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1 Introduction

Let l∞, c and co be the Banach spaces of bounded, convergent and null sequences
x = (xk) with the usual norm ∥x∥ = supk |xk| . Kizmaz [14] introduced the notion of
difference sequence spaces as follows:

X (∆) = {x = (xk) : (∆xk) ∈ X}

for X = l∞, c and co. Later on, the notion was generalized by Et and Çolak [15] as follows:

X (∆m) = {x = (xk) : (∆mxk) ∈ X}

for X = l∞, c and co, where ∆mx = (∆mxk) =
(
∆m−1xk −∆m−1xk+1

)
,∆0x = x and also

this generalized difference notion has the following binomial representation:

∆mxk =

m∑
i=0

(−1)
i

(
m

i

)
xk+i for all k ∈ N.

Subsequently, difference sequence spaces were studied by Esi [4], Esi and Tripathy [5],
Tripathy et.al [10] and many others.

An Orlicz function M is a function M : [0,∞) → [0,∞) which is continuous, convex,
nondecreasing function define for x > 0 such that M(0) = 0, M(x) > 0 and M (x) → ∞
as x → ∞. If convexity of Orlicz function is replaced by M(x + y) ≤ M (x) +M (y) then
this function is called the modulus function and characterized by Ruckle [16]. An Orlicz
function M is said to satisfy ∆2−condition for all values u, if there exists K > 0 such that
M(2u) ≤ KM(u), u ≥ 0.

Remark 1 An Orlicz function satisfies the inequality M (λx) ≤ λM (x) for all λ with
0 < λ < 1.
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Lindenstrauss and Tzafriri [9] used the idea of Orlicz function to construct the se-
quence space

lM =

{
(xk) :

∞∑
k=1

M

(
|xk|
r

)
< ∞, for some r > 0

}
,

which is a Banach space normed by

∥(xk)∥ = inf

{
r > 0 :

∞∑
k=1

M

(
|xk|
r

)
≤ 1

}
.

The space lM is closely related to the space lp, which is an Orlicz sequence space with
M (x) = |x|p, for 1 ≤ p < ∞.

In the later stage, different Orlicz sequence spaces were introduced and studied by
Tripathy and Mahanta [6], Esi [1,2], Esi and Et [3], Parashar and Choudhary [7] and many
others.

Let w2 denote the set of all double sequences of complex numbers. By the convergence
of a double sequence we mean the convergence on the Pringsheim sense that is, a double
sequence x = (xk,l) has Pringsheim limit L (denoted by P − limx = L) provided that
given ε > 0 there exists N ∈ N such that |xk,l − L| < ε whenever k, l > N [8]. We shall
describe such an x = (xk,l) more briefly as ”P−convergent”. We shall denote the space of
all P−convergent sequences by c2. The double sequence x = (xk,l) is bounded if and only
if there exists a positive number M such that |xk,l| < M for all k and l. We shall denote
all bounded double sequences by l2∞.

2 Definitions and Results

In this presentation our goal is to extend a few results known in the literature from
ordinary (single) difference sequences to difference double sequences. Some studies on double
sequence spaces can be found in [11–13].

Definition 1 Let M be an Orlicz function and p = (pk,l) be a factorable double sequence
of strictly positive real numbers and s ≥ 0 is a real number. Let X be a seminormed space
over the complex field C with the seminorm q. We now define the following new generalized
difference sequence spaces:

c2 (∆m,M, p, q, s) =

{
x = (xk,l) ∈ w2 : P − limk,l (kl)

−s
[
M
(

q(∆mxk,l−L)
ρ

)]pk,l

= 0,

for some ρ > 0, L and s ≥ 0

}
,

c2o (∆
m,M, p, q, s) =

{
x = (xk,l) ∈ w2 : P − limk,l (kl)

−s
[
M
(

q(∆mxk,l)
ρ

)]pk,l

= 0,

for some ρ > 0 and s ≥ 0

}
,

and

l2∞ (∆m,M, p, q, s) =

{
x = (xk,l) ∈ w2 : supk,l (kl)

−s
[
M
(

q(∆mxk,l)
ρ

)]pk,l

< ∞,

for some ρ > 0 and s ≥ 0

}
,
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where ∆mx = (∆mxk,l) =
(
∆m−1xk,l −∆m−1xk,l+1 −∆m−1xk+1,l +∆m−1xk+1,l+1

)
,

(∆1xk,l) = (∆xk,l) = (xk,l − xk,l+1 − xk+1,l + xk+1,l+1), ∆
0x = (xk,l) and also this gener-

alized difference double notion has the following binomial representation:

∆mxk,l =
m∑
i=0

m∑
j=0

(−1)
i+j

(
m

i

)(
m

j

)
xk+i,l+j .

Some double spaces are obtained by specializing M , p, q, s and m. Here are some
examples:

(i) If M(x) = x, m = s = 0, pk,l = 1 for all k, l ∈ N, and q(x) = |x|, then we obtain
ordinary double sequence spaces c2, c2o and l2∞.

(ii) If M(x) = x, m = s = 0 and q(x) = |x| , then we obtain new double sequence spaces
as follows:

c2 (p) =

{
x = (xk,l) ∈ w2 : P − lim

k,l
(|xk,l − L|)pk,l = 0, for some L

}
,

c2o (p) =

{
x = (xk,l) ∈ w2 : P − lim

k,l
(|xk,l|)pk,l = 0

}
,

and

l2∞ (p) =

{
x = (xk,l) ∈ w2 : sup

k,l

∣∣xk,l

∣∣pk,l < ∞

}
.

(iii) If m = 0 and q(x) = |x|, then we obtain new double sequence spaces as follows:

c2 (M,p, s) =

{
x = (xk,l) ∈ w2 : P − limk,l (kl)

−s
[
M
(

|xk,l−L|
ρ

)]pk,l

= 0,

for some ρ > 0, L and s ≥ 0

}
,

c2o (M,p, s) =

{
x = (xk,l) ∈ w2 : P − limk,l (kl)

−s
[
M
(

|xk,l|
ρ

)]pk,l

= 0,

for some ρ > 0 and s ≥ 0

}
,

and

l2∞ (M,p, s) =

{
x = (xk,l) ∈ w2 : supk,l (kl)

−s
[
M
(

|xk,l|
ρ

)]pk,l

< ∞,

for some ρ > 0 and s ≥ 0

}
,

(iv) If m = 1 and q(x) = |x|, then we obtain new double sequence spaces as follows:

c2 (∆,M, p, s) =

{
x = (xk,l) ∈ w2 : P − limk,l (kl)

−s
[
M
(

|∆xk,l−L|
ρ

)]pk,l

= 0,

for some ρ > 0, L and s ≥ 0

}
,

c2o (∆,M, p, s) =

{
x = (xk,l) ∈ w2 : P − limk,l (kl)

−s
[
M
(

|∆xk,l|
ρ

)]pk,l

= 0,

for some ρ > 0 and s ≥ 0

}
,

and

l2∞ (∆,M, p, s) =

{
x = (xk,l) : supk,l (kl)

−s
[
M
(

|∆xk,l|
ρ

)]pk,l

< ∞,

for some ρ > 0 and s ≥ 0

}
,

where (∆xk,l) = (xk,l − xk,l+1 − xk+1,l + xk+1,l+1).
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3 Main Results

Theorem 1 Let p = (pk,l) be bounded. The classes of c
2 (∆m,M, p, q, s), c2o (∆

m,M, p, q, s)
and l2∞ (∆m,M, p, q, s) are linear spaces over the complex field C.

Proof We give the proof only l2∞ (∆m,M, p, q, s). The others can be treated similarly.
Let x = (xk,l), y = (yk,l) ∈ l2∞ (∆m,M, p, q, s). Then we have

sup
k,l

(kl)
−s

[
M

(
q (∆mxk,l)

ρ1

)]pk,l

< ∞, for some ρ1 > 0 and s ≥ 0 (1)

and

sup
k,l

(kl)
−s

[
M

(
q (∆myk,l)

ρ2

)]pk,l

< ∞, for some ρ2 > 0 and s ≥ 0. (2)

Let α, β ∈ C be scalars and ρ = max (2 |α| ρ1, 2 |β| ρ2). Since M is non-decreasing convex
function, we have[
M

(
q (∆m (αxk,l + βyk,l))

ρ

)]pk,l

≤D

{[
M

(
q (∆mxk,l)

2ρ1

)]pk,l

+

[
M

(
q (∆myk,l)

2ρ2

)]pk,l
}

≤D

{[
M

(
q (∆mxk,l)

ρ1

)]pk,l

+

[
M

(
q (∆myk,l)

ρ2

)]pk,l
}
,

where D = max
(
1, 2H

)
, H = supk,l pk,l < ∞. Now, from (1) and (2), we have

sup
k,l

(kl)
−s

[
M

(
q (∆m (αxk,l + βyk,l))

ρ

)]pk,l

< ∞.

Therefore αx+ βy ∈ l2∞ (∆m,M, p, q, s). Hence l2∞ (∆m,M, p, q, s) is a linear space.

Theorem 2 The double sequence spaces c2 (∆m,M, p, q, s), c2o (∆
m,M, p, q, s) and

l2∞ (∆m,M, p, q, s) are seminormed spaces, seminormed by

f ((xk,l)) =
m∑

k=1

q (xk,1) +
m∑
l=1

q (x1,l) + inf

{
ρ > 0 : supk,lM

(
q

(
∆mxk,l

ρ

))
≤ 1

}
.

Proof Since q is a seminorm, so we have f ((xk,l)) ≥ 0 for all x = (xk,l); f
(
θ2
)
= 0 and

f ((λxk,l)) = |λ| f ((xk,l)) for all scalars λ.
Now, let x = (xk,l), y = (yk,l) ∈ c2o (∆

m,M, p, q, s). Then there exist ρ1, ρ2 > 0 such
that

sup
k,l

M

(
q

(
∆mxk,l

ρ1

))
≤ 1 and sup

k,l
M

(
q

(
∆myk,l

ρ2

))
≤ 1.

Let ρ = ρ1 + ρ2. Then we have,

sup
k,l

M

(
q

(
∆m (xk,l + yk,l)

ρ

))
≤
(

ρ1
ρ1 + ρ2

)
sup
k,l

M

(
q

(
∆mxk,l

ρ1

))
+

(
ρ2

ρ1 + ρ2

)
sup
k,l

M

(
q

(
∆myk,l

ρ2

))
≤ 1.
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Since ρ1, ρ2 > 0, so we have

f ((xk,l) + (yk,l)) =
m∑

k=1

q (xk,1 + yk,1) +
m∑
l=1

q (x1,l + y1,l)

+ inf

{
ρ = ρ1 + ρ2 > 0 : sup

k,l
M

(
q

(
∆m (xk,l + yk,l)

ρ

))
≤ 1

}

≤
m∑

k=1

q (xk,1) +
m∑
l=1

q (x1,l) + inf

{
ρ1 > 0 : sup

k,l
M

(
q

(
∆mxk,l

ρ1

))
≤ 1

}

+
m∑

k=1

q (yk,1) +
m∑
l=1

q (y1,l) + inf

{
ρ2 > 0 : sup

k,l
M

(
q

(
∆myk,l

ρ2

))
≤ 1

}
=f ((xk,l)) + f ((yk,l)) .

Therefore f is a seminorm.

Theorem 3 Let (X, q) be a complete seminormed space. Then the spaces c2 (∆m,M, p, q, s),
c2o (∆

m,M, p, q, s) and l2∞ (∆m,M, p, q, s) are complete seminormed spaces seminormed by f .

Proof We prove the theorem for the space c2o (∆
m,M, p, q, s). The other cases can be

establish following similar technique.

Let xi =
(
xi
k,l

)
be a Cauchy sequence in c2o (∆

m,M, p, q, s). Let ε > 0 be given and for

r > 0, choose xo fixed such that M
(
rxo

2

)
≥ 1 and there exists mo ∈ N such that

f
((

xi
k,l − xj

k,l

))
<

ε

rxo
, for all i, j ≥ mo

By definition of seminorm, we have

m∑
k=1

q
(
xi
k,1

)
+

m∑
l=1

q
(
xj
1,l

)
+inf

{
ρ > 0 : sup

k,l
M

(
q

(
∆mxi

k,l −∆rxj
k,l

ρ

))
≤ 1

}
<

ε

rxo
(3)

This shows that q
(
xi
k,1

)
and q

(
xj
1,l

)
(k, l ≤ r) are Cauchy sequences in (X, q). Since (X, q)

is complete, so there exists xk,1, x1,l ∈ X such that

lim
i→∞

q
(
xi
k,1

)
= xk,1 and lim

j→∞
q
(
xj
1,l

)
= x1,l (k, l ≤ m) .

Now from (3), we have

M

q

∆m
(
xi
k,l − xj

k,l

)
f
((

xi
k,l − xj

k,l

))
 ≤ 1 ≤ M

(rxo

2

)
, for all i, j ≥ mo. (4)

This implies

q
(
∆m

(
xi
k,l − xj

k,l

))
≤ rxo

2
.
ε

rxo
=

ε

2
, for all i, j ≥ mo.
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So, q
(
∆m

(
xi
k,l

))
is a Cauchy sequence in (X, q). Since (X, q) is complete, there exists

xk,l ∈ X such that limi ∆
m
(
xi
k,l

)
= xk,l for all k, l ∈ N. Since M is continuous, so for

i ≥ mo, on taking limit as j → ∞, we have from (4),

M

q

∆m
(
xi
k,l

)
− limj→∞ ∆rxj

k,l

ρ

 ≤ 1 ⇒ M

q

∆m
(
xi
k,l

)
− xk,l

ρ

 ≤ 1.

On taking the infimum of such ρ′s, we have

f
((
xi
k,l − xk,l

))
< ε, for all i ≥ mo.

Thus
(
xi
k,l − xk,l

)
∈ c2o (∆

m,M, p, q, s). By linearity of the space c2o (∆
m,M, p, q, s) , we

have for all i ≥ mo,

(xk,l) =
(
xi
k,l

)
−
(
xi
k,l − xk,l

)
∈ c2o (∆

m,M, p, q, s) .

Thus c2o (∆
m,M, p, q, s) is a complete space.

Proposition 1 (a) c2 (∆m,M, p, q, s) ⊂ l2∞ (∆m,M, p, q, s),
(b) c2o (∆

m,M, p, q, s) ⊂ l2∞ (∆m,M, p, q, s).
The inclusions are strict.

Proof It is easy, so omitted.
To show that the inclusions are strict, consider the following example.

Example 1 Let M(x) = xp, p ≥ 1, m = 1, s = 0, q (x) = |x|, pk,l = 2 for all k, l ∈ N and
consider the double sequence

xk,l =

{
0 , if k + l is odd
k , otherwise

Then

∆mxk,l =

{
2k + 1 , if k + l is even
−2k − 1 , otherwise

.

Here x = (xk,l) ∈ l2∞ (∆m,M, p, q, s), but x = (xk,l) /∈ c2 (∆m,M, p, q, s).

Theorem 4 The double spaces c2 (∆m,M, p, q, s) and c2o (∆
m,M, p, q, s) are nowhere dense

subsets of l2∞ (∆m,M, p, q, s).

Proof The proof is obvious in view of Theorem 3 and Proposition 1.

Theorem 5 Let m ≥ 1, then for all 0 < i ≤ m, Z2
(
∆i,M, p, q, s

)
⊂ Z2 (∆m,M, p, q, s),

where Z2 = c2, c2o and l2∞. The inclusions are strict.
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Proof We establish it for only c2o
(
∆m−1,M, p, q, s

)
⊂ c2o (∆

m,M, p, q, s). Let x = (xk,l) ∈
c2o
(
∆m−1,M, p, q, s

)
. Then

P − lim
k,l

(kl)
−s

[
M

(
q
(
∆m−1xk,l

)
ρ

)]pk,l

= 0, for some ρ > 0 and s ≥ 0 (5)

Thus from (5) we have

P − lim
k,l

(kl)
−s

[
M

(
q

(
∆mxk,l

ρ

))]pk,l+1

= 0,

P − lim
k,l

(kl)
−s

[
M

(
q

(
∆mxk,l

ρ

))]pk+1,l

= 0,

and

P − lim
k,l

(kl)
−s

[
M

(
q

(
∆mxk,l

ρ

))]pk+1,l+1

= 0.

Now for

∆mx = (∆mxk,l) =
(
∆m−1xk,l −∆m−1xk,l+1 −∆m−1xk+1,l +∆m−1xk+1,l+1

)
,

we have

(kl)
−s

[
M

(
q

(
∆mxk,l

ρ

))]pk,l

≤ (kl)
−s

[
M

(
q

(
∆m−1xk,l

ρ

)
+ q

(
∆m−1xk,l+1

ρ

)
+q

(
∆m−1xk+1,l

ρ

)
+ q

(
∆m−1xk+1,l+1

ρ

))]pk,l

≤D2 (kl)
−s

{[
M

(
q

(
∆m−1xk,l

ρ

))]pk,l

+

[
M

(
q

(
∆m−1xk+1,l

ρ

))]pk,l

+

[
M

(
q

(
∆m−1xk,l+1

ρ

))]pk,l

+

[
M

(
q

(
∆m−1xk+1,l+1

ρ

))]pk,l
}

≤D2

{[
(kl)

−s
M

(
q

(
∆m−1xk,l

ρ

))]pk,l

+

[
(kl)

−s
M

(
q

(
∆m−1xk+1,l

ρ

))]pk+1,l

+

[
(kl)

−s
M

(
q

(
∆m−1xk,l+1

ρ

))]pk,l+1

+

[
(kl)

−s
M

(
q

(
∆m−1xk+1,l+1

ρ

))]pk+1,l+1
}

from which it follows that x = (xk,l) ∈ c2o (∆
m,M, p, q, s) and hence c2o

(
∆m−1,M, p, q, s

)
⊂

c2o (∆
m,M, p, q, s). On applying the principle of induction, it follows that c2o

(
∆i,M, p, q, s

)
⊂

c2o (∆
m,M, p, q, s) for i = 0, 1, 2, ...,m− 1. The proof for the rest cases are similar. To show

that the inclusions are strict, consider the following example.

Example 2 Let M(x) = xp, s = 0, m = 1, q(x) = |x|, pk,l = 1 for all k odd and for all
l ∈ N and pk,l = 2 otherwise. Consider the sequence x = (xk,l) defined by xk,l = k + l for
all k, l ∈ N. We have ∆mxk,l = 0 for all k, l ∈ N. Hence x = (xk,l) ∈ c2o (∆,M, p, q, s) but
x = (xk,l) /∈ c2o (∆

m,M, p, q, s).
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Theorem 6 (a) If 0 < infk,l pk,l ≤ pk,l < 1, then Z2 (∆m,M, p, q, s) ⊂ Z2 (∆m,M, q, s),
(b) If 1 < pk,l ≤ supk,l pk,l < ∞, then Z2 (∆m,M, q, s) ⊂ Z2 (∆m,M, p, q, s),

where Z2 = c2, c2o and l2∞.

Proof The first part of the result follows from the inequality

(kl)
−s

M

(
q

(
∆mxk,l

ρ

))
≤ (kl)

−s

[
M

(
q

(
∆mxk,l

ρ

))]pk,l

and the second part of the result follows from the inequality

(kl)
−s

[
M

(
q

(
∆mxk,l

ρ

))]pk,l

≤ (kl)
−s

M

(
q

(
∆mxk,l

ρ

))
.

Theorem 7 Let M1 and M2 be Orlicz functions satisfying ∆2-condition. If β = lim
t→∞

M2(t)
t ≥

1, then Z2 (∆m,M1, p, q, s) = Z2 (∆m,M2oM1, p, q, s), where Z2 = c2, c2o and l2∞.

Proof We prove it for Z2 = c2 and the other cases will follows on applying similar
techniques. Let x = (xk) ∈ c2 (∆m,M1, p, q, s), then

P − lim
k,l

(kl)
−s

[
M1

(
q

(
∆mxk,l

ρ

))]pk,l

= 0.

Let 0 < ε < 1 and δ with 0 < δ < 1 such that M2 (t) < ε for 0 ≤ t < δ. Let

yk,l = M1

(
q

(
∆mxk,l

ρ

))
and consider

[M2 (yk,l)]
pk,l = [M2 (yk,l)]

pk,l + [M2 (yk,l)]
pk,l (6)

where the first term is over yk,l ≤ δ and the second is over yk,l > δ. From the first term in
(6), using the Remark

(kl)
−s

[M2 (yk,l)]
pk,l < (kl)

−s
[M2 (2)]

H
[(yk,l)]

pk,l (7)

On the other hand, we use the fact that

yk,l <
yk,l
δ

< 1 +
yk,l
δ

.

Since M2 is non-decreasing and convex, it follows that

M2 (yk,l) < M2

(
1 +

yk,l
δ

)
<

1

2
M2 (2) +

1

2
M2

(
2yk,l
δ

)
.

Since M2 satisfies ∆2−condition, we have

M2 (yk,l) <
1

2
K

yk,l
δ

M2 (2) +
1

2
K

yk,l
δ

M2 (2) = K
yk,l
δ

M2 (2) .
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Hence, from the second term in (6), it follows that

(kl)
−s

[M2 (yk,l)]
pk,l ≤ max

(
1,
(
KM2 (2) δ

−1
)H)

(kl)
−s

[(yk,l)]
pk,l (8)

By the inequalities (7) and (8), taking limit in the Pringsheim sense, we have x = (xk) ∈
c2 (∆m,M2oM1, p, q, s). Observe that in this part of the proof we did not need β ≥ 1. Now,
let β ≥ 1 and x = (xk) ∈ c2 (M1,∆

r, q, p). Since β ≥ 1 we have M2 (t) ≥ βt for all t ≥ 0.
It follows that x = (xk) ∈ c2 (∆m,M2oM1, p, q, s) implies x = (xk) ∈ c2 (∆m,M1, p, q, s).
This implies c2 (∆m,M2oM1, p, q, s) = c2 (∆m,M1, p, q, s).

Theorem 8 Let M , M1 and M2 be Orlicz functions, q, q1 and q2 be seminorms and s, s1
and s2 be positive real numbers. Then

(i) Z2 (∆m,M1, p, q, s) ∩ Z2 (∆m,M2, p, q, s) ⊂ Z2 (∆m,M1 +M2, p, q, s),
(ii) Z2 (∆m,M, p, q1, s) ∩ Z2 (∆m,M, p, q2, s) ⊂ Z2 (∆m,M, p, q1 + q2, s),
(iii) If q1 is stronger than q2, then Z2 (∆m,M, p, q1, s) ⊂ Z2 (∆m,M, p, q2, s),
(iv) If s1 ≤ s2, then Z2 (∆m,M, p, q, s1) ⊂ Z2 (∆m,M, p, q, s2),

where Z2 = l2∞, c2 and c2o.

Proof (i) We establish it for only Z2 = c2o. The rest cases are similar. Let x = (xk,l) ∈
c2o (∆

m,M1, p, q, s) ∩ c2o (∆
m,M1, p, q, s). Then

P − lim
k,l

(kl)
−s

[
M1

(
q

(
∆mxk,l

ρ1

))]pk,l

= 0 for some ρ1 > 0,

P − lim
k,l

(kl)
−s

[
M2

(
q

(
∆mxk,l

ρ2

))]pk,l

= 0 for some ρ2 > 0.

Let ρ = max (ρ1, ρ2). The result follows from the following inequality

(kl)
−s

[
(M1 +M2)

(
q

(
∆mxk,l

ρ

))]pk,l

≤ D

{
(kl)

−s

[
M1

(
q

(
∆mxk,l

ρ1

))]pk,l

+ (kl)
−s

[
M2

(
q

(
∆mxk,l

ρ2

))]pk,l
}
.

The proofs of (ii), (iii) and (iv) follow obviously.
The proof of the following result is also routine work.

Proposition 2 For any Orlicz function, if q1 u (equivalent to) q2, then
Z2 (∆m,M, p, q1, s) = Z2 (∆m,M, p, q2, s), where Z2 = l2∞, c2 and c2o.
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[12] Gökhan, A. and Çolak, R. On double sequence spaces c2o (p) , c
2 (p) and l2 (p) . Int. J.

Pure Appl. Math. 2006. 30(3): 309-321.
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