
MATEMATIKA, 2011, Volume 27, Number 1, 51–57

c©Department of Mathematics, UTM.

Geometric Interpretation of Vector Variance

Maman A. Djauhari

Department of Mathematics, Universiti Teknologi Malaysia, 81310 Skudai, Johor.

e-mail: maman@utm.my

Abstract Multivariate dispersion is difficult to measure, and thus to manage, because

of the complexity of covariance structure. There is no single measure that can prop-

erly represent the whole structure. The most popular and widely used measure is the

generalized variance. Unfortunately, it has some serious limitations. An alternative

measure that features good properties is the vector variance. However, its geomet-

ric interpretation in terms of random sample is still vague. This paper is to clarify

the geometric meaning of vector variance which will ensure the proper application of

this measure in practice. For that purpose we use Escoufier’s operator, an operator

representation of random vector, to show that sample vector variance is equal to the

squared Frobenius norm of that operator in random sample setting.
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1 Introduction

Understanding multivariate dispersion is as important as understanding location. However,
the former has received far less attention in the literature. This dearth probably results from
the fact that there is no strongly suitable measure that can explain the whole covariance
structure. The total variance [1,2] concerns only on the sum of all variances, the generalized
variance, [3–5], possesses serious limitations, and the minimum volume of ellipsoid [6, 7]
depends on the generalized variance [8]. Other examples, such as the effective variance [8,9],
the square root of generalized variance [3, 5], and the relative generalized variance [10], are
variants of the generalized variance (GV).

Sample GV is geometrically easy to interpret. This is probably the most important
reason why GV is very popular and widely used in many applications even though it is an
imprecise measure and not apt to show the difference between two covariance structures.
It is easy to find examples where, according to GV, two different covariance structures
might be declared equal to each other. This imprecision is then exploited in Djauhari [11]
in order to introduce the so-called vector variance (VV) as a new measure. Later on,
Djauhari et al. [12] show that this new measure, if it is simultaneously used together with
GV, provides better understanding about the shift in covariance structure. Despite this
advantage, unlike GV, its geometric interpretation is still vague. From the classical books
of multivariate analysis such as Anderson [13], we learn that sample GV is proportional to
the squared volume of parallelotope spanned by a multivariate data set. See also Mason et
al. [14] for a recent application in monitoring multivariate process variability. On the other
hand, the geometric interpretation of sample VV needs to be clarified. This is the main
topic of this paper.
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The rest of the paper is organized as follows. In the next section we will discuss the
important properties of VV. Later on, in Section 3, we present the geometric interpretation
of its sample version. We start by using Escoufier’s operator to characterize random vector
and then consider VV as a metric in the space of all such operators. Later on, we show that
sample VV is equal to the squared Frobenius norm of an operator associated to a random
sample. This will lead us to the geometric meaning of sample VV. Additional remarks, in
the last section, will close the presentation of this paper.

2 Properties of Vector Variance

Consider X and Y, two random vectors of pandq dimensions, pandq are not necessarily

equal. The covariance matrix of the random vector
(

XT YT
)T

of (p + q) dimension can be
written in the form of a partition matrix,

(

ΣXX ΣXY

ΣYX ΣYY

)

where ΣXX and ΣYY are covariance matrices of X and Y, respectively, and

ΣXY = ΣT

YX

is the covariance matrix between X and Y.
To measure the linear relationship between the random vectors X and Y, Escoufier

( [15], [16]) defined the correlation coefficient between them as

ρV (X, Y) =
Tr (ΣXYΣYX)

√

Tr (Σ2

XX
) Tr (Σ2

YY
)

where Tr is the operator “trace”. See also Cleroux and Ducharme ( [17]) for its inferential
discussion. This measure is called “vector correlation.” Accordingly, Tr (ΣXYΣYX) is the
vector covariance between X and Y and Tr

(

Σ2

XX

)

and Tr
(

Σ2

YY

)

the VV of X and Y,
respectively.

Let us focus on the random vector X. The VV of X is the sum of all diagonal elements
of Σ2

XX
. Like the GV of X, |ΣXX|, it is a monotonic increasing function of all eigenvalues

ofΣXX. If GV is the product of all eigenvalues, VV is their sum of squares. Therefore, like
GV, VV can also be used as a measure of multivariate dispersion. Here are some important
properties of sample VV.

Property 1: Computational Complexity

VV is equal to the sum of squares of all elements of ΣXX while GV is the determinant
of that matrix. Therefore, the former is a quadratic form and the latter is a multilinear
form. Consequently, (i) VV can be efficiently used for high-dimension data sets and
(ii) the computational complexity of VV is O

(

p2
)

; far less than that of GV which is

of order O
(

p3
)

.

Property 2: Non Singularity of Covariance Matrix

Unlike GV, VV does not need the condition that ΣXX must be non singular. There-
fore, VV can be used although the distribution is degenerate in Rp.
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Property 3: Average Run Length (ARL)

If VV is used to monitor process variability, VV performs much better than GV in
detecting the small shift in covariance structure (Djauhari et al., 2008). Its out-
of-control ARL is far less than that of GV for small shift and they have the same
performance for large shift.

Property 4: Robust Estimation

Instead of minimum covariance determinant, minimum vector variance can also be
used as the stopping rule in the C-step of fast minimum covariance determinant
(FMCD) algorithm ( [18]). As long as the algorithm is convergent, this new stopping
rule is as effective as the original one but its computational complexity is far lower
(see Djauhari et al., [12]).

Property 5: Asymptotic Distribution

LetX1, X2, . . . , Xn be a random sample of size n of X and X̄ = 1

n

n
∑

i=1

Xi and

S = 1

n−1

n
∑

i=1

(

Xi − X̄
) (

Xi − X̄
)T

be the sample mean vector and sample covariance

matrix, respectively. The asymptotic distribution of sample VV is ( [12]),

√
n − 1

{

Tr
(

S2
)

− Tr
(

Σ2

XX

)} d−→ N
(

0, 8Tr
(

Σ4

XX

))

.

For practical purposes, we recommend to use

√

(n − 1)
2

n

{

Tr
(

S2
)

− n + 1

n − 1
Tr
(

Σ2

XX

)

}

d−→ N
(

0, 8Tr
(

Σ4

XX

))

because the sample size n takes part in the determination of the mean and variance
estimates. This distribution is simpler than the asymptotic distribution of sample GV
(see Djauhari [19]),

1√
b2

{|S| − b1 |Σ|} d−→ N
(

0, |Σ|2
)

where

b1 =
1

(n − 1)
p

p
∏

k=1

(n − k)

and

b2 = b1

{

1

(n − 1)
p

p
∏

k=1

(n − k + 2) − b1

}

.

Those properties show the significant advantages of VV compared to GV. However, in
general, we cannot claim that one measure is superior to the other. It is not difficult to find
examples where two different covariance matrices might have the same VV but different
GV. Therefore, to have a better understanding about multivariate dispersion, the best way
is to use both simultaneously.



54 Maman A. Djauhari

3 Geometric Interpretation

Algebraically, GV is a “weak” measure in the sense that |ΣXX| = 0 if and only if at least
one variable has zero variance or there is at least one variable that is a linear combination
of the others. In other words, the rank of ΣXX is less than p. On the other hand, VV is
“strong” in the sense that Tr

(

Σ2

XX

)

= 0 if and only if the rank of ΣXX is 0 which means
that all variables have zero variance or, equivalently, the distribution is degenerate at the
mean vector. This outcome is similar to that of the univariate case.

It is not difficult to give the geometric interpretation of VV in univariate case because
in this case VV is the square of the classical variance. However, to the knowledge of the
author, no geometric interpretation in multivariate setting is available in the literature. This
is what we intent to discuss in the rest of the paper. The discussion begins by exploiting
the classical result in Escoufier [16] on the characterization of a random vector. Later on,
we focus on sample random setting.

3.1 Characterization of Random Vector

Let us consider L2 (Ω, A, P ) the set of all centered random variables of finite variance de-

fined on a probability space (Ω, A, P ) and X = (X1, X2, ..., Xp)
T

a random vector of p

dimension where Xk is in L2 (Ω, A, P ); k = 1, 2, . . . , p. Associated to that random vector,
Escoufier ( [16]) defined the following operator from L2 (Ω, A, P ) into itself

ϕX (Y) =

p
∑

k=1

E (XkY )Xkfor all Y in L2 (Ω,A, P)

or, in matrix multiplication form,

ϕX (Y) = E (XY )X.

It is interesting to note that if the covariance matrix of X is positive definite, then
ϕX (Y) puts Y in the coordinate system defined byX1, X2, ..., Xp. The coordinate of Y
on Xk is E (XkY ) the covariance of Y andXk. The operator ϕX (Y) plays a fundamental
role in multivariate analysis because it characterizes the random vector X. In other words,
there exists a one-to-one correspondence between the set of all random vectors

X =
{

X : X = (X1, X2, ..., Xp)
T

, Xk in L2 (Ω,A, P ) for all k
}

and the set of all operators

P = {ϕX : ϕX (Y ) = E (XY )X, X in X and Y in L2 (Ω,A, P)} .

Specifically, if u is in Rp such that ΣXXu = λu, then Y = uTX satisfies ϕX (Y) = λY.
Conversely, if Y is in L2 (Ω,A, P ) such that ϕX (Y) = λY, then Y = uTX where u satisfies
ΣXXu = λu. The operator ϕX is the so-called Escoufier’s operator associated with the
random vector X.

We see that: (i) ϕX and ΣXX have the same positive eigenvalues and (ii) if λ 6= 0, Y is
the principal component of X with varianceλ. Therefore, the characterization of X by ϕX

is not only based on the magnitudes (variances) of the principal components but also their
directions. This result will be exploited to explore the geometric interpretation of sample
VV. First, we consider the VV as a metric in P.
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3.2 VV as a Metric

Let Ck be the principal component of X associated with eigenvalue λk; k = 1, 2, . . . ,
p.. Then, C = (C1, C2, ..., Cp)

T
and X have the same operators; ϕC = ϕX. Conse-

quently, two random vectors having the same sets of principal components have the same
operator. This motivates us to focus our investigation on the set of such operators. Now,
let us consider the set P of all operators. We know thatL2 (Ω, A, P) completed with the
product scalar < X, Y > = E (XY ), the covariance of X and Y, is a Hilbert space.
That scalar product induces in P the following scalar product

< ϕX, ϕY > = Tr (ΣXYΣYX)

for all X and Y in X . With this scalar product, P is also a Hilbert space. Therefore, we
now know how to study the linear relationship among two elements in X via the linear
relationship among their respective operators in P. Based on the definition of < ϕX, ϕY >,
we obtain that

‖ϕX‖2 = < ϕX, ϕY > = Tr
(

Σ2

XX

)

.

Thus, the squared norm of ϕX is the squared Frobenius norm of ΣXX which is the VV of
X. Now, we focus our study on the sampling form of VV.

3.3 VV as a Measure of Dispersion

Consider again X1, X2, . . . , Xn the random sample of size n of X, and X̄ and S the sample
mean vector and sample covariance matrix, respectively. We write

Xk = (X1k, X2k, ..., Xpk)
T

and X̄ =
(

X̄1, X̄2, ..., X̄p

)T
.

If we construct X =
(

Xij − X̄i

)

a matrix of size (p × n), then the sample covariance
matrix S can be written in matrix multiplication form as follows

S =
1

n − 1
XXT.

Accordingly, W =
1

n − 1
XTX is a matrix of size (n × n) satisfying:

(i) If u in Rp is the solution of Su = λu, then C = uT X satisfies WC = λC. Conversely,
if C is such that WC = λC, then C = uTX where u satisfies Su = λu. Thus, W is
the sample version of Escoufier’s operator associated with data matrix X.

(ii) If λ 6= 0, then C is the principal component with varianceλ.

(iii) Tr
(

W2
)

= Tr

(

1

(n − 1)
2
XTXXTX

)

= Tr

(

1

(n − 1)
2
XXTXXT

)

= Tr
(

S2
)

.

The last property (iii) shows that the sample VV,Tr
(

S2
)

, can be interpreted by means of

Tr
(

W2
)

. Let us consider a realization of the random sample X1, X2, . . . , Xn. It forms a
cloud of n observation points in Rp where the sample mean vector X̄ is the center of gravity
of the cloud. From the definition of W we see that the geometric configuration of all points
in the cloud with respect to the center of gravity is numerically summarized in that matrix.
More specifically, if we write W = (Wij), then
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(i) Wij is the scalar product of observation points Xi and Xj with respect to X̄ divided
by (n – 1).

(ii) Wii is the squared distance from Xi to X̄ divided by (n – 1).

From this investigation we conclude that sample VV is equal to the squared Frobenius
norm of W. It is the sum of squares of all elements of W. Therefore, the value of sample
VV is a numerical indicator of how the cloud of n observation points in Rp is dispersed
around the sample mean vector. The smaller the value of sample VV the more concentrated
the cloud aroundX̄ and the larger the value of sample VV the more dispersed the cloud
aroundX̄ in a subspace of dimension k; k ≤ p.

4 Additional Remarks

GV and VV have different behaviours. We can easily find examples of two different matrices
having the same GV but different VV. Conversely, we can also find examples of two different
matrices having the same VV but different GV. Thus, algebraically, we cannot claim that
GV is superior than VV or vice versa. Therefore, a simultaneous use of both will be very
helpful. However, if GV needs the condition that the covariance matrix is non singular,
VV does not need that condition. VV is more appropriate than GV to deal with high
dimensional data sets.

Geometrically, sample GV is proportional to the squared volume of parallelotope spanned
by all rows of X. However, no geometric interpretation of sample VV is available in the
literature. In this paper we have showed that sample VV is equal to Tr

(

W2
)

; the squared
Frobenius norm of the scalar product matrix W. By means of this statistic we see that sam-
ple VV is a numerical indicator of how the cloud of n observation points in Rp are dispersed
around the sample mean vector. Sample VV equals 0 if and only if the n observation points
are equal to each other. The larger the value of sample VV, the more dispersed the cloud
around the sample mean vector in a subspace of Rp.
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II, France, for fruitful discussion. The author also thanks the Editor and reviewers for their
efforts that led to improvements of the presentation of this paper.

References

[1] Chatterjee, S., and Hadi, A. S. Sensitivity Analysis in Linear Regression. New York:
John Wiley & Sons. 1988.

[2] Mardia, K. V., Kent, J. T., and Bibby, J. M. Multivariate Analysis. New York: Aca-
demic Press. 2000.



Geometric Interpretation of Vector Variance 57

[3] Alt, F. B., and Smith, N. D. Multivariate Process Control. Handbook of Statistics
(Krishnaiah P.R. and Rao C.R. Eds). New York: Elsevier Science Publishers. 7: 333–
351. 1988.

[4] Montgomery, D. C. Introduction to Statistical Quality Control. 4th Edition. New York:
John Wiley and Sons, Inc. 2001.

[5] Djauhari, M. A. Improved monitoring of multivariate process variability. Journal of
Quality Technology. 2005. 37(1): 32 – 39.

[6] Rousseeuw, P.J. Multivariate estimation with high breakdown point. In Grossman W.,
Pflug G., Vincze I. and Wertz W. (Ed). Mathematical Statistics and Applications,
Volume B. New York: D. Reidel Publishing Company. 1985 .283 – 297.

[7] Grambow, S., and Stromberg, A. J. Combining the EID and FSA for Computing the
Minimum Volume Ellipsoid. Technical Report. Department of Statistics, University of
Kentucky. 1998.

[8] Serfling, R. J. Approximation Theorems of Mathematical Statistics. New York: John
Wiley & Sons. 1980.

[9] Pena, D., and Rodriguez, J. Descriptive measures of multivariate scatter and lin-
ear dependence. 2005. Retrieved on July 22, 2009. http://halweb.uc3m.es/esp/ per-
sonal/dpena/article/JMVA03.PDF

[10] Tang, P. F., and Barnett, N. S. Dispersion control for multivariate processes. Australian
Journal of Statistics. 1996. 38(3): 235 – 251.

[11] Djauhari, M. A. A measure of multivariate data concentration. Journal of Applied
Probability. 2007. 2(2): 139 – 155.

[12] Djauhari, M. A., Mashuri, M., and Herwindiati, D.E. A multivariate process variability
monitoring. Communications in Statistics–Theory and Methods. 2008. 37: 1742 – 1754.

[13] Anderson, T.W. Introduction to Multivariate Statistical Analysis. 1st Edition. New
York: John Wiley & Sons. 1966.

[14] Mason, R. L., Chou, Y-M., and Young, J. C. Monitoring variation in a multivariate
process when the dimension is large relative to the sample size. Communications in
Statistics–Theory and Methods. 2009. 38(6): 939 – 951.

[15] Escoufier, Y. Le traitement des variables vectorielles. Biometrics. 1973. 29: 751 – 760.
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