MATEMATIKA, 2009, Volume 25, Number 1, 79-85
©Department of Mathematics, UTM.

Asymptotic Distribution of
Sample Covriance Determinant

Maman A. Djauhari

Department of Mathematics, Faculty of Science, Universiti Teknologi Malaysia
81310 UTM Skudai, Johor, Malaysia

e-mail: maman@Qutm.my

Abstract Under normality, an asymptotic distribution of sample covariance determi-
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1 Introduction

In the literature on multivariate statistical theory, e.g., [2] and [15], we can find the mathe-
matical derivation showing that the sample covariance determinant or generalized variance
converges in distribution to a normal distribution. However, this classical result is not suit-
able for practical purposes because the distribution parameters are the limits of the of the
true parameters when the sample size tends to infinity and in addition, the convergence to
this limit is slow. On the other hand, in the literature on multivariate statistical applica-
tions, e.g., Alt and Smith [1] and Montgomery [14], the true parameters are considered but
not the distribution. In the construction of control region, for example, Montgomery [14]
points out that “most of the probability distribution of sample covariance determinant is
contained in the interval £3 times the standard deviation of sample covariance determinant
from its mean” without specifying the distribution. Such a statement is ambiguous and
needs formal explanation. This is the main topic of this paper.

The importance of covariance determinant as a measure of multvariate dispersion lies in
its important role in scientific investigation based on multivariate data sets. Although it is
a scalar simplication of a complex structure of multivariate dispersion (Montgomery [14]),
it is the most common and widely used measure in practice. This is due to the fact that
covariance determinant is very simple in its geometric interpretation and its computation.

Mardia et al. [12] says that besides covariance determinant there is another common
measure, i.e., total variance. But we do not recommend it for general purposes. It is only
the sum of all diagonal elements of covariance matrix and does not involve all covariance
structure. Hence, its use as multivariate dispersion measure is very limited, i.e., to the case
where the variables are independent to each other. Therefore, in what follows we focus on
covariance determinant.

We can find the role of covariance determinant in controlling the stability of covariance
structure in a wide spectrum of scientific investigations; from hard sciences like astronomy
and theoretical physics to soft sciences like supply chain management, and from manufac-
turing industry to service industry. See Hubert et al. [9] for an application in astronomy,
Edelman and Rao [6] in theoretical physics, and Beamon and Ware [3] in supply chain
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management. We can also see, for example, its application in service industry in Roes and
Dorr [17], Sulek [21] and Wood [24]; Hanslik et al. [8], Sellick [18], Shahian et al. [20] and
Woodall [25] in healthcare industry; Kruegel et al. [11] and Ye et al. [27] in information
industry; Florac et al. [7] and Jakolte and Saxena [10] in software industry; Da Costa et
al. [4], Ragea [16] and Tang [23] in financial industry; and Djauhari [5], Mason et al. [13],
Sullivan et al. [22] and Woodall and Montgomery [26] in manufacturing industry.

Due to that important role, in the present paper the asymptotic distribution of sample
covariance determinant with true parameters will be derived. The discussion will begin
in Section 2 with a brief review of the classical asymptotic distribution. In Section 3 we
introduce a theorem on an asymptotic distribution with true parameters. Later on, param-
eter estimates based on several independent random samples will be derived in Section 4.
Additional remarks will close this presentation.

2 Classical Asymptotic Distribution

Let X3, X5,..., X, be a random sample of size n from a p — variate normal distribution
Np(u, X) will be assumed positive definite throughout the paper. The sample mean vector
and sample covariance matrix are, respectively,

and sample covariance determinant, also called generalized variance, is |S|. To investigate
the distribution of |S| in the classical approach, the following procedure which consists of
two steps, is standard. First, consider the function f(S) = |S|. This function is a real valued
and continuous function of S where the first and second derivatives exist. In the second
step, we apply Theorem 4.2.5 in Anderson ([2], p. 76) to f(S). For clarity, that theorem is
rewritten as Theorem 1.

Theorem 1 Let Y be a random wvector of p dimension, ¢ be a constant vector in RP,
vVn—1(Y —¢) i>N]D(O,F) and f(Y) be a real valued function of Y where the first two
ofY)

8}/1 Y=c

derivatives at Y = c exist. Let also Y; and be the i-th component of Y and ¢,

respectively. Then

V= 1(f(Y) = f(e) =5 N (0, ¢'Tg).

Based on this theorem and the central limit theorem, Anderson [2] derives directly the
following corollary. (See also Muirhead [15]).

Corollary vn — 1(|S] — |3]) -% N (0, 2p|2[?).
Theoretically, the asymptotic distribution of |S| in this corollary is very important. For
example, it is used in exploring another asymptotic distribution as can be seen in the next
2
section. However, it is not useful in practice because the parameters |X| and —p1|2]|2 are
n—

not the true mean and variance. We show that those parameters are the limit from left of the
true ones when n tends to infinity. In the next section we derive the true parameters of | S|
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and another version of its asymptotic distribution. This version will ensure the applicability
of |S| in practice. Later on, we show that the convergence of the true parameters to the
parameters in the above corollary is very slow.

3 A Non-classical Asymptotic Distribution

Let us start with considering the exact distribution of |.S|. In the theoretical literature on
multivariate analysis, we can easily find that the distribution of |S| is equal to that of

>

RV

where U1Us, - - - , U, are independent and Uy, is distributed as x2_,;k=1,2,...,p. See, for
example, Anderson [2] and Muirhead [15]. From this distribution, it can be shown that the
mean and variance of |S| are

E(|S]) = b1|Z] and  Var(|S]) = ba| 2%, (1)
respectively, where

P

1 L 1

=1 =1

See also Montgomery [14].

In (1), the true mean of |S| is b1|%| and the true variance is bo|X|%. It is clear that
limy, 0 b1 = 1. Thus, the true mean tends to the mean in the corollary of Theorem 1. It
can also be shown that

L2/ 1)
im ———~

n—o0 by =L
Furthermore, based on the result in (1), a numerical computation shows that for p = 2 needs
n to be larger than 10,000 in order for the parameter mean in the corollary of Theorem 1
to differ no more than 10~ from the true mean. For larger value of p, it needs even larger
sample size n. This shows that the convergence of the true parameters to the parameters
in the corollary of Theorem 1 is very slow.

In order to have a more useful asymptotic distribution for practical purposes, where the
parameters mean and variance are sensitive to the change of sample size n and the number
of variables p, we introduce the following theorem.

Theorem 2 |S| - N (b1 |2, bo|S[?)

Proof

It can be shown that,
b|X] — |2
0 tim BIEL= 1]

n—oo

5 = 0. Here the numerator is the difference betweeen the hypothetical
Py

n—1

mean and the mean in the corollary of Theorem 1. The denominator is the standard
deviation in that corollary;
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Ik
(i) lim ;' |
n—oo
p |2|2
n—1
the denominator is as in above.

= 1. The numerator is the hypothetical standard deviation while

Based on these properties, by using Lemma A in Serfling ([19], p. 20), we arrive at the
statement of the theorem.O

This theorem appears straightforward. Nevertheless, we did not find any similar theorem
in the literature. For this theorem to be more practical, it is left for us to estimate the
parameters |X| and |%|? based on random samples. This is discussed in the next section.

4 Estimation

Consider again the random sample discussed in Section 2. In the previous section we have
E(|S]) = 0|8 and Var(|S]) = ba|Z|%

The first expression implies that |S|/b; is an unbiased estimate of |X|. From the second,
after an algebraic manipulation, we conclude that |S|?/(b? + b2) is an unbiased estimate of
|¥|2. The denominators by and (b3 + be) are the bias factors when we estimate || and |%|?
based on single random sample.

Now, suppose that m independent random samples of the same size n, drawn from
Np(u, X) are available. This is the common situation in industrial applications of statistical
process control. To look for the unbiased estimates of || and |%|? based on those samples,
we start by first looking at the average of sample covariance matrices which is the best esti-
mate of ¥, i.e., unbiased and has minimum variance based on several independent samples.
The following approach can be seen in Djauhari [5].

Let Sy be the covariance matrix of sample k;k = 1,2,...,m and S their average. As
(n —1)S1,(n — 1)Ss,...,(n — 1)S, have independent and identical Wishart distributions
Wy (E,n — 1), m(n —1)§ is distributed as W,(X, m(n — 1)), and consequently,

>
{m(n - 1)}»

where V1, Vs, ..., V, are independent and V}, has X72n(n71)7k+1; k=1,2,...,p. Accordingly,

|S| is distributed as ViVa---V, (2)

in general, the r-th moment of |S] is

B(|S]") = (ﬁ) [TEVD)

k=1

or » Fr+m(n_k>_k+1
_(m(n2—1)> |E|TH ( m(n_k)szrl )

= F( 2 )

where the function I'(x) on the right hand side is the gamma function of =,

F(x):/ t*~le~tdt
0




Asymptotic Distribution of Sample Covriance Determinant 83

From this relation or directly from (2), we obtain the mean and variance of |S|,

E(S]) =b3|%| and Var(|S]) = bs|S|? (3)
where the constant
1 P
by=———— [[{m(n—-1)—k+1
*= =y AL =D =k 1)

and, after a simple manipulation,

1 P
by = b Wg{m(n—m—wr?)}—bg

From (3) we conclude that |S|/bs is an unbiased estimate of |¥|. Furthermore, after an
algebraic manipulation, we obtain that |S|?/(b3 + bs) is an unbiased estimate of |X|2. The
bias factors b and (b3 + bs) are originally proposed by Djauhari (2005) to estimate |X| and
|¥|? based on several independent random samples.

5 Conclusion

We conclude that, for industrial applications, the following distribution of |Sg|; k = 1,2,...,p
is far better than the classical one in the corollary of Theorem 1 and even than the one in
Montgomery ([14], Example 10.2),

d bl— b2 a2
— N | — 4
151 -0 (G151, 72157 )

This is due to Theorem 2 and the unbiased nature of the estimates.

6 Additional Remarks

We derive the true mean and variance of sample covariance determinant and then show an
asymptotic distribution which, for practical purposes, is better than the classical one in the
following sense. The former has the true mean and variance which depend on the sample
size n and the number of variables p while the mean and variance of the latter are constant
and equal to the limit from left of the true mean and variance if n goes to infinity.

For practical purposes, the distribution in (4) is better than that given by classical
approach and even than the standard one given in Montgomery ([14], Example 10.2).

Theoretically, a sequence of random variables might converge in distribution to more
than one distributions. It is so with the sequence of sample covariance determinants as a
function of sample size. Two problems are still open to be explored:

(i) Is there any other asymptotic distribution to which the sequence converges faster in
distribution?

(ii) Are the parameter estimates in Section 4 the best?
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