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Abstract A Poisson model typically is assumed for count data. However Poisson

model is not suitable for data because of too many zeros. Furthermore, the response

variable in such cases is censored for some values. In this paper, a zero-inflated Poisson

regression model is introduced on censored data. In this model, we consider a response

variable and one or more than one explanatory variables. The estimation of regression

parameters using the maximum likelihood method is discussed and the goodness-of-fit

for the regression model is examined. We study the effects of right censoring in terms

of parameters estimation and their standard errors via simulation and an example.
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1 Introduction

There are many statistical applications, when the random variable Y which is the dependent
variable represents counts. Count data can take two forms that is, simple counts and cate-
gorical data, depends on how the data arise. Simple counts can be the number of occurrences
of flash floods in a month, observed for several years. While categorical data in which the
count represent the number of items belonging to each of the several categories. Statistical
methods such as least square and analysis of variance are designed to deal with continuous
variables. Due to this, many studies dealing with count data and various distributions have
been proposed for the response or dependent variable, like Poisson distribution, negative
binomial distribution, generalized Poisson distribution.

A Poisson distribution is frequently assumed in order to analyze count data, which
implies equality of the mean and the variance. But in practice, the observed variability
often violates this theoretical assumption. It is often the case that the sample variance is
greater than or less than the observed sample mean and it is classified as under- or over-
dispersion, respectively [1]. Another type of over-dispersion related to Poisson distribution
is that in such cases the number of zero counts are much greater than expected for the
Poisson distribution. Ridout has discussed about some examples of data with too many zeros
from various disciplines, [2]. Regular approaches cannot be applied directly for modeling
count data when excess zeros exist. In this case, statistical approaches for modeling count
data with many zeros than expected have been studied. Lambert derived the zero-inflated
Poisson regression (ZIPR) model and its asymptotic properties of the ML estimator [3].

In many applications, count data are often censored from above (right) or below (left) a
specific point or a combination of them (interval). Actually, censoring from above or below
a specific point are special cases of interval censoring. Censoring must never be confused
with truncation. In truncation, observations never result in values outside a given range.
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A truncated sample can be thought as a sample with all values outside the bounds entirely
omitted, not even the count to those omitted were kept. Whereas when the sample had
been censored, a record noting that whether the lower or upper bound had been passed
and the value of the bound are available. The case of variable threshold was considered
by Caudill and Mixon [4]. They also highly recommended the use of censored negative
binomial regression model, when the censored count data is over-dispersed. To analyze
censored data with a constant censoring threshold, Terza [5] proposed the censored Poisson
regression (CPR) model and obtained the ML estimator using the Newton-Raphson method.
In practice, censored count data are too dispersed to use the CP model.

In this article, the main objective is to explain how we can use zero-inflated Poisson
regression model in right censored data. In section 2, the zero-inflated Poisson regression
model is defined and the likelihood function of zero inflated regression model in right cen-
sored data is formulated. In section 3, the parameter estimation is discussed using maximum
likelihood method. In section 4, the goodness-of-fit for the regression model is examined
and a test statistic for examining the dispersion of zero-inflated regression model in right
censored data is proposed. A simulation for a censored zero-inflated Poisson regression
model in terms of the parameter estimation, standard errors and goodness-of-fit statistic is
conducted in section 5.

2 The Model

Let Y i be a nonnegative integer-valued random variable and suppose Y i = 0 is observed
with a frequency significantly higher than can be modeled by the usual model. Thus, the
regression model is defined as

P (Y = yi|xi, zi) =

{

ϕi + (1 − ϕi)f(0; θi), yi = 0,
(1 − ϕi)f(yi ; θi), yi > 0,

(1)

where f(yi; θi), yi = 0, 1, 2, . . . is the pdf of Y i and 0 < ϕi < 1. Furthermore, the func-
tion ϕi = ϕi(zi) satisfy logit(ϕi) = log(ϕi[1 − ϕi]

−1) =
∑m

j=1
zijδj where zi = (zi1 =

1, zi2, . . . , zim) is the i-th row of covariate matrix Z and δ = (δ1, δ2, . . . , δm) are unknown
m-dimensional column vector of parameters. In this set up, the non-negative function ϕi is
modeled via logit link function. This function is linear and other appropriate link functions
that allow ϕi being negative may be used. In addition, in this paper we suppose that θi

and ϕi are not related.

2.1 Zero-inflated Poisson Model

We consider a zero-inflated Poisson regression model in which the response variable Yi(i =
1, . . . , n) has the distribution

Pr(Yi = yi) =

{

ϕi + (1 − ϕi)exp(−λi), yi = 0,
(1 − ϕi) exp(−λi)λ

yi

i /yi!, yi > 0,
(2)

where the parameter λi(xi) and ϕi satisfy log(λi) =
∑k

j=1
xijβj and 0 < ϕi < 1. The mean

and the variance of the distribution are E(Y i) = (1 − ϕi)λi and var(Y i) = (1 − ϕi)λi(1 +
ϕiλi).
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2.2 Zero-inflated Model with Right Censoring

The value of response variable, Yi, for some observations in a data set, may be censored. If
censoring occurs for the ith observation, we have Yi ≥ yi (right censoring). However, if no
censoring occurs, we know that Yi = yi. Thus, we can define an indicator variable di as

di =

{

1 if Yi ≥ yi,
0 otherwise.

(3)

We can now write

Pr(Yi ≥ yi) =

∞
∑

j=yi

Pr(Yi = j) = 1 −

yi−1
∑

j=0

Pr(Yi = j) (4)

Therefore, the log-likelihood function of the censored zero-inflated regression model can be
written as

logL(θi; yi) =

n
∑

i=1

{

(1 − di)
[

I{yi=0} log f(0; θi) + I{yi>0} log f(yi; θi)
]

+di log
(

∞
∑

j=yi

Pr(Yi = j)
)}

(5)

We now calculate the log-likelihood function for the ZIPR model and by (2) and (5) we
have

LLCZIP =

n
∑

i=1

{

(1 − di)
[

Iyi=0 log{ϕi + (1 − ϕi) exp(−λi)}

+Iyi>0

{

log(1 − ϕi) + yi logλi − log(yi!) − λi

}]

+di log

∞
∑

j=yi

Pr(Yi = j)
}

(6)

3 Parameter Estimation

In this section, we obtain the parameters estimation by the ML method. By taking the par-
tial derivatives of (6) and setting them equal to zero, the likelihood equations for estimating
βr and δt are obtained. Thus we obtain

∂LLCZIP

∂βr

=

n
∑

i=1

{

(1 − di)
[

I{yi=0}
−w−1

i exp(−λi)

1 + wi exp(−λi)
xirλi + I{yi>0}(yi − λi)xir

]

+
di

∑∞
j=yi

Pr(yi = j)

∂
∑∞

j=yi
Pr(yi = j)

∂βr

}

= 0 (7)

∂LLCZIP

∂δt

=
n

∑

i=1

{

(1 − di)
[

I{yi=0}
1 − exp(λi)

wi + exp(λi)
− I{yi>0}

] wi

1 + wi

zit

}

= 0 (8)
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where wi = ϕi

1−ϕi

= exp{
∑m

j=1
zijδj}. Furthermore, the expression for

∂

∞
∑

j=yi

Pr(yi = j)/∂βr

is provided in the appendix.
It is clear that the likelihood equation (7) is nonlinear in the parameters. We can use an

iterative technique to solve for the parameters in the above equations. The initial estimates
of β and δ may be taken as the corresponding final estimates of β and δ from fitting a
zero-inflated regression model to the data.

4 Goodness-of-fit Statistics

For ZI regression models, a measure of goodness of fit may be based on the deviance statistic
D defined as

D = −2
[

logL(θ̂i; µ̂i) − log L(θ̂i; yi)
]

(9)

where log L(θ̂i; µ̂i) and log L(θ̂i; yi) are the model’s likelihood evaluated respectively under
µ̂i and yi. The log-likelihood function is available in equation (6).

For an adequate model, the asymptotic distribution of the deviance statistic D is chi-
square distribution with n−k−1 degrees of freedom. Therefore, if the value for the deviance
statistic D is close to the degrees of freedom, the model may be considered as adequate.
When we have many regression models for a given data set, the regression model with the
smallest value of the deviance statistic D is usually chosen as the best model for describing
the given data.

In many data sets, the µi’s may not be reasonably large and so the deviance statistic
D may not be suitable. Thus, the log-likelihood statistic log(θ̂i; yi) can be used as an
alternative statistic to compare the different models. Models with the largest log-likelihood
value can be chosen as the best model for describing the data under consideration.

5 Simulation Study

We conducted a simulation study in this section. All simulations were done using computer
programs written in SAS codes. The parameter vector (β0, β1, β2, a0, a1) and the dispersion
parameter were used in the simulation study. We fixed the parameter values as β0 =
0.1, β1 = 0.5, β2 = 0.5, a0 = 0.1, a1 = 1 and we have considered a positive form for the
dispersion parameter. For instance, based on CZIPR model, we have

log(λi) = 0.1 + 0.5x1i + 0.5x2i, logit(ϕi) = log(ϕi[1− ϕi]
−1) = 0.1 + zi, (10)

where the variables x1i, x2i and zi are generated from a continuous uniform [0, 1], a
continuous uniform [0, 3.2] and a continuous uniform [0, 0.1], respectively. Furthermore, we
have chosen four censoring constants C1 = 4, C2 = 6, C3 = 8 and C4 = 10.

In this simulation study, we generated a set of data consisting of n = 10000 observations
on three explanatory variables x1, x2 and z. In addition, the parameters β0, β1, β2, a0 and
a1 are estimated by the maximum likelihood method. As measures of goodness-of-fit, the
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−2LL (−2×log-likelihood) and BIC are computed for this simulated data. Furthermore, we
obtained the standard error for each parameter. Each standard error is reported in paren-
theses under its corresponding parameter estimation. Also, the percentages of censored
y-values were computed for this simulation.

In all cases, censoring gives a better fit than the full model (uncensored model). The fit
becomes better as the percentage of censoring increases.

6 Example

In this example, we fit the CZIPR model and ZIPR model to a count data set. This count
data set is gathered by the state wildlife biologists and they would like to analyze how many
fish are being caught by fishermen at a state park. The biologists asked from visitors how
long they stayed, how many people were in the group, were there children in the group and
how many fish were caught. There are excess zeros in the data because some visitors who
did fish did not catch any fish.

Table 1: Parameter Estimation

Parameter estimation and se Goodness.of.fit

model a0 a1 b0 b1 b2 −2LL BIC censored %

CZIPR 0.3446 0.4822 0.49670 0.71830 0.6232 20408 20454 17.59
(0.0287) (0.0323) (0.0111) (0.0494) (0.8488)

CZIPR 0.3136 0.4746 0.4935 0.3624 1.0347 25697 25743 8.04
(0.0264) (0.0283) (0.0097) (0.0449) (0.7717)

CZIPR 0.3006 0.4749 0.4936 0.2128 1.3078 28173 28219 3.24
(0.0256) (0.0270) (0.0093) (0.0434) (0.7463)

CZIPR 0.2972 0.474 0.4934 0.1539 1.4047 29195 29241 1.15
(0.0253) (0.0265) (0.0092) (0.0428) (0.7369)

Full 0.2995 0.4683 0.4924 0.1236 1.4413 29694 29740 -
(0.0251) (0.0263) (0.0091) (0.0425) (0.7321)

Table 2: Descriptive Statistics of the Variables

Variable Mean Std Dev Min Max Variance
count 3.296 11.635 0 149 135.374
child 0.684 0.850 0 3 0.723
persons 2.528 1.113 1 4 1.238

The number of observation is 250 groups that went to a park. The response variable
is how many fish each group caught (count) and the independent variables are how many
children were in the group (child), how many people were in the group (persons), and
whether or not they brought a camper to the park (camper). In Table 2, we can see the
descriptive statistics of count, child and persons variables. Also, the frequency of variable
camper is available in Table 3. Furthermore, Figure 1 is the histogram of the response
variable.
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Table 3: The Frequency of Variable Camper

Cumulative Cumulative
camper Frequency Percent Frequency Percent

0 103 41.2 103 41.2
1 147 58.8 250 100.0

Figure 1: Histogram of the response variable

In this example, the dependent variable count has 108 zeros (43.2%). Therefore, the
zero-inflated Poisson regression model will be adequate for analyzing this data set. However,
the purpose of this example is to demonstrate censoring on the dependent variable count.

7 Discussion

We have used ZIPR model to analyze the complete data set without any censoring. Also,
we have chosen five points as the censoring points (C) to see the effects of censoring on
the parameter estimation, standard error and goodness-of-fit and we have used CZIPR
model to analyze the censored data set. When the values of yi are greater than or equal
to C, we have censoring. Furthermore, We have computed the percentages of censored
y-values according to censored points [C = 4, 7, 10, 13 and 16] and the percentages are
18%, 10%, 7.2%, 6.4% and 4.8%, respectively.

The model is as follow,

λ = exp(b0 + b1 ∗ camper + b2 ∗ persons + b3 ∗ child)

logit(ϕ) = log(ϕ[1− ϕ]−1) = a0 + a1 ∗ child (11)
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Table 4: Parameter Estimation

Parameter estimation and se Goodness.of.fit

model a0 a1 b0 b1 b2 b3 −2LL BIC censored %

CZIPR -0.2557 1.0930 -0.4606 0.47420 0.49070 -0.55910 471.3 504.5 18.0
(0.2672) (0.2849) (0.2530) (0.15630) (0.07400) (0.15210)

CZIPR -0.5400 1.1298 -0.4128 0.46290 0.51770 -0.57450 626.8 659.9 10.0
(0.2568) (0.2619) (0.2249) (0.13170) (0.06163) (0.12470)

CZIPR -0.5910 1.1326 -0.3775 0.45470 0.54990 -0.63640 718.6 751.7 7.2
(0.2459) (0.2538) (0.2109) (0.12140) (0.05720) (0.11580)

CZIPR -0.5836 1.1450 -0.3594 0.46390 0.57380 -0.65910 794.2 827.3 6.4
(0.2368) (0.2486) (0.2013) (0.11490) (0.05415) (0.10870)

CZIPR -0.6075 1.1503 -0.3362 0.47070 0.58910 -0.68530 872.5 905.6 4.8
(0.2307) (0.2443) (0.1958) (0.11070) (0.05246) (0.10560)

Full -0.9150 1.1857 -1.0572 0.77090 0.88860 -1.16750 1271.6 1304.7 -
(0.2503) (0.2654) (0.1812) (0.09384) (0.04663) (0.09471)
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From Table 4, when the censored percentages increase, the standard errors also increase
for the censored models. Also, when we compare the bi’s, the censored model with less
censoring percentage is the best in terms of standard error, however the full model has
smaller standard error. Furthermore, according to ai’s, the censored model with the smallest
censoring percentage is the best in terms of standard error, in addition, the standard errors
for a0 and a1 for this model are also smaller than the full model.

When we compare the CZIPR and full model in Table 4, we can see that the goodness-
of-fit statistics (−2LL and BIC) for censored models increase as the censoring percentages
decrease and also the −2LL and BIC for all censored models are smaller than the full
model.

The censored model CZIPR performed well in comparisons to the full model. The
goodness-of-fit statistics (−2LL and BIC) for censored model increase as the censoring
percentages decrease. This implies that the fit is better when the percentages of censoring
increase.

Appendix

From (4),
∑∞

j=yi
Pr(Yi = j) = 1 −

∑yi−1

j=0
Pr(Yi = j). So we have

∂
∑∞

j=yi
Pr(Yi = j)

∂βr

= −

yi−1
∑

j=0

∂Pr(Yi = j)

∂βr

and
∂

∑∞
j=yi

Pr(Yi = j)

∂α
= −

yi−1
∑

j=0

∂Pr(Yi = j)

∂α
.

For CZIPR, we have

∂Pr(Yi = j)

∂βr

=
∂Pr(Yi = j)

∂λi

∂λi

∂βr

= Pr(Yi = j)(yi − λi)xir.
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