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Abstract The function transformed method is applied to an n-dimensional complex
Ginzburg-Landau equation (CGLE), which is being transformed to physically signif-
icant well known nonlinear waves equations depending only on the function ξ, and
these equations can be exactly solved. The solution of these equations in ξ is shown
to lead to a general soliton solution of the CGLE.
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1 Introduction

The complex Ginzburg-Landau equation (CGLE) is one of the most studied nonlinear equa-
tions in the physics and applied mathematics communities (refer to Aranson & Kramer [1]).
It describes vast variety phenomena from nonlinear waves to second order phase transitions,
from superconductivity, superfluidity, and Bose-Einstein condensation to liquid crystals and
strings theory (refer e.g. Kuramoto [6], Dangelmayr & Kramer [2], Pismen [11], Newell [7]).

The one dimensional Ginzburg–Landau equation (e.g. Nohara [9]), which has also been
named the Newell-Whitehead equation (Newell & Whitehead [8]) or the Stewartson-Stuart
equation (Stewartson & Stuart [12]), presents generally the time evolution of the amplitude
of unstable wave with finite wave numbers near a critical unstable point. The Schrödinger
equation is a special case of the Ginzburg–Landau equation for purely dispersive waves. The
fact that the uniform solution for the nonlinear Schrödinger equation has the modulational
instability is known, and also it is integrable so that the general exact solution can be
presented. This modulational instability also occurs in the nonlinear Ginzburg–Landau
equation (or CGLE). Nozaki and Bekki [10] and some other researchers have obtained
particular solutions only.

Some studies of the initial value problem for CGLE have also been carried out. Origi-
nally, CGLE presents time evolution of the envelope of slightly unstable, nearly monochro-
matic waves, whose energy is almost concentrated in a wave number. Directional, nearly
monochromatic waves have a fixed wave number but spread over some propagation area
in propagating direction. The CGLE is the basic model, which describes these nonlinear
phenomena far from equilibrium (Khater et al. [5]). It describes, for example, the open flow
motion, travelling waves in binary fluid mixture, and spatially extended non equilibrium
system.

In optics, it is useful in analyzing optical transmission lines passively mode-locked fiber
lasers and spatial optical solitons. In this paper we apply the function transformed method
(Wenhua [13]) to an n-dimensional CGLE, which is being transformed to physically signifi-
cant nonlinear waves equations such as the sine–Gordon and sinh–Gordon equations, which
depend only on one function, ξ, and can be exactly solved. The general solution of these
equations in ξ leads to a general soliton solution of the n-dimensional CGLE.
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This paper is organized as follows; the introduction is in section 1. In section 2, we
discuss on the Ginzburg-Landau equation. In section 3 we obtain a sine-Gordon equation
by resorting to a function transformation method on the CGLE, i.e. obtainable by applying
certain functions and then we generate the solutions of the sine-Gordon equation in ξ. This
then leads to a general soliton solution of the n-dimensional CGLE. In section 4 we obtain
a sinh–Gordon equation by applying certain functions and we then obtain its solutions in
ξ. Similarly we then derive the general soliton solution of the n-dimensional CGLE. Finally
the paper ends with concluding remarks in section 5.

2 Ginzburg-Landau Equation

We consider the following Fourier integral representation, which is expanded directly from
the stable plane travelling wave of a nearly monochromatic plane wave solution, i.e.

u(x, t) =

∫

k

S(k)eikxe[δ(k,R)−iw(k,R)]tdk (1)

where S(k) denotes the wave spectrum of the function of wave number k, and the growth
rate δ and angular frequency w depends on R, the parameter used in the complex growth
rate s. i is the imaginary unit.

If the growth rate δ is zero and w = w(k), then it becomes purely dispersive waves and
we have a critical parameter Rc. We assume that there is a critical wave number such that
the real exponential growth rate δ(k, R) satisfies the equation (refer Haberman [4])
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We assume R is slightly greater than Rc, and this assumption means that there is a band
of waves numbers near kc in which δ > 0. Nevertheless, the largest positive value of δ will
be small so that the wave is slightly unstable.

In this case, there is a small band of unstable wave number near kc. For the slightly
unstable waves number of equation (1) let k = kc and R = Rc and we take the nearly
monochromatic assumption of wave solution of the following form

u(x, t) = A(x, t)ei{x(kc)−w(kc,Rc)t}. (4)

Equation (4) shows that most of the energy is concentrated in one wave number kc and the
amplitude A(x, t) is not constant but varies slowly in space and time. The amplitude A(x, t)
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acts as an envelope of the travelling wave. We shall now obtain the governing equation of
the envelope.

First A(x, t) is derived from equation (1) and (4) as follows,

A(x, t) =

∫

k

S(k)eip(x,k)eQ(t,k,R)dk (5)

where

p(x, k) = (k − kc)x, (6)

and

Q(t; k, R) = [δ(k, R)− i{w(k, R)− w(kc, Rc)}]t
= {s(k, R) + iw(kc, Rc)}t. (7)

In equation (7), s(k, R) is the complex growth rate as given by

s(k, R) = [δ(k, R) − iw(k, R)]. (8)

Subsequently we derive time and space derivatives of A(x, t) and then combine these equa-
tions using the Taylor expansion of the dispersion relation of the complex growth rate.

The time derivative of of A(x, t) is

∂A(x, t)

∂t
=

∫

R

{s(k, R) + iw(kc, Rc)}S(k)eip(x,k)eQ(t;k,R)dk. (9)

Moreover, the m-th spatial derivative of A(x, t) is obtained as

∂mA(x, t)

∂xm
= im

∫

R

(k − kc)
mS(k)eip(x,k)eQ(t;k,r)dk, m = 1, 2, 3 . . . (10)

In equation (9), we expand the complex growth rate s(k, R) in Taylor series around
k = kc and R = Rc, i.e.
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∞
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(12)

The first equation of equation (2) and equation (8) yield the relations

s(kc, Rc) = δ(kc, Rc) − iw(kc, Rc) = iw(kc, Rc) (13)

s(k, R) + iw(kc, Rc) =

∞
∑

m=1

sm
k (kc, Rc)

m!
(k − kc)

m +

∞
∑

n=1

sn
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n!
(R − Rc)

n. (14)
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Equation (9) can be rewritten by using (14) as follows,

∂A(x, t)

∂t

=

∫

R

[ ∞
∑

m=1

sm
k (kc, Rc)

m!
(k − kc)

m +

∞
∑

n=1

sn
k (kc, Rc)

m!
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n

]

S(k)eip(x,k)eQ(t;k,R)dk

=

∫

R

∞
∑

m=1

sm
k (kc, Rc)

m!
(k − kc)

mS(k)eip(x,k)eQ(t;k,R)dk

+

∞
∑

n=1

sn
k (kc, Rc)

m!
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n

∫

R

S(k)eip(x,k)eQ(t;k,R)dk. (15)

Substituting equation (10) into equation (15) leads to the following,

∂A(x, t)

∂t
=

∞
∑

m=1

(−i)m(kc, Rc)

m!

∂mA(x, t)

∂tm
+

∞
∑

n=1

sn
k (kc, Rc)

n!
(R − Rc)

nA(x, t). (16)

Equation (16) represents the linear higher order governing equation which governs the
amplitude of slightly unstable, nearly monochromatic wave namely the envelope.

Assuming O(k − k)2 = O(R − Rc) and neglecting the third and higher order of spatial
derivatives and the second and the higher order of the coefficient of A(x, t) in equation (16)
(that is m = 1) and (n= 1), we obtain the linearized Ginzburg-Landau equation.

∂A(x, t)

∂t
+ w

(1)
k (kc, Rc)

∂A(x, t)

∂x
= −s2

k

2!
(kc, Rc)

∂2A(x, t)

∂x2
+ s(kc, Rc)(R − Rc)A(x, t). (17)

To derive equation (17), the following relation which is reduced from the second relation
in equation (2) is used, i.e.

s
(1)
k (kc, Rc) = δ

(1)
k (kc, Rc) − iw

(1)
k (kc, Rc) = −iw

(k)
k (kc, Rc). (18)

Thus we can treat the nonlinear case of the dispersion relation of the complex growth rate
as

s = s(k, R|A(x, t)|2) = δ(k, R, |A(x, t)|2) − iw(k, R, |A(x, t)|2). (19)

We then expand s in Taylor series around k = kc, R = Rc and |A(x, t)|2 = 0, i.e.
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∞
∑

m=1

sm
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n
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∞
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n!
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n +
∞

∑

n=1

sn
|A|2(kc, Rc, 0)

n!
|A(x, t)|2n (20)

where

sn
|A|2(kc, Rc, 0) =

∂ns(kc, Rc, |A|2)
∂|A|2n

∣

∣

∣

|A|2=0
. (21)
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Equation (20) can be applied to equation (1) and thus the following relation for A(x, t) is
obtained

∂A(x, t)

∂t
=

∞
∑

m=1

(−1)m sm
k (kc, Rc, 0)

m!
+

∂mA(x, t)

∂xm

+

∞
∑

n=1

sm
k (kc, Rc, 0)

n!
(R − Rc)A(x, t) +

∞
∑

n=1

sm
R (kc, Rc, 0)

n!
|A(x, t)|2nA(x, t). (22)

Neglecting the third and higher order of spatial derivatives and the second and higher order
of the coefficient of A(x, t) in equation (22) (that is we take m = 1, 2 and n = 1) we obtain
the nonlinear complex Ginzburg-Landau equation (CGLE) as

∂A(x, t)

∂t
+ w

(1)
k (kc, Rc, 0)

∂A(x, t)

∂x

= −s
(2)
k (kc, Rc, 0)

∂2A(x, t)

∂x2
+ s

(1)
R (kc, Rc, 0)(R − Rc)A(x, t)

+ s
(1)
|A|2(kc, Rc, 0)A(x, t)|A(x, t)|2. (23)

If we let δ = 0 and w = w(k) we obtain the linear Schrödinger equation

∂A(x, t)

∂t
+ w

(1)
k

∂A(x, t)

∂x
= − tw

(2)
k

2!

∂2A(x, t)

∂x2
. (24)

Moreover, the nonlinear Schrödinger equation is derived by considering the non linearity
w = w(k, |A|2) and expanding w in Taylor series around k = kc and |A(x, t)|2 = 0 to obtain

∂A(x, t)

∂t
+w

(1)
k (kc, 0)

∂A(x, t)

∂x
=

iw
(2)
k

2!

(kc, 0)∂2A(x, t)

∂x2
− iw

(1)
|A|2(kc, 0)|A(x, t)|2A(x, t). (25)

3 Sine-Gordon Equation

Consider an n-dimensional CGLE of the form

∂0Z = µZ − Z|Z|2 + ∂i∂iZ (26)

where ∂0 =
∂

∂0
=

∂

∂t
, ∂i =

∂

∂xi
, µ is the diffusion coefficient.

We can find solutions of (26) in the form

Z = u(x)e(icαxα) (27)

where cα = c∗α = constant, u(x) = u∗(x) where c∗α stands for complex conjugate of cα.

By substituting (27) into (26), one obtains

∂0u − 2ici∂iu − ∂i∂iu = µu − ciciu − u3 − ic0u,

which can be rewritten in the form

∂0u − 2ici∂iu − ∂i∂iu = cu − u3. (28)
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where c = µ − ic0 − cici.

Let us make a function transformation of the following form

u =
√

c sin
(φ

2

)

(29)

where φ is a function in xα.

On splitting the first two terms, the third terms of the L.H.S and R.H.S of the equation
(28) now become

∂0u − 2ici∂iu =
√

c
[

∂0 sin
(φ

2

)

− 2ici∂i sin
(φ

2

)]

=
1

2

√
c cos

(φ

2

)

[∂0φ − 2ici∂φ] (30a)

∂i∂iu =
1

2

√
c∂i

[

cos
(φ

2

)

∂iφ
]

=
1

2

√
c cos

(φ

2

)[

∂i∂iφ − 1

2
∂iφ∂iφ tan

(φ

2

)]

. (30b)

cu − u3 = c
√

c
[

sin
(φ

2

)

− sin3
(φ

2

)]

=
c

2

√
c cos

(φ

2

)

sin φ. (30c)

By substituting all equations (30a-c) into (28) we obtain

1

2

√
c cos

(φ

2

)

[∂0φ − 2ici∂φ] − 1

2

√
c cos

(φ

2

)[

∂i∂iφ − 1

2
∂iφ∂iφ tan

(φ

2

)]

=
c

2

√
c cos

(φ

2

)

sin φ. (31a)

Dividing equation (31a) by
√

c cos
(φ

2

)

we obtain

∂0φ − 2ici∂iφ − ∂i∂iφ +
1

2
∂iφ∂iφ tan

(φ

2

)

= c sin φ. (31b)

Setting φ = φ(ξ), which is a function of another function ξ only, we can find that

∂0φ = ∂0ξ
dφ

dξ
, ∂iφ = ∂iξ

dφ

dξ
(31c)

∂iφ∂iφ = ∂iξ∂iξ
(dφ

dξ

)2

(31d)

∂i∂iφ = ∂iξ∂iξ
d2φ

dξ2
+ ∂i∂iξ

dφ

dξ
. (31e)

Substituting (31 a, c, d, e) into (31 b) we obtain

∂0ξ
dφ

dξ
− 2ici∂iξ

dφ

dξ
− ∂i∂iξ

dφ

dξ
− ∂iξ∂iξ

d2φ

dξ2
+

1

2
tan

(φ

2

)

∂iξ∂iξ
(dφ

dξ

)2

= c sin φ
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or

(∂0ξ − 2ici∂iξ − ∂i∂iξ)
dφ

dξ
− ∂iξ∂iξ

[d2φ

dξ2
− 1

2
tan

(φ

2

)(dφ

dξ

)2]

= c sin φ. (32)

Clearly, some solutions of (32) obey the following system of equations

∂0ξ − 2ici∂iξ − ∂i∂iξ = 0, ∂iξ∂iξ = 1, (33)

dφ

dξ
=

√
2c cos

(φ

2

)

,
d2φ

dξ2
= − c

2
sin φ. (34)

Equations (33) have a general solution in the form of (see Khater et al. [4])

ξ = F (ηj) + dαxα, ηj = bjαxα + εj = constant.

Equation (34) is equivalent to a sine-Gordon equation, and its solution is a well known
soliton of the form (e.g. refer to Drazin & Johnson [3])

φ = 4 tan−1 e(
√

2cξ+ξ0) − π, ξ0 = constant. (35)

Inserting (35) into (29), we obtain the soliton solution of an n-dimensional CGLE (26) in
the form of solution (36), i.e.

u =
√

c sin[2e(
√

2cξ+ξ0)]− π

or
u =

√
c cos

(

2 tan−1 e(
√

2cξ+ξ0)
)

and
Z = −√

c cos
(

2 tan−1 e(
√

2cξ+ξ0)
)

eicαxα (36)

and graphically this solution emerges as in Figure 1, depicting a form of a breather-like
solution.

Following the above-mentioned procedures, and applying another function transforma-
tion of equation (28) via

u =
√

c cos
(φ

2

)

. (37)

then we have

∂0φ − 2ici∂iφ − ∂i∂iφ − 1

2
∂iφcot

(φ

2

)

= −c sin φ. (38)

Setting φ = φ(ξ) and substituting (31 a, c, d, e) into (38) yield

∂0
dφ

dξ
− 2ici∂iξ

dφ

dξ
− ∂i∂iξ

dφ

dξ
− ∂iξ∂iξ

d2φ

dξ2
− 1

2
cot

(φ

2

)

∂iξ∂iξ
(dφ

dξ

)2

= −c sin φ.

or

(∂0ξ − 2ici∂iξ − ∂i∂iξ)
dφ

dξ
− ∂iξ∂iξ

[d2φ

dξ2
+

1

2
cot

(φ

2

)(dφ

dξ

)2]

= −c sin φ. (39)

Explicitly, some solutions of (39) obey the following system of equations:

∂0ξ − 2ici∂iξ − ∂i∂iξ = 0, ∂iξ∂iξ = −1

dφ

dξ
=

√
2c sin

(φ

2

)

,
d2φ

dξ2
− 3c

2
sin φ. (40)
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Figure 1: Soliton solution of the CGLE with u =
√

c cos
(

2 tan−1 e(
√

2cξ+ξ0)
)

Similarly, equation (40) is equivalent to a sine-Gordon equation, where its solution is the
well known soliton of the form

φ = 4 tan−1 e(
√

6cξ+ξ0) − π, ξ0 = constant.

Inserting this into (29), we obtain the soliton solution of an n-dimensional CGLE (26) in
the form of solution (41), i.e.

u =
√

c cos
(

2 tan−1 e(
√

6cξ+ξ0) − π

2

)

or
u =

√
c sin

(

2 tan−1 e(
√

6cξ+ξ0)
)

and
Z =

√
c sin

(

2 tan−1 e(
√

6cξ+ξ0)
)

eicαxα (41)

and graphically from Figure 2, this solution portrays a similar positive breather-like solution
form as in Figure 1.

The same steps can be taken by applying another function transformation of equation
(28) via the exponential form

u =
√

ceφ/2. (42)

Then we have (28) in the form

∂0φ − 2ici∂iφ − ∂i∂iφ − 1

2
∂iφ∂iφ = 2c[1 − eφ]. (43)

Setting φ = φ(ξ) and substituting (31 a, c, d, e) into (43) yield

(∂0ξ − 2ici∂iξ − ∂i∂iξ)
dπ

dξ
− ∂iξ∂iξ

[

d2φ

dξ2
+

1

2

(dφ

dξ

)2
]

= −2c[1 − eφ]. (44)
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Figure 2: Soliton solution of the CGLE with u =
√

c sin
(

2 tan−1 e(
√

6cξ+ξ0)
)

Then if
∂0ξ − 2ici∂iξ − ∂i∂iξ = 0, ∂i∂iξ = 1

and
d2φ

dξ2
+

1

2

(dφ

dξ

)2

= −2c[1− eφ]. (45)

Then the solution of equation (45) is

φ = 2 ln[
√

2sec(
√

cξ + ξ0)], ξ0 = constant.

Inserting this into (42), we obtain the soliton solution of an n-dimensional CGLE (26) in
the form of solution (46), i.e.

Z =
√

2c sec[
√

cξ + ξ0)]e
icαxα (46)

and graphically this solution takes a geometrical form as in Figure 3, portraying a kink-
antikink solution.

4 Sinh-Gordon Equation

Following exactly the procedures as laid out in section 3, we obtain

∂0u − 2ici∂iu − ∂i∂iu = ću − u3, (47)

where ć = cici − µ + ic0.

Let us make a function transformation

u =
√

ć sinh
(φ

2

)

(48)
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Figure 3: Soliton solution of the CGLE with u =
√

ceφ/2

then we have

1

2

√
ć cosh

(φ

2

)

[∂0 − 2ci∂iφ] − 1

2

√
ć cosh

(φ

2

)[

∂i∂iφ +
1

2
tanh

(φ

2

)

∂iφ∂iφ
]

= −ć
√

ć sinh
(φ

2

)

cosh2
(φ

2

)

or

∂0φ − 2ici∂iφ − ∂i∂iφ +
1

2
tanh

(φ

2

)

∂iφ∂iφ = ć sinhφ. (49)

Setting φ = φ(ξ) and substituting (31 a, c, d, e) into (49) yield

(

∂0ξ − 2ici∂iξ −
1

2
∂i∂iξ

)dφ

dξ
− ∂iξ∂iξ

[

d2φ

dξ2
+

1

2
tanh

(φ

2

)(dφ

dξ

)2
]

= ć sinh φ. (50)

Clearly again, we can set that some solutions of (50) to obey the following system of
equations

∂0ξ − 2ici∂iξ −
1

2
∂i∂iξ = 0, ∂iξ∂iξ = 1,

d2φ

dξ2
+

1

2
tanh

(φ

2

)(dφ

dξ

)2

= ć sinh φ

such that we have equation

dφ

dξ
=

√
2ć cosh

(φ

2

)

,
d2φ

dξ2
=

ć

2
sinhφ. (51)

Equation (51) is equivalent to the sinh-Gordon equation, where its solution is given by the
well known soliton of the form (e.g. refer to Drazin & Johnson [3])

φ = 4 tanh−1
[

e
√

2ćξ+ξ0

]

− π, ξ0 = constant. (52)
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Substituting (52) and (47) into (27), we obtain the soliton solution of an n-dimensional
CGLE (26) in the form

Z =
√

ć sinh
[

2 tanh−1(e
√

2ćξ+ξ0 ) − π

2

]

eicαxα (53)

and graphically Figure 4 depicts the geometrical form of the soliton solution.
Following the above-mentioned procedures, and applying another function transforma-

tion of equation (49) via

u =
√

ć cosh
(φ

2

)

(54)

and following the same steps taken above then we have

(−∂0ξ − 2ici∂iξ + ∂i∂iξ)
dφ

dξ
− ∂iξ∂iξ

[

d2φ

dξ2
+

1

2
cot

(φ

2

)(dφ

dξ

)2
]

= ć sinh φ. (55)

Figure 4: Soliton solution of the CGLE with u =
√

ć sinh
(φ

2

)

Then clearly, some solution of (54) obey the following system

−∂0ξ − 2ici∂iξ + ∂i∂iξ = 0 and ∂iξ∂iξ = −1

dφ

dξ
=

√
2ć sinh

(φ

2

)

,
d2φ

dξ2
=

ć

2
sinhφ. (56)

Equation (56) is equivalent to the sinh-Gordon equation, where its solution is the well
known soliton

φ = −4 tanh−1
[

e
√

2ćξ+ξ0

]

− π, ξ0 = constant.

Then soliton solution of solution of an n-dimensional CGLE (26) is in the form
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Z =
√

ć
[

cosh
(

2 tanh−1
(

e
√
−2ćξ+ξ0

))

− π

2

]

eicαxα , (57)

and graphically from Figure 5, this solution portrays a similar soliton form as in Figure 4.

Figure 5: Soliton solution of the CGLE with u =
√

ć cosh
(φ

2

)

5 Concluding Remarks

We have applied the function transformation method to the n-dimensional CGLE, which is
being transformed to physically significant well known nonlinear waves equations i.e. sine-
Gordon and sinh-Gordon equations, which depend only on the function ξ, and typically
can be exactly solved via the inverse scattering technique or the Hirota method (e.g. refer
to Drazin & Johnson [3]). The general solution of these equations in ξ is shown to lead
to a general soliton solution of n-dimensional CGLE. Interestingly we have tried to relate
this scheme to other well known nonlinear waves equations such as the Korteweg-de Vries
equation (KdV). Clearly this method is not applicable since KdV is of higher order than
CGLE which is of second order, and similarly this rule applies to the other nonlinear waves
equations.
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