}\right]+y_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+y_{2}\left[\begin{array}{c}
(s-1) / 2 \\
(s+1) / 2
\end{array}\right]+y_{3}\left[\begin{array}{c}
(s+1) / 2 \\
(s-1) / 2
\end{array}\right]
$$

for some nonnegative integers $y_{1}, y_{2}$ and $y_{3}$. Since $w_{u_{0} v_{0}}$ and $w_{v_{0} u_{0}}$ have the same composition, from Equation (4.1) and Equation (4.2) we have
$\left[\begin{array}{c}\left(b_{1}+b\right)-\left(r_{1}+r\right) \\ \left(r_{1}+r\right)-\left(b_{1}+b\right)\end{array}\right]=\left(x_{1}-y_{1}\right)\left[\begin{array}{l}1 \\ 1\end{array}\right]+\left(x_{2}-y_{2}\right)\left[\begin{array}{c}(s-1) / 2 \\ (s+1) / 2\end{array}\right]+\left(x_{3}-y_{3}\right)\left[\begin{array}{c}(s+1) / 2 \\ (s-1) / 2\end{array}\right]$.
From the last equation, subtracting the second component by the first component, we have that

$$
\left(x_{2}-y_{2}\right)+\left(y_{3}-x_{3}\right)=2\left(\left(r_{1}+r\right)-\left(b_{1}+b\right)\right) .
$$

This implies $x_{2}+y_{3} \geq 2\left(\left(r_{1}+r\right)-\left(b_{1}+b\right)\right)$ and hence $x_{2} \geq\left(r_{1}+r\right)-\left(b_{1}+b\right)$ or $b_{3} \geq\left(r_{1}+r\right)-\left(b_{1}+b\right)$.

Case 2. The path $p_{u_{0} v_{0}}^{\prime}$ passes through $\gamma_{1}$ and the path $p_{v_{0} u_{0}}^{\prime}$ passes through $\gamma_{1}$.
The composition of the walk $w_{u_{0} v_{0}}$ is of the form

$$
\left[\begin{array}{l}
r_{1}+r  \tag{4.3}\\
b_{1}+b
\end{array}\right]+x_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{c}
(s-1) / 2 \\
(s+1) / 2
\end{array}\right]+x_{3}\left[\begin{array}{c}
(s+1) / 2 \\
(s-1) / 2
\end{array}\right]
$$

for some nonnegative integers $x_{1}, x_{2}$ and $x_{3}$. The composition of the walk $w_{v_{0} u_{0}}$ is of the form

$$
\left[\begin{array}{c}
\left(s-1-2 r_{1}\right)+b  \tag{4.4}\\
\left(s+1-2 b_{1}\right)+r
\end{array}\right]+y_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+y_{2}\left[\begin{array}{c}
(s-1) / 2 \\
(s+1) / 2
\end{array}\right]+y_{3}\left[\begin{array}{c}
(s+1) / 2 \\
(s-1) / 2
\end{array}\right]
$$

for some nonnegative integers $y_{1}, y_{2}$ and $y_{3}$. From Equation (4.3) and Equation (4.4) we have $\left(x_{2}+y_{3}\right) \geq 2\left(\left(r_{1}+r\right)-\left(b_{1}+b\right)\right)+1$, hence $x_{2} \geq\left(r_{1}+r\right)-\left(b_{1}+b\right)$ or $y_{3} \geq\left(r_{1}+r\right)-\left(b_{1}+b\right)$.

Case 3. The path $p_{u_{0} v_{0}}^{\prime}$ passes through $\gamma_{2}$ and the path $p_{v_{0} u_{0}}^{\prime}$ passes through $\gamma_{1}$.
The composition of the walk $w_{u_{0} v_{0}}$ is of the form

$$
\left[\begin{array}{c}
\left(s+1-2 b_{1}\right) / 2+r  \tag{4.5}\\
\left(s-1-2 r_{1}\right) / 2+b
\end{array}\right]+x_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{c}
(s-1) / 2 \\
(s+1) / 2
\end{array}\right]+x_{3}\left[\begin{array}{c}
(s+1) / 2 \\
(s-1) / 2
\end{array}\right]
$$

for some nonnegative integers $x_{1}, x_{2}$ and $x_{3}$. The composition of the walk is $w_{v_{0} u_{0}}$ of the form

$$
\left[\begin{array}{l}
b_{1}+b  \tag{4.6}\\
r_{1}+r
\end{array}\right]+y_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+y_{2}\left[\begin{array}{c}
(s-1) / 2 \\
(s+1) / 2
\end{array}\right]+y_{3}\left[\begin{array}{c}
(s+1) / 2 \\
(s-1) / 2
\end{array}\right]
$$

for some nonnegative integers $y_{1}, y_{2}$ and $y_{3}$. Since $w_{u_{0} v_{0}}$ and $w_{v_{0} u_{0}}$ have the same composition, Equations (4.5) and (4.6) imply $x_{2}+y_{3} \geq 2\left(\left(r_{1}+r\right)-\left(b_{1}+b\right)\right)+1$, and hence $x_{2} \geq\left(r_{1}+r\right)-\left(b_{1}+b\right)$ or $y_{3} \geq\left(r_{1}+r\right)-\left(b_{1}+b\right)$.

Case 4. The path $p_{u_{0} v_{0}}^{\prime}$ passes through $\gamma_{2}$ and the path $p_{v_{0} u_{0}}^{\prime}$ passes through $\gamma_{2}$.
The composition of the walk $w_{u_{0} v_{0}}$ is of the form

$$
\left[\begin{array}{c}
\left(s+1-2 b_{1}\right) / 2+r  \tag{4.7}\\
\left(s-1-2 r_{1}\right) / 2+b
\end{array}\right]+x_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{c}
(s-1) / 2 \\
(s+1) / 2
\end{array}\right]+x_{3}\left[\begin{array}{c}
(s+1) / 2 \\
(s-1) / 2
\end{array}\right]
$$

for some nonnegative integers $x_{1}, x_{2}$ and $x_{3}$. The composition of the walk $w_{v_{0} u_{0}}$ is of the form

$$
\left[\begin{array}{c}
\left(s-1-2 r_{1}\right)+b  \tag{4.8}\\
\left(s+1-2 b_{1}\right)+r
\end{array}\right]+y_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+y_{2}\left[\begin{array}{c}
(s-1) / 2 \\
(s+1) / 2
\end{array}\right]+y_{3}\left[\begin{array}{c}
(s+1) / 2 \\
(s-1) / 2
\end{array}\right]
$$

for some nonnegative integers $y_{1}, y_{2}$ and $y_{3}$. Equating Equations (4.7) and (4.8) we have $x_{2}+y_{3} \geq 2\left(\left(r_{1}+r\right)-\left(b_{1}+b\right)\right)+2$ and hence $x_{2} \geq\left(r_{1}+r\right)-\left(b_{1}+b\right)+1$ or $y_{3} \geq\left(r_{1}+r\right)-\left(b_{1}+b\right)+1$.

Therefore, in all cases we have $x_{2} \geq\left(r_{1}+r\right)-\left(b_{1}+b\right)$ which then implies

$$
\begin{gathered}
{\left[\begin{array}{l}
r\left(w_{u_{0} v_{0}}\right) \\
b\left(w_{u_{0} v_{0}}\right)
\end{array}\right] \geq\left[\begin{array}{l}
r\left(p^{\prime}{ }_{u_{0} v_{0}}\right) \\
b\left(p_{u_{0}}^{\prime}{ }_{u_{0} v_{0}}\right)
\end{array}\right]+x_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left(r\left({p^{\prime}}_{u_{0} v_{0}}\right)-b\left({p^{\prime}}_{u_{0} v_{0}}\right)\right)\left[\begin{array}{c}
(s-1) / 2 \\
(s+1) / 2
\end{array}\right]} \\
+x_{3}\left[\begin{array}{c}
(s+1) / 2 \\
(s-1) / 2
\end{array}\right] .
\end{gathered}
$$

Notice that by definition

$$
\left[\begin{array}{c}
h_{\max } \\
k_{\max }
\end{array}\right]=\min _{p^{\prime} u_{0} v_{0}}\left\{\left[\begin{array}{c}
r\left(p^{\prime}{ }_{u_{0} v_{0}}\right) \\
b\left(p^{\prime}{ }_{u_{0} v_{0}}\right)
\end{array}\right]+a_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left(r\left(p_{u_{0} v_{0}}^{\prime}\right)-b\left(p_{u_{0} v_{0}}^{\prime}\right)\right)\left[\begin{array}{c}
(s-1) / 2 \\
(s+1) / 2
\end{array}\right]\right\}
$$

where the minimum is taken over all paths $p_{u_{0} v_{0}}^{\prime}$. Hence we have that

$$
\left[\begin{array}{l}
r\left(w_{u_{0} v_{0}}\right) \\
b\left(w_{u_{0} v_{0}}\right)
\end{array}\right] \geq\left[\begin{array}{l}
h_{\max } \\
k_{\max }
\end{array}\right],
$$

and consequently $\exp _{2}(D) \geq h_{\max }+k_{\max }$.
Theorem 4.1 actually guarantees that the following way of determining the 2-exponent of an asymmetric primitive two-coloured ( $n, s$ )-lollipop works.

- Step 1. For each pair of vertices $u$ and $v$ find the shortest $(e, e)^{T}$-walk $w_{u v}^{\prime}$ from $u$ to $v$ for some positive integer $e \geq 1$.
- Step 2. Among all walks $w_{u v}^{\prime}$ in Step 1, find the longest walk $w_{u v}$.
- Step 3. The 2-exponent of $D$ is the length of the walk $w_{u v}$.

Example 4.2. Let D be the asymmetric primitive two-coloured (9,5)-lollipop as follows. Color the arcs $(5,1),(2,1),(2,3),(4,3),(4,5),(5,6),(7,6),(8,7)$ and $(9,8)$ with red and color the others with blue. One can check that the longest $(e, e)^{T}$-walk $w_{u v}$ in Step 2 is the $(10,10)^{T}$-walk from 6 to 9 . Hence the 2 -exponent of $D$ is 20 .

## References

[1] L.B. Beasley \& S. Kirkland, On the exponent of primitive matrices containing primitive submatrices, Linear Algebra Appl., 261 (1997), 195-205.
[2] L.B. Beasley \& S. Kirkland, A note on $k$-primitive digraphs, Linear Algebra Appl., 373 (2003), 67-74.
[3] R.A. Brualdi \& H.J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, 1991.
[4] A.L. Dulmage \& N.S. Mendelsohn, The Exponents of Incidence Matrices, Duke Math. J. 31 (1964), 575-584.
[5] E. Fornasini \& M.E. Valcher, Directed graphs, 2D State Models, and characteristic polynomials of irreducible matrix pairs, Linear Algebra Appl., 263 (1997)., 275-310.
[6] Y. Gao \& Y. Shao, Exponents of two-coloured digraphs with two cycles, Linear Algebra Appl., 407 (2005), 263-276.
[7] S.G. Lee \& J.M. Yang, Bound for 2-exponents of primitive extremal digraphs, Commun. Korean. Math. Soc. 20 No. 1 (2005), 51-62.
[8] B. Liu, B.D. McKay, N.C. Wormald, \& Z.K. Min, The exponent set of symmetric primitive (0,1) matrices with zero trace, Linear Algebra Appl., 133 (1990), 121-131.
[9] H. Schneider, Wielandt's proof of the exponent inequality for primitive nonnegative matrices, Linear Algebra Appl., 353 (2002), 5-10.
[10] B.L. Shader \& S. Suwilo, Exponents of nonnegative matrix pairs, Linear Algebra Appl., 363 (2003), 275-293.
[11] J.Y. Shao, The exponent set of symmetric primitive matrices, Scientia Sinica Ser. A XXX. No 4 (1987), 348-358.
[12] S. Suwilo, The exponent set of complete asymmetric 2-digraphs, Mawengkang, Suwilo, Sutarman (ed.), Proceedings of the 1st IMT-GT Regional Conference on mathematics, Statistics and Their Applications, (2005), 51-56.
[13] S. Suwilo \& Mardiningsih, On exponent of primitive graphs, Mawengkang, Suwilo, Sutarman (ed.), Proceedings of the 1st IMT-GT Regional Conference on Mathematics, Statistics and Their Applications, (2005), 37-42.
[14] S. Suwilo \& B.L. Shader, On 2-exponents of ministrong 2-digraphs, Ali, Ravichandran (ed.), Proceedings of the 2nd IMT-GT 2006 Regional Conference on Mathematics, Statistics, and Applications, (2006), 51-56.
[15] H. Wielandt, Unzerlegbare nicht negative Matrizen, Math. Z, 52 (1950), 642-645.

