On Some New Generalized Difference Double Sequence Spaces Defined By Orlicz Functions

Ayhan Esi
Adiyaman University,
Science and Art Faculty, Department of Mathematics, 02040, Adiyaman, Turkey
e-mail: aesi23@hotmail.com

Abstract

In this article, the author defines the generalized difference double paranormed sequence spaces $c^{2}\left(\Delta^{m}, M, p, q, s\right), c_{o}^{2}\left(\Delta^{m}, M, p, q, s\right)$ and $l_{\infty}^{2}\left(\Delta^{m}, M, p, q, s\right)$ defined over a seminormed sequence space (X, q). The author also studies their properties and inclusion relations between them.

Keywords P-convergent; difference sequence; modulus function.
2010 Mathematics Subject Classification Primary 42B15; Secondary 40C05.

1 Introduction

Let l_{∞}, c and c_{o} be the Banach spaces of bounded, convergent and null sequences $x=\left(x_{k}\right)$ with the usual norm $\|x\|=\sup _{k}\left|x_{k}\right|$. Kizmaz [14] introduced the notion of difference sequence spaces as follows:

$$
X(\Delta)=\left\{x=\left(x_{k}\right):\left(\Delta x_{k}\right) \in X\right\}
$$

for $X=l_{\infty}, c$ and c_{o}. Later on, the notion was generalized by Et and Çolak [15] as follows:

$$
X\left(\Delta^{m}\right)=\left\{x=\left(x_{k}\right): \quad\left(\Delta^{m} x_{k}\right) \in X\right\}
$$

for $X=l_{\infty}, c$ and c_{o}, where $\Delta^{m} x=\left(\Delta^{m} x_{k}\right)=\left(\Delta^{m-1} x_{k}-\Delta^{m-1} x_{k+1}\right), \Delta^{0} x=x$ and also this generalized difference notion has the following binomial representation:

$$
\Delta^{m} x_{k}=\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} x_{k+i} \text { for all } k \in \mathbb{N} .
$$

Subsequently, difference sequence spaces were studied by Esi [4], Esi and Tripathy [5], Tripathy et.al [10] and many others.

An Orlicz function M is a function $M:[0, \infty) \rightarrow[0, \infty)$ which is continuous, convex, nondecreasing function define for $x>0$ such that $M(0)=0, M(x)>0$ and $M(x) \rightarrow \infty$ as $x \rightarrow \infty$. If convexity of Orlicz function is replaced by $M(x+y) \leq M(x)+M(y)$ then this function is called the modulus function and characterized by Ruckle [16]. An Orlicz function M is said to satisfy $\Delta_{2}-$ condition for all values u , if there exists $K>0$ such that $M(2 u) \leq K M(u), u \geq 0$.

Remark 1 An Orlicz function satisfies the inequality $M(\lambda x) \leq \lambda M(x)$ for all λ with $0<\lambda<1$.

Lindenstrauss and Tzafriri [9] used the idea of Orlicz function to construct the sequence space

$$
l_{M}=\left\{\left(x_{k}\right): \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{r}\right)<\infty, \text { for some } r>0\right\}
$$

which is a Banach space normed by

$$
\left\|\left(x_{k}\right)\right\|=\inf \left\{r>0: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{r}\right) \leq 1\right\}
$$

The space l_{M} is closely related to the space l_{p}, which is an Orlicz sequence space with $M(x)=|x|^{p}$, for $1 \leq p<\infty$.

In the later stage, different Orlicz sequence spaces were introduced and studied by Tripathy and Mahanta [6], Esi [1,2], Esi and Et [3], Parashar and Choudhary [7] and many others.

Let w^{2} denote the set of all double sequences of complex numbers. By the convergence of a double sequence we mean the convergence on the Pringsheim sense that is, a double sequence $x=\left(x_{k, l}\right)$ has Pringsheim limit L (denoted by $\left.P-\lim x=L\right)$ provided that given $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|x_{k, l}-L\right|<\varepsilon$ whenever $k, l>N$ [8]. We shall describe such an $x=\left(x_{k, l}\right)$ more briefly as " P-convergent". We shall denote the space of all P-convergent sequences by c^{2}. The double sequence $x=\left(x_{k, l}\right)$ is bounded if and only if there exists a positive number M such that $\left|x_{k, l}\right|<M$ for all k and l. We shall denote all bounded double sequences by l_{∞}^{2}.

2 Definitions and Results

In this presentation our goal is to extend a few results known in the literature from ordinary (single) difference sequences to difference double sequences. Some studies on double sequence spaces can be found in [11-13].

Definition 1 Let M be an Orlicz function and $p=\left(p_{k, l}\right)$ be a factorable double sequence of strictly positive real numbers and $s \geq 0$ is a real number. Let X be a seminormed space over the complex field \mathbb{C} with the seminorm q. We now define the following new generalized difference sequence spaces:

$$
\begin{gathered}
c^{2}\left(\Delta^{m}, M, p, q, s\right)=\left\{\begin{array}{cc}
x=\left(x_{k, l}\right) \in w^{2}: & P-\lim _{k, l}(k l)^{-s}\left[M\left(\frac{q\left(\Delta^{m} x_{k, l}-L\right)}{\rho}\right)\right]^{p_{k, l}}=0 \\
\text { for some } \rho>0, L \text { and } s \geq 0
\end{array}\right\}, \\
c_{o}^{2}\left(\Delta^{m}, M, p, q, s\right)=\left\{\begin{array}{cc}
x=\left(x_{k, l}\right) \in w^{2}: & P-\lim _{k, l}(k l)^{-s}\left[M\left(\frac{q\left(\Delta^{m} x_{k, l}\right)}{\rho}\right)\right]^{p_{k, l}}=0 \\
\text { for some } \rho>0 \text { and } s \geq 0
\end{array}\right\},
\end{gathered}
$$

and

$$
l_{\infty}^{2}\left(\Delta^{m}, M, p, q, s\right)=\left\{\begin{array}{cl}
x=\left(x_{k, l}\right) \in w^{2}: & \sup _{k, l}(k l)^{-s}\left[M\left(\frac{q\left(\Delta^{m} x_{k, l}\right)}{\rho}\right)\right]^{p_{k, l}}<\infty \\
\text { for some } \rho>0 \text { and } s \geq 0
\end{array}\right\}
$$

where $\Delta^{m} x=\left(\Delta^{m} x_{k, l}\right)=\left(\Delta^{m-1} x_{k, l}-\Delta^{m-1} x_{k, l+1}-\Delta^{m-1} x_{k+1, l}+\Delta^{m-1} x_{k+1, l+1}\right)$, $\left(\Delta^{1} x_{k, l}\right)=\left(\Delta x_{k, l}\right)=\left(x_{k, l}-x_{k, l+1}-x_{k+1, l}+x_{k+1, l+1}\right), \Delta^{0} x=\left(x_{k, l}\right)$ and also this generalized difference double notion has the following binomial representation:

$$
\Delta^{m} x_{k, l}=\sum_{i=0}^{m} \sum_{j=0}^{m}(-1)^{i+j}\binom{m}{i}\binom{m}{j} x_{k+i, l+j} .
$$

Some double spaces are obtained by specializing M, p, q, s and m. Here are some examples:
(i) If $M(x)=x, m=s=0, p_{k, l}=1$ for all $k, l \in \mathbb{N}$, and $q(x)=|x|$, then we obtain ordinary double sequence spaces c^{2}, c_{o}^{2} and l_{∞}^{2}.
(ii) If $M(x)=x, m=s=0$ and $q(x)=|x|$, then we obtain new double sequence spaces as follows:

$$
\begin{aligned}
c^{2}(p)= & \left\{x=\left(x_{k, l}\right) \in w^{2}: P-\lim _{k, l}\left(\left|x_{k, l}-L\right|\right)^{p_{k, l}}=0, \text { for some } L\right\} \\
& c_{o}^{2}(p)=\left\{x=\left(x_{k, l}\right) \in w^{2}: P-\lim _{k, l}\left(\left|x_{k, l}\right|\right)^{p_{k, l}}=0\right\}
\end{aligned}
$$

and

$$
l_{\infty}^{2}(p)=\left\{x=\left(x_{k, l}\right) \in w^{2}: \sup _{k, l}\left|x_{k, l}\right|^{p_{k, l}}<\infty\right\}
$$

(iii) If $m=0$ and $q(x)=|x|$, then we obtain new double sequence spaces as follows:

$$
\begin{gathered}
c^{2}(M, p, s)=\left\{\begin{array}{c}
x=\left(x_{k, l}\right) \in w^{2}: P-\lim _{k, l}(k l)^{-s}\left[M\left(\frac{\left|x_{k, l}-L\right|}{\rho}\right)\right]^{p_{k, l}}=0, \\
\text { for some } \rho>0, L \text { and } s \geq 0
\end{array}\right\}, \\
c_{o}^{2}(M, p, s)=\left\{\begin{array}{c}
x=\left(x_{k, l}\right) \in w^{2}: P-\lim _{k, l}(k l)^{-s}\left[M\left(\frac{\left|x_{k, l}\right|}{\rho}\right)\right]^{p_{k, l}}=0 \\
\text { for some } \rho>0 \text { and } s \geq 0
\end{array}\right\},
\end{gathered}
$$

and

$$
l_{\infty}^{2}(M, p, s)=\left\{\begin{array}{c}
x=\left(x_{k, l}\right) \in w^{2}: \sup _{k, l}(k l)^{-s}\left[M\left(\frac{\left|x_{k, l}\right|}{\rho}\right)\right]^{p_{k, l}}<\infty \\
\text { for some } \rho>0 \text { and } s \geq 0
\end{array}\right\}
$$

(iv) If $m=1$ and $q(x)=|x|$, then we obtain new double sequence spaces as follows:

$$
\begin{gathered}
c^{2}(\Delta, M, p, s)=\left\{\begin{array}{c}
x=\left(x_{k, l}\right) \in w^{2}: P-\lim _{k, l}(k l)^{-s}\left[M\left(\frac{\left|\Delta x_{k, l}-L\right|}{\rho}\right)\right]^{p_{k, l}}=0 \\
\text { for some } \rho>0, \mathrm{~L} \text { and } s \geq 0
\end{array}\right\}, \\
c_{o}^{2}(\Delta, M, p, s)=\left\{\begin{array}{c}
x=\left(x_{k, l}\right) \in w^{2}: P-\lim _{k, l}(k l)^{-s}\left[M\left(\frac{\left|\Delta x_{k, l}\right|}{\rho}\right)\right]^{p_{k, l}}=0 \\
\text { for some } \rho>0 \text { and } s \geq 0
\end{array}\right\},
\end{gathered}
$$

and

$$
l_{\infty}^{2}(\Delta, M, p, s)=\left\{\begin{array}{c}
x=\left(x_{k, l}\right): \sup _{k, l}(k l)^{-s}\left[M\left(\frac{\left|\Delta x_{k, l}\right|}{\rho}\right)\right]^{p_{k, l}}<\infty \\
\text { for some } \rho>0 \text { and } s \geq 0
\end{array}\right\}
$$

where $\left(\Delta x_{k, l}\right)=\left(x_{k, l}-x_{k, l+1}-x_{k+1, l}+x_{k+1, l+1}\right)$.

3 Main Results

Theorem 1 Let $p=\left(p_{k, l}\right)$ be bounded. The classes of $c^{2}\left(\Delta^{m}, M, p, q, s\right), c_{o}^{2}\left(\Delta^{m}, M, p, q, s\right)$ and $l_{\infty}^{2}\left(\Delta^{m}, M, p, q, s\right)$ are linear spaces over the complex field \mathbb{C}.

Proof We give the proof only $l_{\infty}^{2}\left(\Delta^{m}, M, p, q, s\right)$. The others can be treated similarly. Let $x=\left(x_{k, l}\right), y=\left(y_{k, l}\right) \in l_{\infty}^{2}\left(\Delta^{m}, M, p, q, s\right)$. Then we have

$$
\begin{equation*}
\sup _{k, l}(k l)^{-s}\left[M\left(\frac{q\left(\Delta^{m} x_{k, l}\right)}{\rho_{1}}\right)\right]^{p_{k, l}}<\infty, \text { for some } \rho_{1}>0 \text { and } s \geq 0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{k, l}(k l)^{-s}\left[M\left(\frac{q\left(\Delta^{m} y_{k, l}\right)}{\rho_{2}}\right)\right]^{p_{k, l}}<\infty, \text { for some } \rho_{2}>0 \text { and } s \geq 0 \tag{2}
\end{equation*}
$$

Let $\alpha, \beta \in \mathbb{C}$ be scalars and $\rho=\max \left(2|\alpha| \rho_{1}, 2|\beta| \rho_{2}\right)$. Since M is non-decreasing convex function, we have

$$
\begin{aligned}
{\left[M\left(\frac{q\left(\Delta^{m}\left(\alpha x_{k, l}+\beta y_{k, l}\right)\right)}{\rho}\right)\right]^{p_{k, l}} } & \leq D\left\{\left[M\left(\frac{q\left(\Delta^{m} x_{k, l}\right)}{2 \rho_{1}}\right)\right]^{p_{k, l}}+\left[M\left(\frac{q\left(\Delta^{m} y_{k, l}\right)}{2 \rho_{2}}\right)\right]^{p_{k, l}}\right\} \\
& \leq D\left\{\left[M\left(\frac{q\left(\Delta^{m} x_{k, l}\right)}{\rho_{1}}\right)\right]^{p_{k, l}}+\left[M\left(\frac{q\left(\Delta^{m} y_{k, l}\right)}{\rho_{2}}\right)\right]^{p_{k, l}}\right\}
\end{aligned}
$$

where $D=\max \left(1,2^{H}\right), H=\sup _{k, l} p_{k, l}<\infty$. Now, from (1) and (2), we have

$$
\sup _{k, l}(k l)^{-s}\left[M\left(\frac{q\left(\Delta^{m}\left(\alpha x_{k, l}+\beta y_{k, l}\right)\right)}{\rho}\right)\right]^{p_{k, l}}<\infty .
$$

Therefore $\alpha x+\beta y \in l_{\infty}^{2}\left(\Delta^{m}, M, p, q, s\right)$. Hence $l_{\infty}^{2}\left(\Delta^{m}, M, p, q, s\right)$ is a linear space.
Theorem 2 The double sequence spaces $c^{2}\left(\Delta^{m}, M, p, q, s\right), c_{o}^{2}\left(\Delta^{m}, M, p, q, s\right)$ and $l_{\infty}^{2}\left(\Delta^{m}, M, p, q, s\right)$ are seminormed spaces, seminormed by

$$
f\left(\left(x_{k, l}\right)\right)=\sum_{k=1}^{m} q\left(x_{k, 1}\right)+\sum_{l=1}^{m} q\left(x_{1, l}\right)+\inf \left\{\rho>0: \sup _{k, l} M\left(q\left(\frac{\Delta^{m} x_{k, l}}{\rho}\right)\right) \leq 1\right\}
$$

Proof Since q is a seminorm, so we have $f\left(\left(x_{k, l}\right)\right) \geq 0$ for all $x=\left(x_{k, l}\right) ; f\left(\theta^{2}\right)=0$ and $f\left(\left(\lambda x_{k, l}\right)\right)=|\lambda| f\left(\left(x_{k, l}\right)\right)$ for all scalars λ.

Now, let $x=\left(x_{k, l}\right), y=\left(y_{k, l}\right) \in c_{o}^{2}\left(\Delta^{m}, M, p, q, s\right)$. Then there exist $\rho_{1}, \rho_{2}>0$ such that

$$
\sup _{k, l} M\left(q\left(\frac{\Delta^{m} x_{k, l}}{\rho_{1}}\right)\right) \leq 1 \text { and } \sup _{k, l} M\left(q\left(\frac{\Delta^{m} y_{k, l}}{\rho_{2}}\right)\right) \leq 1 .
$$

Let $\rho=\rho_{1}+\rho_{2}$. Then we have,

$$
\begin{aligned}
\sup _{k, l} M\left(q\left(\frac{\Delta^{m}\left(x_{k, l}+y_{k, l}\right)}{\rho}\right)\right) & \leq\left(\frac{\rho_{1}}{\rho_{1}+\rho_{2}}\right) \sup _{k, l} M\left(q\left(\frac{\Delta^{m} x_{k, l}}{\rho_{1}}\right)\right) \\
& +\left(\frac{\rho_{2}}{\rho_{1}+\rho_{2}}\right) \sup _{k, l} M\left(q\left(\frac{\Delta^{m} y_{k, l}}{\rho_{2}}\right)\right) \leq 1
\end{aligned}
$$

Since $\rho_{1}, \rho_{2}>0$, so we have

$$
\begin{aligned}
f\left(\left(x_{k, l}\right)+\left(y_{k, l}\right)\right)= & \sum_{k=1}^{m} q\left(x_{k, 1}+y_{k, 1}\right)+\sum_{l=1}^{m} q\left(x_{1, l}+y_{1, l}\right) \\
& +\inf \left\{\rho=\rho_{1}+\rho_{2}>0: \sup _{k, l} M\left(q\left(\frac{\Delta^{m}\left(x_{k, l}+y_{k, l}\right)}{\rho}\right)\right) \leq 1\right\} \\
\leq & \sum_{k=1}^{m} q\left(x_{k, 1}\right)+\sum_{l=1}^{m} q\left(x_{1, l}\right)+\inf \left\{\rho_{1}>0: \sup _{k, l} M\left(q\left(\frac{\Delta^{m} x_{k, l}}{\rho_{1}}\right)\right) \leq 1\right\} \\
& +\sum_{k=1}^{m} q\left(y_{k, 1}\right)+\sum_{l=1}^{m} q\left(y_{1, l}\right)+\inf \left\{\rho_{2}>0: \sup _{k, l} M\left(q\left(\frac{\Delta^{m} y_{k, l}}{\rho_{2}}\right)\right) \leq 1\right\} \\
= & f\left(\left(x_{k, l}\right)\right)+f\left(\left(y_{k, l}\right)\right) .
\end{aligned}
$$

Therefore f is a seminorm.
Theorem 3 Let (X, q) be a complete seminormed space. Then the spaces $c^{2}\left(\Delta^{m}, M, p, q, s\right)$, $c_{o}^{2}\left(\Delta^{m}, M, p, q, s\right)$ and $l_{\infty}^{2}\left(\Delta^{m}, M, p, q, s\right)$ are complete seminormed spaces seminormed by f.

Proof We prove the theorem for the space $c_{o}^{2}\left(\Delta^{m}, M, p, q, s\right)$. The other cases can be establish following similar technique.

Let $x^{i}=\left(x_{k, l}^{i}\right)$ be a Cauchy sequence in $c_{o}^{2}\left(\Delta^{m}, M, p, q, s\right)$. Let $\varepsilon>0$ be given and for $r>0$, choose x_{o} fixed such that $M\left(\frac{r x_{o}}{2}\right) \geq 1$ and there exists $m_{o} \in \mathbb{N}$ such that

$$
f\left(\left(x_{k, l}^{i}-x_{k, l}^{j}\right)\right)<\frac{\varepsilon}{r x_{o}}, \text { for all } i, j \geq m_{o}
$$

By definition of seminorm, we have

$$
\begin{equation*}
\sum_{k=1}^{m} q\left(x_{k, 1}^{i}\right)+\sum_{l=1}^{m} q\left(x_{1, l}^{j}\right)+\inf \left\{\rho>0: \sup _{k, l} M\left(q\left(\frac{\Delta^{m} x_{k, l}^{i}-\Delta^{r} x_{k, l}^{j}}{\rho}\right)\right) \leq 1\right\}<\frac{\varepsilon}{r x_{o}} \tag{3}
\end{equation*}
$$

This shows that $q\left(x_{k, 1}^{i}\right)$ and $q\left(x_{1, l}^{j}\right)(k, l \leq r)$ are Cauchy sequences in (X, q). Since (X, q) is complete, so there exists $x_{k, 1}, x_{1, l} \in X$ such that

$$
\lim _{i \rightarrow \infty} q\left(x_{k, 1}^{i}\right)=x_{k, 1} \text { and } \lim _{j \rightarrow \infty} q\left(x_{1, l}^{j}\right)=x_{1, l} \quad(k, l \leq m) .
$$

Now from (3), we have

$$
\begin{equation*}
M\left(q\left(\frac{\Delta^{m}\left(x_{k, l}^{i}-x_{k, l}^{j}\right)}{f\left(\left(x_{k, l}^{i}-x_{k, l}^{j}\right)\right)}\right)\right) \leq 1 \leq M\left(\frac{r x_{o}}{2}\right), \text { for all } i, j \geq m_{o} \tag{4}
\end{equation*}
$$

This implies

$$
q\left(\Delta^{m}\left(x_{k, l}^{i}-x_{k, l}^{j}\right)\right) \leq \frac{r x_{o}}{2} \cdot \frac{\varepsilon}{r x_{o}}=\frac{\varepsilon}{2}, \text { for all } i, j \geq m_{o} .
$$

So, $q\left(\Delta^{m}\left(x_{k, l}^{i}\right)\right)$ is a Cauchy sequence in (X, q). Since (X, q) is complete, there exists $x_{k, l} \in X$ such that $\lim _{i} \Delta^{m}\left(x_{k, l}^{i}\right)=x_{k, l}$ for all $k, l \in \mathbb{N}$. Since M is continuous, so for $i \geq m_{o}$, on taking limit as $j \rightarrow \infty$, we have from (4),

$$
M\left(q\left(\frac{\Delta^{m}\left(x_{k, l}^{i}\right)-\lim _{j \rightarrow \infty} \Delta^{r} x_{k, l}^{j}}{\rho}\right)\right) \leq 1 \Rightarrow M\left(q\left(\frac{\Delta^{m}\left(x_{k, l}^{i}\right)-x_{k, l}}{\rho}\right)\right) \leq 1
$$

On taking the infimum of such $\rho^{\prime} s$, we have

$$
f\left(\left(x_{k, l}^{i}-x_{k, l}\right)\right)<\varepsilon, \text { for all } i \geq m_{o} .
$$

Thus $\left(x_{k, l}^{i}-x_{k, l}\right) \in c_{o}^{2}\left(\Delta^{m}, M, p, q, s\right)$. By linearity of the space $c_{o}^{2}\left(\Delta^{m}, M, p, q, s\right)$, we have for all $i \geq m_{o}$,

$$
\left(x_{k, l}\right)=\left(x_{k, l}^{i}\right)-\left(x_{k, l}^{i}-x_{k, l}\right) \in c_{o}^{2}\left(\Delta^{m}, M, p, q, s\right) .
$$

Thus $c_{o}^{2}\left(\Delta^{m}, M, p, q, s\right)$ is a complete space.
Proposition 1 (a) $c^{2}\left(\Delta^{m}, M, p, q, s\right) \subset l_{\infty}^{2}\left(\Delta^{m}, M, p, q, s\right)$,
(b) $c_{o}^{2}\left(\Delta^{m}, M, p, q, s\right) \subset l_{\infty}^{2}\left(\Delta^{m}, M, p, q, s\right)$.

The inclusions are strict.

Proof It is easy, so omitted.
To show that the inclusions are strict, consider the following example.
Example 1 Let $M(x)=x^{p}, p \geq 1, m=1, s=0, q(x)=|x|, p_{k, l}=2$ for all $k, l \in \mathbb{N}$ and consider the double sequence

$$
x_{k, l}= \begin{cases}0 & , \\ k & \text { if } k+l \text { is odd } \\ k & \text { otherwise }\end{cases}
$$

Then

$$
\Delta^{m} x_{k, l}= \begin{cases}2 k+1 & , \quad \text { if } k+l \text { is even } \\ -2 k-1 & , \\ \text { otherwise }\end{cases}
$$

Here $x=\left(x_{k, l}\right) \in l_{\infty}^{2}\left(\Delta^{m}, M, p, q, s\right)$, but $x=\left(x_{k, l}\right) \notin c^{2}\left(\Delta^{m}, M, p, q, s\right)$.
Theorem 4 The double spaces $c^{2}\left(\Delta^{m}, M, p, q, s\right)$ and $c_{o}^{2}\left(\Delta^{m}, M, p, q, s\right)$ are nowhere dense subsets of $l_{\infty}^{2}\left(\Delta^{m}, M, p, q, s\right)$.

Proof The proof is obvious in view of Theorem 3 and Proposition 1.
Theorem 5 Let $m \geq 1$, then for all $0<i \leq m, Z^{2}\left(\Delta^{i}, M, p, q, s\right) \subset Z^{2}\left(\Delta^{m}, M, p, q, s\right)$, where $Z^{2}=c^{2}, c_{o}^{2}$ and l_{∞}^{2}. The inclusions are strict.

Proof We establish it for only $c_{o}^{2}\left(\Delta^{m-1}, M, p, q, s\right) \subset c_{o}^{2}\left(\Delta^{m}, M, p, q, s\right)$. Let $x=\left(x_{k, l}\right) \in$ $c_{o}^{2}\left(\Delta^{m-1}, M, p, q, s\right)$. Then

$$
\begin{equation*}
P-\lim _{k, l}(k l)^{-s}\left[M\left(\frac{q\left(\Delta^{m-1} x_{k, l}\right)}{\rho}\right)\right]^{p_{k, l}}=0, \text { for some } \rho>0 \text { and } s \geq 0 \tag{5}
\end{equation*}
$$

Thus from (5) we have

$$
\begin{aligned}
& P-\lim _{k, l}(k l)^{-s}\left[M\left(q\left(\frac{\Delta^{m} x_{k, l}}{\rho}\right)\right)\right]^{p_{k, l+1}}=0 \\
& P-\lim _{k, l}(k l)^{-s}\left[M\left(q\left(\frac{\Delta^{m} x_{k, l}}{\rho}\right)\right)\right]^{p_{k+1, l}}=0
\end{aligned}
$$

and

$$
P-\lim _{k, l}(k l)^{-s}\left[M\left(q\left(\frac{\Delta^{m} x_{k, l}}{\rho}\right)\right)\right]^{p_{k+1, l+1}}=0 .
$$

Now for

$$
\Delta^{m} x=\left(\Delta^{m} x_{k, l}\right)=\left(\Delta^{m-1} x_{k, l}-\Delta^{m-1} x_{k, l+1}-\Delta^{m-1} x_{k+1, l}+\Delta^{m-1} x_{k+1, l+1}\right)
$$

we have

$$
\begin{aligned}
& (k l)^{-s}\left[M\left(q\left(\frac{\Delta^{m} x_{k, l}}{\rho}\right)\right)\right]^{p_{k, l}} \\
\leq & (k l)^{-s}\left[M \left(q\left(\frac{\Delta^{m-1} x_{k, l}}{\rho}\right)+q\left(\frac{\Delta^{m-1} x_{k, l+1}}{\rho}\right)\right.\right. \\
& \left.\left.+q\left(\frac{\Delta^{m-1} x_{k+1, l}}{\rho}\right)+q\left(\frac{\Delta^{m-1} x_{k+1, l+1}}{\rho}\right)\right)\right]^{p_{k, l}} \\
\leq & D^{2}(k l)^{-s}\left\{\left[M\left(q\left(\frac{\Delta^{m-1} x_{k, l}}{\rho}\right)\right)\right]^{p_{k, l}}+\left[M\left(q\left(\frac{\Delta^{m-1} x_{k+1, l}}{\rho}\right)\right)\right]^{p_{k, l}}\right. \\
& \left.+\left[M\left(q\left(\frac{\Delta^{m-1} x_{k, l+1}}{\rho}\right)\right)\right]^{p_{k, l}}+\left[M\left(q\left(\frac{\Delta^{m-1} x_{k+1, l+1}}{\rho}\right)\right)\right]^{p_{k, l}}\right\} \\
\leq & D^{2}\left\{\left[(k l)^{-s} M\left(q\left(\frac{\Delta^{m-1} x_{k, l}}{\rho}\right)\right)\right]^{p_{k, l}}+\left[(k l)^{-s} M\left(q\left(\frac{\Delta^{m-1} x_{k+1, l}}{\rho}\right)\right)\right]^{p_{k+1, l}}\right. \\
& \left.+\left[(k l)^{-s} M\left(q\left(\frac{\Delta^{m-1} x_{k, l+1}}{\rho}\right)\right)\right]^{p_{k, l+1}}+\left[(k l)^{-s} M\left(q\left(\frac{\Delta^{m-1} x_{k+1, l+1}}{\rho}\right)\right)\right]^{p_{k+1, l+1}}\right\}
\end{aligned}
$$

from which it follows that $x=\left(x_{k, l}\right) \in c_{o}^{2}\left(\Delta^{m}, M, p, q, s\right)$ and hence $c_{o}^{2}\left(\Delta^{m-1}, M, p, q, s\right) \subset$ $c_{o}^{2}\left(\Delta^{m}, M, p, q, s\right)$. On applying the principle of induction, it follows that $c_{o}^{2}\left(\Delta^{i}, M, p, q, s\right) \subset$ $c_{o}^{2}\left(\Delta^{m}, M, p, q, s\right)$ for $i=0,1,2, \ldots, m-1$. The proof for the rest cases are similar. To show that the inclusions are strict, consider the following example.

Example 2 Let $M(x)=x^{p}, s=0, m=1, q(x)=|x|, p_{k, l}=1$ for all k odd and for all $l \in \mathbb{N}$ and $p_{k, l}=2$ otherwise. Consider the sequence $x=\left(x_{k, l}\right)$ defined by $x_{k, l}=k+l$ for all $k, l \in \mathbb{N}$. We have $\Delta^{m} x_{k, l}=0$ for all $k, l \in \mathbb{N}$. Hence $x=\left(x_{k, l}\right) \in c_{o}^{2}(\Delta, M, p, q, s)$ but $x=\left(x_{k, l}\right) \notin c_{o}^{2}\left(\Delta^{m}, M, p, q, s\right)$.

Theorem 6 (a) If $0<\inf _{k, l} p_{k, l} \leq p_{k, l}<1$, then $Z^{2}\left(\Delta^{m}, M, p, q, s\right) \subset Z^{2}\left(\Delta^{m}, M, q, s\right)$,
(b) If $1<p_{k, l} \leq \sup _{k, l} p_{k, l}<\infty$, then $Z^{2}\left(\Delta^{m}, M, q, s\right) \subset Z^{2}\left(\Delta^{m}, M, p, q, s\right)$,
where $Z^{2}=c^{2}, c_{o}^{2}$ and l_{∞}^{2}.
Proof The first part of the result follows from the inequality

$$
(k l)^{-s} M\left(q\left(\frac{\Delta^{m} x_{k, l}}{\rho}\right)\right) \leq(k l)^{-s}\left[M\left(q\left(\frac{\Delta^{m} x_{k, l}}{\rho}\right)\right)\right]^{p_{k, l}}
$$

and the second part of the result follows from the inequality

$$
(k l)^{-s}\left[M\left(q\left(\frac{\Delta^{m} x_{k, l}}{\rho}\right)\right)\right]^{p_{k, l}} \leq(k l)^{-s} M\left(q\left(\frac{\Delta^{m} x_{k, l}}{\rho}\right)\right)
$$

Theorem 7 Let M_{1} and M_{2} be Orlicz functions satisfying Δ_{2}-condition. If $\beta=\lim _{t \rightarrow \infty} \frac{M_{2}(t)}{t} \geq$ 1, then $Z^{2}\left(\Delta^{m}, M_{1}, p, q, s\right)=Z^{2}\left(\Delta^{m}, M_{2} o M_{1}, p, q, s\right)$, where $Z^{2}=c^{2}, c_{o}^{2}$ and l_{∞}^{2}.

Proof We prove it for $Z^{2}=c^{2}$ and the other cases will follows on applying similar techniques. Let $x=\left(x_{k}\right) \in c^{2}\left(\Delta^{m}, M_{1}, p, q, s\right)$, then

$$
P-\lim _{k, l}(k l)^{-s}\left[M_{1}\left(q\left(\frac{\Delta^{m} x_{k, l}}{\rho}\right)\right)\right]^{p_{k, l}}=0
$$

Let $0<\varepsilon<1$ and δ with $0<\delta<1$ such that $M_{2}(t)<\varepsilon$ for $0 \leq t<\delta$. Let

$$
y_{k, l}=M_{1}\left(q\left(\frac{\Delta^{m} x_{k, l}}{\rho}\right)\right)
$$

and consider

$$
\begin{equation*}
\left[M_{2}\left(y_{k, l}\right)\right]^{p_{k, l}}=\left[M_{2}\left(y_{k, l}\right)\right]^{p_{k, l}}+\left[M_{2}\left(y_{k, l}\right)\right]^{p_{k, l}} \tag{6}
\end{equation*}
$$

where the first term is over $y_{k, l} \leq \delta$ and the second is over $y_{k, l}>\delta$. From the first term in (6), using the Remark

$$
\begin{equation*}
(k l)^{-s}\left[M_{2}\left(y_{k, l}\right)\right]^{p_{k, l}}<(k l)^{-s}\left[M_{2}(2)\right]^{H}\left[\left(y_{k, l}\right)\right]^{p_{k, l}} \tag{7}
\end{equation*}
$$

On the other hand, we use the fact that

$$
y_{k, l}<\frac{y_{k, l}}{\delta}<1+\frac{y_{k, l}}{\delta}
$$

Since M_{2} is non-decreasing and convex, it follows that

$$
M_{2}\left(y_{k, l}\right)<M_{2}\left(1+\frac{y_{k, l}}{\delta}\right)<\frac{1}{2} M_{2}(2)+\frac{1}{2} M_{2}\left(\frac{2 y_{k, l}}{\delta}\right)
$$

Since M_{2} satisfies Δ_{2}-condition, we have

$$
M_{2}\left(y_{k, l}\right)<\frac{1}{2} K \frac{y_{k, l}}{\delta} M_{2}(2)+\frac{1}{2} K \frac{y_{k, l}}{\delta} M_{2}(2)=K \frac{y_{k, l}}{\delta} M_{2}(2)
$$

Hence, from the second term in (6), it follows that

$$
\begin{equation*}
(k l)^{-s}\left[M_{2}\left(y_{k, l}\right)\right]^{p_{k, l}} \leq \max \left(1,\left(K M_{2}(2) \delta^{-1}\right)^{H}\right)(k l)^{-s}\left[\left(y_{k, l}\right)\right]^{p_{k, l}} \tag{8}
\end{equation*}
$$

By the inequalities (7) and (8), taking limit in the Pringsheim sense, we have $x=\left(x_{k}\right) \in$ $c^{2}\left(\Delta^{m}, M_{2} o M_{1}, p, q, s\right)$. Observe that in this part of the proof we did not need $\beta \geq 1$. Now, let $\beta \geq 1$ and $x=\left(x_{k}\right) \in c^{2}\left(M_{1}, \Delta^{r}, q, p\right)$. Since $\beta \geq 1$ we have $M_{2}(t) \geq \beta t$ for all $t \geq 0$. It follows that $x=\left(x_{k}\right) \in c^{2}\left(\Delta^{m}, M_{2} o M_{1}, p, q, s\right)$ implies $x=\left(x_{k}\right) \in c^{2}\left(\Delta^{m}, M_{1}, p, q, s\right)$. This implies $c^{2}\left(\Delta^{m}, M_{2} o M_{1}, p, q, s\right)=c^{2}\left(\Delta^{m}, M_{1}, p, q, s\right)$.

Theorem 8 Let M, M_{1} and M_{2} be Orlicz functions, q, q_{1} and q_{2} be seminorms and s, s_{1} and s_{2} be positive real numbers. Then
(i) $Z^{2}\left(\Delta^{m}, M_{1}, p, q, s\right) \cap Z^{2}\left(\Delta^{m}, M_{2}, p, q, s\right) \subset Z^{2}\left(\Delta^{m}, M_{1}+M_{2}, p, q, s\right)$,
(ii) $Z^{2}\left(\Delta^{m}, M, p, q_{1}, s\right) \cap Z^{2}\left(\Delta^{m}, M, p, q_{2}, s\right) \subset Z^{2}\left(\Delta^{m}, M, p, q_{1}+q_{2}, s\right)$,
(iii) If q_{1} is stronger than q_{2}, then $Z^{2}\left(\Delta^{m}, M, p, q_{1}, s\right) \subset Z^{2}\left(\Delta^{m}, M, p, q_{2}, s\right)$,
(iv) If $s_{1} \leq s_{2}$, then $Z^{2}\left(\Delta^{m}, M, p, q, s_{1}\right) \subset Z^{2}\left(\Delta^{m}, M, p, q, s_{2}\right)$,
where $Z^{2}=l_{\infty}^{2}, c^{2}$ and c_{o}^{2}.
Proof (i) We establish it for only $Z^{2}=c_{o}^{2}$. The rest cases are similar. Let $x=\left(x_{k, l}\right) \in$ $c_{o}^{2}\left(\Delta^{m}, M_{1}, p, q, s\right) \cap c_{o}^{2}\left(\Delta^{m}, M_{1}, p, q, s\right)$. Then

$$
\begin{aligned}
& P-\lim _{k, l}(k l)^{-s}\left[M_{1}\left(q\left(\frac{\Delta^{m} x_{k, l}}{\rho_{1}}\right)\right)\right]^{p_{k, l}}=0 \text { for some } \rho_{1}>0 \\
& P-\lim _{k, l}(k l)^{-s}\left[M_{2}\left(q\left(\frac{\Delta^{m} x_{k, l}}{\rho_{2}}\right)\right)\right]^{p_{k, l}}=0 \text { for some } \rho_{2}>0
\end{aligned}
$$

Let $\rho=\max \left(\rho_{1}, \rho_{2}\right)$. The result follows from the following inequality

$$
\begin{gathered}
(k l)^{-s}\left[\left(M_{1}+M_{2}\right)\left(q\left(\frac{\Delta^{m} x_{k, l}}{\rho}\right)\right)\right]^{p_{k, l}} \\
\leq D\left\{(k l)^{-s}\left[M_{1}\left(q\left(\frac{\Delta^{m} x_{k, l}}{\rho_{1}}\right)\right)\right]^{p_{k, l}}+(k l)^{-s}\left[M_{2}\left(q\left(\frac{\Delta^{m} x_{k, l}}{\rho_{2}}\right)\right)\right]^{p_{k, l}}\right\}
\end{gathered}
$$

The proofs of (ii), (iii) and (iv) follow obviously.
The proof of the following result is also routine work.
Proposition 2 For any Orlicz function, if $q_{1} \approx$ (equivalent to) q_{2}, then $Z^{2}\left(\Delta^{m}, M, p, q_{1}, s\right)=Z^{2}\left(\Delta^{m}, M, p, q_{2}, s\right)$, where $Z^{2}=l_{\infty}^{2}, c^{2}$ and c_{o}^{2}.

References

[1] Esi, A. Generalized difference sequence spaces defined by Orlicz functions. General Mathematics. 2009. 17(2): 53-66.
[2] Esi, A. Some new sequence spaces defined by Orlicz functions, Bull. Inst. Math. Acad. Sinica. 1999. 27(1): 776.
[3] Esi, A. and Et, M. Some new sequence spaces defined by a sequence of Orlicz functions. Indian J. Pure Appl. Math. 2000. 31(8):967-973.
[4] Esi, A. On some generalized difference sequence spaces of invariant means defined by a sequence of Orlicz functions. Journal of Computational Analysis and Applications. 2009. 11(3): 524-535.
[5] Esi, A. and Tripathy, B. C. On some generalized new type difference sequence spaces defined by a modulus function in a seminormal space. Fasciculi Mathematici. 2008. 40: 15-24.
[6] Tripathy, B. C. and Mahanta, S. On a class of generalized lacunary sequences defined by Orlicz functions. Acta Math. Appl. Sin. Eng. Ser. 2004. 20(2): 231-238.
[7] Parashar, S. D. and Choudhary, B. Sequence spaces defined by Orlicz functions. Indian J. Pure Appl. Math. 1994. 25: 419-428.
[8] Pringsheim, A. Zur theorie der zweifach unendlichen zahlenfolgen. Math. Ann. Soc. 1900. 53: 289-321.
[9] Lindenstrauss J. and Tzafriri, L. On Orlicz sequence spaces. Israel J. Math. 1971. 10: 379-390.
[10] Tripathy B. C., Esi A. and Tripathy. B. K. On a new type of generalized difference Cesaro sequence spaces. Soochow J. Math. 2005. 31(3): 333-340.
[11] Gökhan, A. and Çolak R. The double sequence spaces $c^{2}(p)$ and $c_{o}^{2}(p)$. Appl. Math. Comput. 2004. 157(2): 491-501.
[12] Gökhan, A. and Çolak, R. On double sequence spaces $c_{o}^{2}(p), c^{2}(p)$ and $l^{2}(p)$. Int. J. Pure Appl. Math. 2006. 30(3): 309-321.
[13] Gökhan, A. and Çolak, R. Double sequence space $l^{2}(p)$. Appl. Math. Comput. 2005. 160(1): 147-153.
[14] Kizmaz, H. On certain sequence spaces. Canad. Math. Bull. (1981). 24(2): 169-176.
[15] Et M. and Çolak, R. On generalized difference sequence spaces. Soochow J. Math. 1995. 21(4): 377-386.
[16] Ruckle W. H., FK spaces in which the sequence of coordinate vectors is bounded. Canad. J. Math. 1973. 25: 973-978.

