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Abstract In this article, the author defines the generalized difference double para-
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1 Introduction

Let I, ¢ and ¢, be the Banach spaces of bounded, convergent and null sequences
x = (x) with the usual norm ||z| = supy |zk|. Kizmaz [14] introduced the notion of
difference sequence spaces as follows:

X(A)={x=(a): (Azy) € X}
for X =, ¢ and ¢,. Later on, the notion was generalized by Et and Colak [15] as follows:
X (A™) ={z = (zx): (A™ap) € X}

for X =l, c and ¢,, where A™z = (A™xy,) = (Am_lxk — Am_1$k+1) , A% = 2z and also
this generalized difference notion has the following binomial representation:

Ay, = ; (-1)" (Tj) xyy; forall k € N.

Subsequently, difference sequence spaces were studied by Esi [4], Esi and Tripathy [5],
Tripathy et.al [10] and many others.

An Orlicz function M is a function M : [0, 00) — [0, 00) which is continuous, convex,
nondecreasing function define for > 0 such that M(0) = 0, M(z) > 0 and M (z) — o
as ¢ — oo. If convexity of Orlicz function is replaced by M(x 4+ y) < M (z) + M (y) then
this function is called the modulus function and characterized by Ruckle [16]. An Orlicz
function M is said to satisfy As—condition for all values u, if there exists K > 0 such that
M(2u) < KM (u), u > 0.

Remark 1 An Orlicz function satisfies the inequality M (Ax) < AM (z) for all A\ with
0<A<l.
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Lindenstrauss and Tzafriri [9] used the idea of Orlicz function to construct the se-

quence space
S |k
Iy = ) M| — | <o, f >0,
M {(l‘k) E (r oo, for some r

k=1

which is a Banach space normed by

I =inf{r>o:iM('xj') < 1}.

k=1

The space Iy is closely related to the space [,, which is an Orlicz sequence space with
M (x) = |z|, for 1 < p < o0.

In the later stage, different Orlicz sequence spaces were introduced and studied by
Tripathy and Mahanta [6], Esi [1,2], Esi and Et [3], Parashar and Choudhary [7] and many
others.

Let w? denote the set of all double sequences of complex numbers. By the convergence
of a double sequence we mean the convergence on the Pringsheim sense that is, a double
sequence ¢ = (xj,;) has Pringsheim limit L (denoted by P — limxz = L) provided that
given ¢ > 0 there exists N € N such that |z;; — L| < € whenever k,l > N [8]. We shall
describe such an & = (z,;) more briefly as ” P—convergent”. We shall denote the space of
all P—convergent sequences by ¢®>. The double sequence x = () is bounded if and only
if there exists a positive number M such that |zx,| < M for all k¥ and I. We shall denote
all bounded double sequences by 2.

2 Definitions and Results

In this presentation our goal is to extend a few results known in the literature from
ordinary (single) difference sequences to difference double sequences. Some studies on double
sequence spaces can be found in [11-13].

Definition 1 Let M be an Orlicz function and p = (pi,;) be a factorable double sequence
of strictly positive real numbers and s > 0 is a real number. Let X be a seminormed space
over the complex field C with the seminorm q. We now define the following new generalized
difference sequence spaces:

= 2. P-1l - w)r“ _
(A" M,p,q,s) = 4 &= @) €wti P—limy (k) {M ( r 0, |
for some p > 0, L and s >0

m Dk,
T = (xk,l) S w?: P— limk,l (kl)is [M (M)} m =0, }

2 (A™, M,p,q,s) =
for some p > 0 and s >0
and

. 9 s q(Amka) Pk,
2 (A™ M, p,q,s) = r = (rg,) € w*: supy, (kl) [M (7;; )} < 00, 7
for some p > 0 and s >0
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where A™z = (Amxk}l) = (Am_lxk,l - Am_lxk,prl - Am_1$k+1’l + Am_1$k+1’l+1)7
(Alzyy) = (Azky) = (Th) — That1 — Tht1 + Thp1041), A% = (z1) and also this gener-
alized difference double notion has the following binomial representation:

m m
i+4 [T m
A'm.’lfk,l = EO EO(—I)Z J (Z) <j>$k+i’l+j.
i=0 j=

Some double spaces are obtained by specializing M, p, ¢, s and m. Here are some
examples:
() U Mx)=z, m=s=0,py =1forall k,l € N, and ¢(x) = ||, then we obtain

ordinary double sequence spaces ¢2, ¢ and 1% .

(ii) If M (z) = x, m = s = 0 and ¢(x) = |z|, then we obtain new double sequence spaces
as follows:

Z(p) = {x = (zp1) €Ew?: P— lllcnll(|xkl — L|)P*' =0, for some L} ,

c5(p) = {x = (wkg) € w0 P —Tim (o)™ = o} ,

and

3

12, (p) = {fﬂ = (zka) € w? 1 sup |z, |7 < oo} .
k.l
(iii) If m = 0 and ¢(z) = |z|, then we obtain new double sequence spaces as follows:

) _ D1
= (x,) €w?: P —limy, (kl)"° {M (w)} B 0,
for some p >0, L and s > 0 7

c? (Mvp,S){

_ 2. BT —s EIIAY e
2 (M, p,s) = r = () € w: P—limg, (k) {M ( ; )} =0, ,
for some p >0 and s >0

and

_s z Pk,
2 (M, p, s) = z = (zry) € w?: supy, (ki) [M (—‘ ;”‘)] < o0,
> for some p >0 and s > 0

(iv) If m =1 and ¢(x) = |z|, then we obtain new double sequence spaces as follows:

_ 2. p_ 1 —s |Azka—L| r’“” —
2 (A Mg = | 7= k) €W P iy (k1) [M ( ; ) 0.1
for some p >0, L and s >0

_ 2. T —s |[Azy | \TP* _
2 (A, M, p,s) = { = (zp;) € w?: P —limy, (kl) [M (7p )} 0, } 7

for some p >0 and s >0

and

—s Ax Pkl
2 (A, M,p,s) = z = (2p) 0 supy (ki) [M (%)} < 00, 7
for some p >0 and s > 0

where (Azy) = (Tr — Thi41 — Tha1,l + Tht1,041)-
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3 Main Results

Theorem 1 Letp = (pi,;) be bounded. The classes of ¢* (A™, M, p,q,s), ¢2 (A™, M,p,q, s)
and 12, (A™, M, p,q,s) are linear spaces over the complex field C.

Proof We give the proof only [ (A™, M,p,q,s). The others can be treated similarly.
Let © = (zx,1), y = (yr1) € 1% (A™, M, p,q,s). Then we have

s A", Pk,
sup (k)™ [M (Q(pz“)ﬂ < 00, for some p; >0 and s >0 (1)
k.l 1
and A™ Pkl
sup (kl)~° [M (Q(pykl))] < 00, for some py >0 and s > 0. (2)
k.l 2

Let a, 8 € C be scalars and p = max (2|a| p1,2|8] p2). Since M is non-decreasing convex
function, we have

[M (Q(Am(ax;;ﬁﬂyk,l)))r“ gDHM( (A )} { ( (Angkl))] }
of (e (5,

where D = max (1,2"), H = sup;, ; pr,; < co. Now, from (1) and (2), we have

sup (k)" {M <(J(Am (afﬂkp,z +Byk,z))>rk" < o,

Therefore az + By € 12, (A™, M, p,q,s). Hence I2, (A™, M,p,q,s) is a linear space.

Theorem 2 The double sequence spaces c*(A™, M,p,q,s), c2(A™ M,p,q,s) and
12 (A™ M,p,q,s) are seminormed spaces, seminormed by

((xr1)) Zq Tp1) Zq(xlyl)+1nf{p>0: supy M (q <pkl>> 51}.
k=1

=1

Proof Since ¢ is a seminorm, so we have f ((zj,;)) > 0 for all z = (zy,); f (6%) =0 and
f((Azky)) = A f ((zx,)) for all scalars .
Now, let = (wx,), y = (yr1) € 2 (A™,M,p,q,s). Then there exist pi,p2 > 0 such

that Am Am
sup M <q (mkl>) <1and supM (q (ykl)> <1.
k.l P1 k.l P2

Let p = p1 + p2. Then we have,

Am(xkl-i-:l/kl))) ( p1 ) < (Amxkl>>
sup M - IR < sup M :
k}) (q ( p S\ p1 Tt P2 k,? 1 1
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Since p1, p2 > 0, so we have

F@rg) + Wrn) =D q@en +yen) + Y q (@1 + 1)
k=1 =1
Am
+inf{p=p1 +p2>0:supM (q (W)) < 1}
k.l

m m A™
SZQ(ZEk,l) + Z(J(Uﬂl,z) + inf {pl >0: S;I%Z)M (q ( pxk’l>> < 1}
k=1 ;

=1

m m ) Am
+Zq(yk’1)+2q(yu)+1nf{p2>O:S;€1lpM(q< pfk,l))gl}

k=1 =1

=f((@x0) + f ((yx1)) -

Therefore f is a seminorm.

Theorem 3 Let (X, q) be a complete seminormed space. Then the spaces ¢ (A™ M, p,q,s),
2 (A™ M,p,q,s) and 12, (A™,M,p,q,s) are complete seminormed spaces seminormed by f.

Proof We prove the theorem for the space c2 (A™, M,p,q,s). The other cases can be
establish following similar technique.

Let 2t = (:z:}”) be a Cauchy sequence in ¢2 (A™, M,p,q,s). Let € > 0 be given and for
r > 0, choose x, fixed such that M (””T") > 1 and there exists m, € N such that
i i £ ..
f ((m}” —xfﬁl)) < —, forall i,j >m,
: ' T,

By definition of seminorm, we have

m . lis . . Amzl _Arxj :
Zq(xz,1)+2q(wi,z)+mf{p>0: S;T?M<q< w kl)) Sl} <

k=1 =1

This shows that ¢ (le) and ¢ (lel) (k,1 < r) are Cauchy sequences in (X, ¢). Since (X, q)
is complete, so there exists xj 1,21, € X such that

lim ¢ (gcﬁC 1) =21 and lim ¢ (a:Jl l) =z, (k,l<m).

11— 00 ’ Jj—o0 ’ ’

Now from (3), we have
A (xi _ .’L‘j )
Rl — Tkl

RY(CTRER)

o ..
a(am (vhy—al,)) < 50— =5, forall iyj = m,.

glgM(%

M
2

) , for all 7,5 > m,. (4)

This implies
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So, g (Am (le)) is a Cauchy sequence in (X,q). Since (X, q) is complete, there exists

2, € X such that lim; A™ (x}cl) = x5, for all k,! € N. Since M is continuous, so for

i > m,, on taking limit as j — oo, we have from (4),

A™ (w}”) —lim; 00 A’“xil A™ (m}cl) —
ey ) <12 Mg “) | <1
p p

On taking the infimum of such p's, we have

f ((x;c,l - wk,l)) < g, for all i > m,.

Thus (Jc}“ — a:kJ) € 2(A™,M,p,q,s). By linearity of the space ¢2 (A™, M,p,q,s), we
have for all i > m,,,

(Th) = (%l) - (3021 - xk,l) € 03 (A™,M,p,q,s).

Thus c¢2 (A™, M, p, q, s) is a complete space.

Proposition 1 (a) ¢ (A™, M,p,q,s) C 12 (A™, M,p,q,s),
(b) 2 (A™, M,p,q,s) C 12, (A™, M,p,q,s).
The inclusions are strict.

Proof It is easy, so omitted.
To show that the inclusions are strict, consider the following example.

Example 1 Let M(z) =2P,p>1,m=1,5s=0, q(z) = |z|, pr, =2 for all k, [ € N and
consider the double sequence

{0 , ifk+1isodd
Tk, =

k , otherwise
Then
AT | 2k+1 , if k+11is even
TRI=Y ok —1 , otherwise

Here z = (zx,;) € 12, (A™, M, p,q,s), but & = (xx,) & ¢ (A™, M,p,q, s).

Theorem 4 The double spaces c* (A™, M, p,q,s) and c2 (A™, M,p,q, s) are nowhere dense
subsets of 12, (A™, M, p,q,s).

Proof The proof is obvious in view of Theorem 3 and Proposition 1.

Theorem 5 Let m > 1, then for all 0 < i < m, Z? (A", M,p,q,s) C Z*(A™,M,p,q,s),
where Z* = ¢?, ¢2 and 1%,. The inclusions are strict.



On Some New Generalized Difference Double Sequence Spaces 37

Proof We establish it for only ¢ (Am L M,p,q,s ) 2 (A™ M,p,q,s). Let x = (z1,) €
O(Am L M,p,q, ) Then

Am_l Pkl
P —lim (k1) [M (q(wﬂ =0, for some p > 0 and 5 > 0 (5)
: p

Thus from (5) we have

Pt [ (o (7))
Plzi&?(kl)‘s{ < (Amzkl»]mm

and Am T
et o (52
Now for
A"z = (A"zpy) = (A" oy — A g — AT g+ AT g i)
we have

(k1) ™ [M( (Amxkl»]

< (kl)™® {M( (Am ' ) (Am Yoy, z+1)
+q (A’”pW) Y (’”xmmm

<D?(kl)"* { [M (q (Am 1$kl>> Pt N :M (q (M—;M))rk,z
PR ()

<D? { [(kl)sM <q (Am Loy, l)) Pl N :(kl)SM (q <M_1)M>):|pk+l,l
+ [(kl)s M (q (Am L, l+1>>

Pk,i+1 m—1 Pk+1,1+1
el ((F=)))

from which it follows that z = (z,;) € ¢2 (A™, M, p, q, s) and hence c2 (Am L M,p,q,s )
c2 (A™, M, p,q,s). On applying the prln(:lple of induction, it follows that ¢ (Al M,p,q,s )
2 (A™, M,p,q,s) fori=0,1,2,. — 1. The proof for the rest cases are similar. To show
that the inclusions are strict, consider the following example.

Example 2 Let M(z) = 2P, s =0, m = 1, q(z) = |z|, px,; = 1 for all k odd and for all
[ € N and pi; = 2 otherwise. Consider the sequence x = (z,;) defined by xp; = k + [ for
all k,1 € N. We have A™zy,; = 0 for all k,l € N. Hence x = (x1,) € ¢2 (A, M,p,q,s) but

&= (xry) & 2 (A™, M, p,q,s).
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Theorem 6 (a) If 0 < infy;pr; < pry < 1, then Z> (A™, M, p,q,s) C Z>(A™, M, q, s),
(b) If 1 < pry < supy, pry < 00, then Z2 (A™, M, q,s) C Z* (A™,M,p,q,s),
where Z* = ¢?, ¢ and 1%,.

Proof The first part of the result follows from the inequality

o) ()]

and the second part of the result follows from the inequality
s Am Pkl _ Am
o (2 < (o ().

Theorem 7 Let My and Ms be Orlicz functions satisfying As-condition. If B = tlimM%(t) >
—00
1, then Z? (A™, My, p,q,s) = Z% (A™, MyoMy,p, q, s), where Z? = 2, ¢2 and [2,.

Proof We prove it for Z? = ¢? and the other cases will follows on applying similar
techniques. Let z = (x1,) € ¢® (A™, My, p,q,s), then

g i o5

Let 0 < e <1 and § with 0 < d < 1 such that M () < e for 0 <t < 4. Let

A™
Yr1 = M <q (zk’l>)
p

[My (yr,1)]""" = [Ma (yg)]"*" + [Ma (yx)]"* (6)

where the first term is over y,; < 6 and the second is over y; > 6. From the first term in
(6), using the Remark

(kD)™ [Ma (y)P < (kD)™ [Ma (2)]7 [(yr0)]"! o

On the other hand, we use the fact that

and consider

Ykl Ykl
<<l 4 ==,
Ykl 5 5

Since Mj is non-decreasing and convex, it follows that

1 1 )
My (i) < My (14 220 < C (2) 4+ 0 (254
Since M» satisfies Ay—condition, we have

Ykl
1)

1 1
My (yes) < SK 20 (2) + §Ky’“l M, (2) = K250, (2).

o 0
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Hence, from the second term in (6), it follows that
—s ] Cw .
(k)™ M ()} < (1, (KM (2) 57 ) )™ ()™ )

By the inequalities (7) and (8), taking limit in the Pringsheim sense, we have x = (xy) €
c2 (A™, MyoMy,p,q,s). Observe that in this part of the proof we did not need 3 > 1. Now,
let B> 1and x = () € ¢ (My,A",q,p). Since § > 1 we have M, (t) > jt for all t > 0.
It follows that @ = (z3) € ¢ (A™, MaoMy,p,q, s) implies = (x3,) € ¢2 (A™, My,p,q, s).
This implies ¢? (A™, MyoMj, p,q,s) = ¢ (A™, My,p,q, ).

Theorem 8 Let M, My and Ms be Orlicz functions, q, q1 and g be seminorms and s, sy
and so be positive real numbers. Then

(7’) Z2 (Am’ M17p7 q, 5) N 22 (Am,M%p’ q, 'S) - Z2 (Am’ Ml + MQapaqa 5)7

(ii) Z2 (A™, M, p,q1,5) N Z> (A™, M, p,q2,5) C Z> (A™, M,p, q1 + G2, ),

(iii) If q1 is stronger than qz, then Z? (A™, M,p,q1,s) C Z2 (A™, M, p, g2, 5),

(iv) If s1 < so, then Z% (A™, M,p,q,51) C Z2(A™, M, p,q, 52),
where Z? =12, c¢% and c2.

Proof (i) We establish it for only 7% = cg. The rest cases are similar. Let © = (xy,;) €
c2 (A™, My,p,q,s) Nc2 (A™, My, p,q,s). Then

: —s A\ 17
pP— lkr? (k)" |Mi | ¢ ! = 0 for some p; > 0,

P1
B Am Pk,1
P— lllcr? (kl)™* |:M2 <q ( x“))] = 0 for some py > 0.
) P2

Let p = max (p1, p2). The result follows from the following inequality

o oo (2]
<D {(kl)s {Ml (q (NZM)HP k) {MQ (q <N;fkl>>]p} |

The proofs of (ii), (iii) and (iv) follow obviously.
The proof of the following result is also routine work.

Proposition 2 For any Orlicz function, if ¢ ~ (equivalent to) g2, then
Z2(A™ M,p,q1,8) = Z*(A™, M, p,q2,5), where Z2 =12, ¢? and c2.
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