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Abstract In this paper, we estimate the drift and diffusion parameters of the stochas-
tic logistic models for the growth of Clostridium Acetobutylicum P262 using Levenberg-
Marquardt optimization method of non linear least squares. The parameters are esti-
mated for five different substrates. The solution of the deterministic models has been
approximated using Fourth Order Runge-Kutta and for the solution of the stochastic
differential equations, Milstein numerical scheme has been used. Small values of Mean
Square Errors (MSE) of stochastic models indicate good fits. Therefore the use of
stochastic models are shown to be appropriate in modelling cell growth of Clostridium
Acetobutylicum P262.
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1 Introduction

Many physical phenomena can be better presented and understood via mathematical mod-
eling. Wide literatures on mathematical modeling of physical systems may be found with
deterministic modeling particularly by deterministic differential equation whereby the ele-
ment of noise is not considered. Deterministic differential equation describes a model of a
physical system and is solved to explain how a system changes or evolves, when the change
occurs and the effect of the starting point to the initial solution and so forth. It may present
optimum situations and can be improved by introducing stochastic element since in reality
many phenomena in nature are affected by stochastic noise therefore stochastic differen-
tial equations (SDE) may be required. Some of the fields which apply SDE are finance,
population dynamics, hydrology, environmetric and biometry.

The perturbation or the white noise is included in the function and the stochastic mod-
elling can be considered from the corresponding Ito or Stratonovich differential equations
(SDEs) or from the associated Kolmogorov (Fokker-Planck and backward) differential equa-
tions (Gutierrez et al. [2]). All the above differential equations represent extrinsic stochas-
ticity whereby the stochasticity is introduced by incorporating multiplicative or additive
stochastic terms into the differential equation. Extrinsic stochasticity is due to random
variation of one or more environmental or external factors such as temperature or concen-
tration of reactant species whereas intrinsic stochasticity is inherent to the system, arising
due to the relatively small number of reactant molecules. Intrinsic stochasticity can be
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described by a chemical master equation developed by Gillespie in 1977 (Meng et al. [3]).
The general form of the Ito SDE is as follows:

dx(t) = f(x, t)dt + g(x, t)dW (t) (1)

where

x(t) is the state of the physical system at time t

f(x, t) is the deterministic or average drift term

g(x, t) is the diffusive term

dW (t) is the Brownian noise

Equation (1) is a one-dimensional stochastic process W perturbing x. In this paper we
estimate the drift and diffusion parameters of the stochastic logistic models for the growth of
Clostridium Acetobutylicum P262 in five substrates by employing one of the non linear least
squares method Levernberg-Marquardt. The organization of the paper is as follows: section
two describes the literature reviews on the parameter estimation methods of stochastic
differential equations. Section three describes the deterministic logistic equation of cell
growth, the perturbation of extrinsic stochasticity, the approximation of the stochastic
logistic equation using Milstein and the minimization of the cost function using non linear
least squares. Section four discusses the application of the parameter estimation method on
fermentation data and the results obtained including the prediction quality of the model.
Lastly we conclude in section five the findings of our study.

2 Literature Reviews

Most of the research in biotechnological areas employ deterministic modeling of systems. For
example, in investigating the feasibility of sago starch as carbon source of Acetone-Buthanol
Ethanol (ABE) fermentation, deterministic logistic differential equation was used to model
the growth of strain Clostridium Acetobutylicum P262 (Madihah [4]). This however, is
inadequate since stochastic model would offer a more realistic representation of systems
compared to deterministic since system such as cell growth is subject to random fluctuation
whether intrinsic or extrinsic. Bahar [5] incorporated stochasticity into power law logistic
model and studied its properties. Here, we modeled cell growth of C.Acetobutylicum P262
using stochastic logistic model based on Bahar [5] but prior to that, the parameters had to
be estimated from data. In SDEs, no method of parameter estimation had been specified,
however in modeling stochasticity of biological process parameter estimation is a nontrivial
task.

In this section, we will discuss some reviews of literature in estimating parameters of
stochastic differential equations. Some previous works employed methods such as maximum
likelihood method (Picchini et al. [1] and Gutierrez et al. [2]), methods of moment (Nielsen
et al. [6]), filtering for example, extended Kalman filter based on Nielsen and Madsen [7]
and non-linear least squares (Lo et al. [8]). In this paper we estimated the parameters
of the logistic equation by applying the optimization method for non-linear least squares
Levenberg-Marquardt method (LM method). The LM method had been widely used to es-
timate parameters in deterministic models since this method serves as a fast and convenient
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method, however few literatures have been found in stochastic models. Milstein numerical
scheme was used to approximate the solution of SDE since this scheme is considered more
efficient that Euler Maruyama (Picchini et al. [1]). The LM method does not require the
availability of the transition probability and has been applied to estimate the parameters
of stochastic model in polymer rheology (Lo et al.[8]). It is the modified version of the
Gauss-Newton method with the simplified form of the Hessian matrix (Taylan et al.[9]).
Here we employed the method to estimate the parameters of stochastic logistic equation
with the non-constant or multiplicative noise.

3 Parameter Estimation of Stochastic Differential Equation

3.1 Deterministic Logistic Equation of Cell Growth

Power law logistic differential equation was used to describe population dynamic has the
following form

dN

dt
= aN ξ − bNη (2)

where

N is the population density

a is the growth coefficient

b is the crowding coefficient

a, b, ξ, η are constants

Letting

ξ = 1, a = µmax, b =
µmax

xmax

, N = x(t),
dN

dt
= x(t) and η = s + 1,

where s is an index of the inhibitory effect accounts for the deviation of growth from the
exponential relationship, we obtain the model represents the rate of cell growth kinetic [4],

dx

dt
= µmaxx(t) − µmax

xmax

xs+1(t). (3)

For case when s = 0, it will be a complete inhibition of cell growth and for the case s = 1
it will be reduced to logistic model. If s ranges from 0 to 1 it describes a higher degree
of inhibition compared to logistic growth (Muthuvelayudham and Viruthagiri, [10]). µmax

is a constant represents the maximum specific growth rate (h−1), x is cell concentration
(g/L), xmax is a maximum cell concentration (G/L). The logistic equation, for the case
s = 1 was utilized to describe the kinetics of several fermentation systems.

3.2 Stochastic Perturbation to Logistic Cell Growth Equation

In this part, the deterministic logistic cell growth kinetic model, equation (3) will be per-
turbed by extrinsic Brownian white noise through its growth coefficient a. For simplicity,
equation (3) is rewritten as

x′(t) = ax(t) + bxs+1(t). (4)
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Every element of growth coefficient will be perturbed as a → a + σxs(t)dw(t). Since this is
a one dimensional problem, equation (4) becomes

x
′

(t) = x(t)

(

a + σxs(t)
dw

dt
+ bxs(t)

)

.

Therefore,

dx(t) = x(t) (a + bxs(t)) dt + σxs+1(t)dw(t).

For logistic model, setting

a = µmax and b =
−µmax

xmax

,

the equation becomes

dx(t) = x(t)

(

µmax − µmax

xmax

x(t)

)

dt + σx2(t)dw(t) (5)

which is the form of Ito stochastic differential equation with

f(x, t) = x(t)

(

µmax −
µmax

xmax

x(t)

)

is the average drift term and g(x, t) = σx2(t) is the diffusion term. It is of interest to
estimate the parameter µmax and σ.

3.3 Milstein Approximation

Many of SDE system do not have known analytical solution, thus solving these systems
numerically is necessary. The usual approximation is the Euler-Maruyama and Milstein
scheme. Euler-Maruyama method has strong order of convergence that is and weak or-
der of convergence 1. Here we will only consider Milstein scheme since the scheme has a
higher order, converges with strong order 1 and considered to be more precise than Euler-
Maruyama (Picchini et al. [1]). Considering the Ito SDE in equation (1) on [t0, T ] for a
given discretisation t0 < t1 < · · · < tn < · · · < tN = T a Milstein approximation is a
continuous time stochastic process satisfying the iterative scheme given by

xi+1 = xi + hif(xi) + g(xi)∆Wi +
1

2
g(xi)g

′

(xi)((∆Wi)
2 − hi) (6)

with initial value x0. The term g′(x) represents the derivative of x. Based on Taylan et al.
[9], in order to estimate the parameters, equation (6) has to be rearranged in a form of a
difference quotient

˙̄xi = f(xi) + g(xi)
∆Wi

hi

+
1

2
g(xi)g

′

(xi)

(

(∆Wi)
2

hi

− 1

)

. (7)

The value ˙̄xi represents difference quotient based on the experimental data. Given
W ∼ N(0, t) and ∆W = Wti+1

− Wti, ∆W ∼ N(0, hi), that is, ∆W ∼ N(0, ti+1 − ti) and
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∆t = ti+1 − ti standardizing the normal distribution, z = ∆W−0√
∆t

= ∆W√
∆t

and Z ∼ N(0, 1),

equation (7) becomes

˙̄xi = f(xi) + g(xi)
zi

hi

+
1

2
g(xi)g

′

(xi)
(

z2
i − 1

)

. (8)

From equation (5)

f(x, t) = x(t)

(

µmax −
µmax

xmax

x(t)

)

is the average drift term and g(x, t) = σx2(t) is the diffusion term. Since σ is multiplicative
with the x term, the stochastic model consists of nonlinear growth coefficient or the noise
is non constant. Substituting the terms in equation (8), we obtain

˙̄xi = µmaxxi

(

1 − xi

xmax

)

+ σx2
i

zi√
hi

+
1

2
(σx2

i )(2σxi)
(

z2
i − 1

)

.

Replacing µmax with θ for simplicity and rearranging the terms yields

˙̄xi = θxi −
θx2

i

xmax

+ σx2
i

zi√
hi

+ σ2x3
i (z

2
i − 1). (9)

3.4 Nonlinear Least Squares

The theoretical part of nonlinear least squares outlined next are adapted from Taylan et
al. [9]. In general the difference quotient in equation (9) may be presented as a function of
the parameters in the form of ˙̄xi = g(xi, θ, σ). The following optimization problem would
be considered to determine values of θ and σ :

minimize f(β) :=

N
∑

i=1

( ˙̄xi − g(xi, θ, σ))
2

=

N
∑

i=1

f2
i (β) (10)

where β = (θ, σ)T . In vector notation the equation becomes

minimize f(β) :=
1

2
F T (β)F (β) (11)

where F is the vector-valued function given by

F (β) := (f1(β), ..., fN(β))T

and 1
2

serves for a more “optimal” normalization of the derivatives. By the chain rule,

∇f(β) := ∇F (β)F (β) (12)

where ∇F (β) is an n × n-matrix-valued-function. Row wise differentiation of ∇f(β), the
Hessian matrix of f will lead to

∇2f(β) := ∇F (β)∇F T (β) +

N
∑

i=1

fi(β)∇2fi(β) (13)
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If β∗ is the solution of equation (10) and if f(β∗) = 0, the model fits the data perfectly.
Therefore, F (β)∗ = 0 and ∇f(β∗) = 0 in equation (12). As a result, the Hessian of
f becomes ∇2f(β∗) := ∇F (β∗)∇F T (β∗) which is a positive semi-definite. Levernberg-
Marquardt’s method uses an approximation of the second additive form in equation (13)

by taking
∑N

i=1
fi(β)∇2fi(β) = λIN with some scalar λ ≥ 0 and by replacing Hessian in

the formula ∇2f(β)q = −∇f(β) of Gauss Newton Method. Hence from equation (13), the
following linear system of equation is obtained:

−∇F (β)F (β) := (∇F (β)∇F T (β) + λI)q

where q is the Gauss-Newton increment q = β1 − β2 .

4 Results and Discussions

Investigation of the feasibility of using sago starch as carbon source for solvent fermenta-
tion by Clostridium Acetobutylicum P262 had been carried out by Madihah [4]. Batch
fermentation was carried out and one of the experiments involve the investigation of the
effect of different inorganic nitrogen source to 5g/l yeast extract using 50 g sago starch/l as
carbon source. Four different inorganic nitrogen such as ammonium nitrate (NH4NO3), am-
monium sulfate (NH4)2SO4, ammonium chloride (NH4Cl) and ammonium hydrogen phos-
phate (NH4H2PO4) were added to the substrate and the media was adjusted to pH 6 at
36◦ Celcius (Madihah et al. [11]). 22 experimental data of cell concentration from direct
fermentation of sago starch using five different mixture of inorganic nitrogen source includ-
ing the control (yeast only) mixture were observed at unequal time interval totaling of 72
hours. The simplified batch fermentation kinetic models for cell growth based on logistic
equation were used to model growth of C.Acetobutylicum P262 and it is given by

dx

dt
= µmaxx(t) − µmax

xmax

x2(t)

where x(t) is cell concentration (g/L), xmax is the maximum cell concentration (g/L) and
µmax is the maximum specific growth rate (h−1).

The kinetic parameter of the above deterministic model was estimated first before pro-
ceeding to a stochastic model. The parameter of deterministic model was estimated by using
fourth order Runge-Kutta approximation and Levenberg-Marquardt method was used to
minimize the cost function since this would produce the value of parameter which does not
depend on the initial value. Thus we minimize

N
∑

i=1

[

˙̄xi −
(

k0

6
+

k1

3
+

k2

3
+

k3

6

)]2

where

f(t, x) = µmaxx(t) − µmax

xmax

x2(t), ˙̄xi =
xi+1 − xi

hi

and k0 = f(t, xi), k1 = f(t+ h
2
k0, xi+

h
2
k0), k2 = f(t+ h

2
k1, xi+

h
2
k1), k3 = f(t+h, xi+hk2).

This method however did not produce a fix value of the parameter if different number
of data (N) was used. To solve this problem, the parameter chosen was those with the least
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Mean Square Error (MSE), that is, MSE =
∑N

i=1 (xi − fi)
2/N, where xi is the observed

values, fi is the predicted values and N is the total observations. Figure 1 and Figure 2
show the plot of MSE for each value of N for all substrates.

Figure 1: Plot of MSE Versus the Number of Observations (N) for YE1 and YE5.

Table 1 summarizes the estimated values of µmax obtained using Levenberg-Marquardt
of the deterministic model. The corresponding values of the number of data are used
to estimate the parameters for YE1, YE2, YE3, YE4 and YE5 are 15, 5, 13, 20 and 5
respectively. MSE at each value of N are 0.5110, 0.0175, 0.0124, 0.0081 and 0.2843. The
parameters obtained for the deterministic model were later used to estimate the coefficient
of the diffusive term of the stochastic models. The fitted plots of deterministic models
shown in Figure 3 to Figure 7.

The values of parameter sigma in drift equation of logistic stochastic model (5) were
determined by minimizing the cost function via the Levenberg-Marquardt method,

N
∑

i=1

[

˙̄x −
(

µmaxxi −
µmaxx

2
i

xmax

+ σx2
i

zi√
hi

+ σ2x3
i (z

2
i − 1)

)]2

.

The simulation of the Brownian noise were generated using the ziggurat method at 50, 100,
500 and 1000 times and the average of the parameter values were obtained. In order to
reduce the variance of the simulated normal random numbers for calculating the predicted
values, antithetic variates are employed when generating the numbers. The estimated mean
parameters are listed in Table 2.

For modeling purposes only a single value of sigma will be chosen for each substrate
therefore the MSE of the stochastic models were calculated using the value of sigma obtained
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Figure 2: Plot of MSE Versus the Number of Observations (N) for YE2, YE3 and YE4.

Table 1: The Estimated Values of µmax Using Levenberg-Marquardt
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Figure 3: The Fitted Logistic Model of Cell Concentration (g/L) Versus Time (h) of
Substrates YE1

Figure 4: The Fitted Logistic Model of Cell Concentration (g/L) Versus Time (h) of
Substrates YE2
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Figure 5: The Fitted Logistic Model of Cell Concentration (g/L) Versus Time (h) of
Substrates YE3

Figure 6: The Fitted Logistic Model of Cell Concentration (g/L) Versus Time (h) of
Substrates YE4
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Figure 7: The Fitted Logistic Model of Cell Concentration (g/L) Versus Time (h) of
Substrates YE5

Table 2: The Values of the Averaged Sigma for Different Number of Simulations
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at different number of simulations of the Brownian noise. The simulation of Brownian noise
at N = 100 was chosen since it produces the least MSE of the stochastic model (5) for most
substrates. Thus the value of sigma from 100 simulations of Brownian noise were chosen for
the stochastic model. The parameter values obtained from the combination of parameter
estimation of deterministic model and stochastic model are shown in Table 3.

Table 3: Parameters of Stochastic Models for N = 100

Figure 8 to Figure 12 depict the plot of stochastic models of cell concentration of C.
Acetobutylicum P262.

Figure 8: The Stochastic Logistic Model of Cell Concentration (g/L) Versus Time (h) of
Substrates YE1

5 Prediction Quality of the Models

Table 4 below outlined the values of the MSE for the stochastic models.

From Table 4, it can be seen that the values of the MSE are small for all five models,
thus indicating good fit. It can be concluded that it is appropriate to model cell growth of
Clostridium Acetobutylicum P262 via stochastic logistic model.



Parameter Estimation of Stochastic Logistic Model: Levenberg-Marquardt Method 103

Figure 9: The Stochastic Logistic Model of Cell Concentration (g/L) Versus Time (h) of
Substrates YE2

Figure 10: The Stochastic Logistic Model of Cell Concentration (g/L) Versus Time (h) of
Substrates YE3
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Figure 11: The Stochastic Logistic Model of Cell Concentration (g/L) Versus Time (h) of
Substrates YE4

Figure 12: The Stochastic Logistic Model of Cell Concentration (g/L) Versus Time (h) of
Substrates YE5
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Table 4: Mean Square Error (MSE) of Deterministic Models and Stochastic Logistic
Models Used to Characterize the Prediction Quality Based on the Experimental Data

6 Conclusions

We opted to estimate the drift and diffusion parameters separately by estimating the coef-
ficient of the drift term first and the coefficient of the diffusive term next. The Levenberg-
Marquardt had provided sufficient estimate of the diffusion parameters of the stochastic
model by using difference quotient since the solutions obtained are independent of initial
values of the parameters. The MSE for all five substrates the stochastic models are small
thus indicates the adequacy of the stochastic logistic models in modeling of Clostridium
Acetobutylicum P262.
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