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Abstract In this paper, we have developed a new class of 2-step rational multistep
methods (RMMs) in second to fifth order of accuracy. We have presented the devel-
opments of these RMMs, as well as the local truncation error and stability analysis
for each RMM that we have developed. Numerical experiments have shown that all
RMMs presented in this paper are suitable to solve initial value problem of various
dimensions and also stiff problems.
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1 Introduction

Let us consider the initial value problem given by

y′ = f (x, y) , y (a) = η,
y, f (x, y) ∈ R, x ∈ [a, b] ⊂ R, (1)

where f is assumed to satisfy all the conditions in order that (1) has a unique solution.
Conventional linear multistep method given by

k∑
j=0

αjyn+j = h
k∑

j=0

βjfn+j ,

is based on the local representation of a polynomial of the theoretical solution to (1). If a
linear multistep method was used to pursue the numerical solutions possess singularities,
then it fails woefully near the singular points, [1], [2] and [3]. This is because a linear
multistep method is formulated on the basis that (1) satisfies the existence and uniqueness
theorem, so that polynomial interpolation can be applied quite successfully in the formula-
tion, [3]. Therefore, a natural step would appear to be the replacement of the polynomial
function for a linear multistep method, by a rational function due to its smooth behaviour
in the neighbourhood of singularities, [3]. We have addressed multistep methods that based
on rational interpolant as rational multistep methods or in brief as RMMs. In this paper,
we have developed a new class of RMMs that based on the rational interpolants introduced
by Van Niekerk [2]. The discussions of these new RMMs are presented as follows.
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Suppose that we have solved (1) numerically up to a point xn and have obtained a
value yn as an approximation of y (xn), which is the theoretical solution of (1). Following
Lambert [1] and Lambert [4], we assume that no previous truncation errors have been made
i.e. yn = y (xn), we are interested in obtaining yn+2 as the approximation of y (xn+2). For
that purpose, we suggest an approximation to the theoretical solution y (xn+2) of (1) given
by

yn+2 = a0 +
a1h

1 + a2h

1+
a3h

1 + · · ·
...

akh
1+ak+1h

, (2)

where ai for i = 0, 1, . . . , k, k+1 are parameters that may contain approximations of y (xn)
and higher derivatives of y (xn).

RMM (2) is defined as 2-step p-th order RMM2 or in brief as RMM2(2,p) with
p = 2, 3, . . .. Before establishing the difference operator for (2), we need to simplify the
right-hand side of (2). The simplified version of (2) can be written in the form of

yn+2 = a0 +
P (aj , h)

Q (aj , h)
, (3)

where P (aj , h) and Q (aj , h) are functions that contain the parameters

aj for j = 1, 2, . . . , k, k + 1 and k ≥ 1.

With the RMM2 of the form in (3), we associate the difference operator L defined by

L [y (x) ;h]RMM2 = (y (x+ 2h)− a0)×Q (aj , h)− P (aj , h) , (4)

where y (x) is an arbitrary function, continuously differentiable on x ∈ [a, b] ⊂ R. Expanding
y (x+ 2h) as Taylor series and collecting terms in (4) gives the following general expression:

L [y (x) ;h]RMM2 = C0h
0 + C1h

1 + · · ·+ Ckh
k + Ck+1h

k+1 + · · · . (5)

We note that the “C” in (5) contain corresponding parameters that need to be determined
in the derivation processes. Therefore, the order and local truncation errors of RMM2 based
on (2) are defined as follows.

Definition 1 The difference operator (4) and the associated rational multistep method (2)
are said to be of order p = k + 1 if, in (5), C0 = C1 = · · · = Ck+1 = 0, Ck+2 ̸= 0.

Definition 2 The local truncation error at xn+2 of (2) is defined to be the expression
L [y (xn) ;h]RMM2 given by (4), when y (xn) is the theoretical solution of the initial value
problem (1) at a point xn. The local truncation error of (2) is then

L [y (xn) ;h]RMM2 = Ck+2h
k+2 +O

(
hk+3

)
. (6)
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2 2-step Second Order RMM2

In order to derive a second order RMM2, we have to take k = 1 in (2) and express in the
form of (3). Next, from (4), expand y (x+ 2h) into series, and the following expression is
obtained:

L [y (x) ;h]RMM2

= −a0 + y (x) + h (−a1 − a0a2 + a2y (x) + 2y′ (x)) + h2 (2a2y
′ (x) + 2y′′ (x))

+ h3
(
2a2y

′′ (x) + 4
3y

′′′ (x)
)
+O

(
h4
)
.

(7)

Following Definition 1 and (5), it is readily deduced that

{C0 = −a0 + y (x) , C1 = −a1 − a0a2 + a2y (x) + 2y′ (x) , C2 = 2a2y
′ (x) + 2y′′ (x) ,

C3 = 2a2y
′′ (x) + 4

3y
′′′ (x)

}
.

With C0 = C1 = C2 = 0, we obtain a system of three simultaneous equations which have
the following solutions: {

a0 = y (x) , a1 = 2y′ (x) , a2 = −y′′ (x)

y′ (x)

}
. (8)

Substituting the parameters in (8) into C3, we obtain

C3 = −2y′′ (x)
2

y′ (x)
+

4

3
y′′′ (x) . (9)

When y (x) is now taken as the theoretical solution of the initial value problem (1) at a
point xn i.e. y (x) = y (xn), (8) may be written as{

a0 = yn, a1 = 2y′n, a2 = −y′′n
y′n

}
, (10)

where yn = y (xn) and y
(m)
n = y(m) (xn), m = 1, 2 by the localizing assumption. By taking

k = 1, (2) becomes

yn+2 = a0 +
a1h

1 + a2h
, 1 + a2h ̸= 0. (11)

We indicate (11) based on (10) as RMM2(2,2) is given as

yn+2 = yn +
2h (y′n)

2

y′n − hy′′n
, (12)

provided |y′n| + |y′′n| ̸= 0, as to ensure that the denominator of the rational expression in
(12) does not equal to zero. From Definition 2 and (9), the local truncation error (in brief
as LTE) of RMM2(2,2) becomes

LTERMM2(2,2) = h3

(
−2 (y′′n)

2

y′n
+

4

3
y′′′n

)
+O

(
h4
)
, (13)
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where y
(m)
n = y(m) (xn), m = 1, 2, 3 by the localizing assumption. This LTE analysis

has confirmed that RMM2(2,2) is a second order method. If we apply RMM2(2,2) to the
Dahlquist’s test equation y′ = λy, Re (λ) < 0, yielding the difference equation

yn+2 =
1 + hλ

1− hλ
yn. (14)

Setting z = hλ, yn+2 = ξ2 and yn = ξ0 = 1 in (14) yield the characteristic equation

ξ2 − 1 + z

1− z
= 0. (15)

The roots of (15) are given by

ξ(15,1) = −
√
1 + z√
1− z

and ξ(15,2) =

√
1 + z√
1− z

.

By taking z = x + iy in the roots of (15), we obtain the region of absolute stability of
RMM2(2,2) as shown in Figure 1.

Figure 1: Stability Region of RMM2(2,2)

The shaded region in Figure 1 is the region of absolute stability of RMM2(2,2), where
the conditions:

∣∣ξ(15,1)∣∣ ≤ 1 and
∣∣ξ(15,2)∣∣ ≤ 1 are satisfied. From Figure 1, we can see that

the region of absolute stability of RMM2(2,2) contains the whole left-hand half plane, which
show that RMM2(2,2) is A-stable.

3 2-step Third Order RMM2

In order to derive a third order RMM2, we have to take k = 2 in (2) and express in the
form of (3). Next, from (4), expand y (x+ 2h) into series, and the following expression is
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obtained:

L [y (x) ;h]RMM2

= −a0 + y (x) + h (−a1 − a0a2 − a0a3 + a2y (x) + a3y (x) + 2y′ (x))
+ h2 (−a1a3 + 2a2y

′ (x) + 2a3y
′ (x) + 2y′′ (x))

+ h3
(
2a2y

′′ (x) + 2a3y
′′ (x) + 4

3y
′′′ (x)

)
+ h4

(
4
3a2y

′′′ (x) + 4
3a3y

′′′ (x) + 2
3y

(4) (x)
)

+O
(
h5
)
.

(16)
Following Definition 1 and (5), it is readily deduced that

{C0 = −a0 + y (x) , C1 = −a1 − a0a2 − a0a3 + a2y (x) + a3y (x) + 2y′ (x) ,
C2 = −a1a3 + 2a2y

′ (x) + 2a3y
′ (x) + 2y′′ (x) , C3 = 2a2y

′′ (x) + 2a3y
′′ (x) + 4

3y
′′′ (x) ,

C4 = 4
3a2y

′′′ (x) + 4
3a3y

′′′ (x) + 2
3y

(4) (x)
}
.

With C0 = C1 = C2 = C3 = 0, we obtain a system of four simultaneous equations which
have the following solutions:{

a0 = y (x) , a1 = 2y′ (x) , a2 = −y′′ (x)

y′ (x)
, a3 =

3y′′ (x)
2 − 2y′ (x) y′′′ (x)

3y′ (x) y′′ (x)

}
. (17)

Substituting the parameters in (17) into C4, we obtain

C4 = −8y′′′ (x)
2

9y′′ (x)
+

2

3
y(4) (x) . (18)

When y (x) is now taken as the theoretical solution of the initial value problem (1) at a
point xn i.e. y (x) = y (xn), (17) may be written as{

a0 = yn, a1 = 2y′n, a2 = −y′′n
y′n

, a3 =
3 (y′′n)

2 − 2y′ny
′′′
n

3y′ny
′′
n

}
, (19)

where yn = y (xn) and y
(m)
n = y(m) (xn), m = 1, 2, 3 by the localizing assumption. By

taking k = 2, (2) becomes

yn+2 = a0 +
a1h (1 + a3h)

1 + a2h+ a3h
, 1 + a2h+ a3h ̸= 0, (20)

which is in the form of (3). We indicate (20) based on (19) as RMM2(2,3) is given as

yn+2 = yn + 2hy′n +
6h2 (y′′n)

2

3y′′n − 2hy′′′n
, (21)

provided |y′′n| + |y′′′n | ̸= 0, as to ensure that the denominator of the rational expression in
(21) does not equal to zero. From Definition 2 and (18), LTE of RMM2(2,3) becomes

LTERMM2(2,3) = h4

(
−8 (y′′′n )

2

9y′′n
+

2

3
y(4)n

)
+O

(
h5
)
, (22)
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where y
(m)
n = y(m) (xn), m = 2, 3, 4 by the localizing assumption. This LTE analysis

has confirmed that RMM2(2,3) is a third order method. If we apply RMM2(2,3) to the
Dahlquist’s test equation y′ = λy, Re (λ) < 0, yielding the difference equation

yn+2 =
3 + 4hλ+ 2h2λ2

3− 2hλ
yn. (23)

Setting z = hλ, yn+2 = ξ2 and yn = ξ0 = 1 in (23) yield the characteristic equation

ξ2 − 3 + 4z + 2z2

3− 2z
= 0. (24)

The roots of (24) are given by

ξ(24,1) = −
√
3 + 4z + 2z2√

3− 2z
and ξ(24,2) =

√
3 + 4z + 2z2√

3− 2z
.

By taking z = x+iy in the roots of (24), we get the region of absolute stability of RMM2(2,3)
as shown in Figure 2.

Figure 2: Stability Region of RMM2(2,3)

The shaded region in Figure 2 is the region of absolute stability of RMM2(2,3), where
the conditions:

∣∣ξ(24,1)∣∣ ≤ 1 and
∣∣ξ(24,2)∣∣ ≤ 1 are satisfied. From Figure 2, we can see that

the region of absolute stability of RMM2(2,3) is a bounded region on the left-hand half
plane, which show that RMM2(2,3) is not A-stable.

4 2-step Fourth Order RMM2

In order to derive a fourth order RMM2, we have to take k = 3 in (2) and express in the
form of (3). Next, from (4), expand y (x+ 2h) into series, and the following expression is
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obtained:

L [y (x) ;h]RMM2

= −a0 + y (x) + h (−a1 − a0a2 − a0a3 − a0a4 + a2y (x) + a3y (x) + a4y (x) + 2y′ (x))
+ h2 (−a1a3 − a1a4 − a0a2a4 + a2a4y (x) + 2a2y

′ (x) + 2a3y
′ (x) + 2a4y

′ (x) + 2y′′ (x))
+ h3

(
2a2a4y

′ (x) + 2a2y
′′ (x) + 2a3y

′′ (x) + 2a4y
′′ (x) + 4

3y
′′′ (x)

)
+ h4

(
2a2a4y

′′ (x) + 4
3a2y

′′′ (x) + 4
3a3y

′′′ (x) + 4
3a4y

′′′ (x) + 2
3y

(4) (x)
)

+ h5
(
4
3a2a4y

′′′ (x) + 2
3a2y

(4) (x) + 2
3a3y

(4) (x) + 2
3a4y

(4) (x) + 4
15y

(5) (x)
)
+O

(
h6
)
.
(25)

Following Definition 1 and (5), it is readily deduced that

{C0 = −a0 + y (x) , C1 = −a1 − a0a2 − a0a3 − a0a4 + a2y (x) + a3y (x) + a4y (x) + 2y′ (x) ,
C2 = −a1a3 − a1a4 − a0a2a4 + a2a4y (x) + 2a2y

′ (x) + 2a3y
′ (x) + 2a4y

′ (x) + 2y′′ (x) ,
C3 = 2a2a4y

′ (x) + 2a2y
′′ (x) + 2a3y

′′ (x) + 2a4y
′′ (x) + 4

3y
′′′ (x) ,

C4 = 2a2a4y
′′ (x) + 4

3a2y
′′′ (x) + 4

3a3y
′′′ (x) + 4

3a4y
′′′ (x) + 2

3y
(4) (x) ,

C5 = 4
3a2a4y

′′′ (x) + 2
3a2y

(4) (x) + 2
3a3y

(4) (x) + 2
3a4y

(4) (x) + 4
15y

(5) (x)
}
.

With C0 = C1 = C2 = C3 = C4 = 0, we obtain a system of five simultaneous equations
which have the following solutions:{

a0 = y (x) , a1 = 2y′ (x) , a2 = −y′′(x)
y′(x) , a3 = 3y′′(x)2−2y′(x)y′′′(x)

3y′(x)y′′(x) ,

a4 = −4y′(x)y′′′(x)2+3y′(x)y′′(x)y(4)(x)

3y′′(x)(3y′′(x)2−2y′(x)y′′′(x))

}
.

(26)

Substituting the parameters in (26) into C5, we obtain

C5 =
16y′′′ (x)

3 − 24y′′ (x) y′′′ (x) y(4) (x) + 6y′ (x) y(4) (x)
2

27y′′ (x)
2 − 18y′ (x) y′′′ (x)

+
4

15
y(5) (x) . (27)

When y (x) is now taken as the theoretical solution of the initial value problem (1) at a
point xn i.e. y (x) = y (xn), (26) may be written asa0 = yn, a1 = 2y′n, a2 = −y′′n

y′n
, a3 =

3 (y′′n)
2 − 2y′ny

′′′
n

3y′ny
′′
n

, a4 =
−4y′n (y

′′′
n )

2
+ 3y′ny

′′
ny

(4)
n

3y′′n

(
3 (y′′n)

2 − 2y′ny
′′′
n

)
 ,

(28)

where yn = y (xn) and y
(m)
n = y(m) (xn), m = 1, 2, 3, 4 by the localizing assumption. By

taking k = 3, (2) becomes

yn+2 = a0 +
a1h (1 + a3h+ a4h)

1 + a2h+ a3h+ a4h+ a2a4h2
, 1 + a2h+ a3h+ a4h+ a2a4h

2 ̸= 0, (29)

which is in the form of (3). We indicate (29) based on (28) as RMM2(2,4) is given as

yn+2 = yn +
2h(y′

n)
2

y′
n−hy′′

n

+
2h3

(
−3 (y′′n)

2
+ 2y′ny

′′′
n

)2
(−y′n + hy′′n)

(
9 (y′′n)

2 − 6y′ny
′′′
n − 6hy′′ny

′′′
n + 4h2 (y′′′n )

2
+ 3hy′ny

(4)
n − 3h2y′′ny

′′′
n

) ,
(30)
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provided |y′n|+ |y′′n| ̸= 0 and |y′′n|+ |y′′′n |+
∣∣∣y(4)n

∣∣∣ ̸= 0, as to ensure that the denominators of

the two rational expressions in (30) do not equal to zero. We also note that the conditions

|y′n|+ |y′′n| ̸= 0 and |y′′n|+ |y′′′n |+
∣∣∣y(4)n

∣∣∣ ̸= 0 are only impose to the formula (30), not on the

parameters in (28). From Definition 2 and (27), LTE of RMM2(2,4) becomes

LTERMM2(2,4) = h5

16 (y′′′n )
3 − 24y′′ny

′′′
n y

(4)
n + 6y′n

(
y
(4)
n

)2
27 (y′′n)

2 − 18y′ny
′′′
n

+
4

15
y(5)n

+O
(
h6
)
, (31)

where y
(m)
n = y(m) (xn), m = 1, 2, 3, 4, 5 by the localizing assumption. This LTE analysis

has confirmed that RMM2(2,4) is a fourth order method. If we apply RMM2(2,4) to the
Dahlquist’s test equation y′ = λy, Re (λ) < 0, yielding the difference equation

yn+2 =
3 + 3hλ+ h2λ2

3− 3hλ+ h2λ2
yn. (32)

Setting z = hλ, yn+2 = ξ2 and yn = ξ0 = 1 in (32) yield the characteristic equation

ξ2 − 3 + 3z + z2

3− 3z + z2
= 0. (33)

The roots of (33) are given by

ξ(33,1) = −
√
3 + 3z + z2√
3− 3z + z2

and ξ(33,2) =

√
3 + 3z + z2√
3− 3z + z2

.

By taking z = x+iy in the roots of (33), we get the region of absolute stability of RMM2(2,4)
as shown in Figure 3.

Figure 3: Stability Region of RMM2(2,4)

The shaded region in Figure 3 is the region of absolute stability of RMM2(2,4), where
the conditions:

∣∣ξ(33,1)∣∣ ≤ 1 and
∣∣ξ(33,2)∣∣ ≤ 1 are satisfied. From Figure 3, we can see that

the region of absolute stability of RMM2(2,4) contains the whole left-hand half plane, which
show that RMM2(2,4) is A-stable.
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5 2-step Fifth Order RMM2

In order to derive a fifth order RMM2, we have to take k = 4 in (2) and express in the
form of (3). Next, from (4), expand y (x+ 2h) into series, and the following expression is
obtained:

L [y (x) ;h]RMM2

= −a0 + y (x)
+ h (−a1 − a0a2 − a0a3 − a0a4 − a0a5 + a2y (x) + a3y (x) + a4y (x) + a5y (x) + 2y′ (x))
+ h2 (−a1a3 − a1a4 − a0a2a4 − a1a5 − a0a2a5 − a0a3a5 + a2a4y (x) + a2a5y (x)

+ a3a5y (x) + 2a2y
′ (x) + 2a3y

′ (x) + 2a4y
′ (x) + 2a5y

′ (x) + 2y′′ (x))
+ h3 (−a1a3a5 + 2a2a4y

′ (x) + 2a2a5y
′ (x) + 2a3a5y

′ (x) + 2a2y
′′ (x) + 2a3y

′′ (x)
+2a4y

′′ (x) + 2a5y
′′ (x) + 4

3y
′′′ (x)

)
+ h4

(
2a2a4y

′′ (x) + 2a2a5y
′′ (x) + 2a3a5y

′′ (x) + 4
3a2y

′′′ (x) + 4
3a3y

′′′ (x) + 4
3a4y

′′′ (x)
+ 4

3a5y
′′′ (x) + 2

3y
(4) (x)

)
+ h5

(
4
3a2a4y

′′′ (x) + 4
3a2a5y

′′′ (x) + 4
3a3a5y

′′′ (x) + 2
3a2y

(4) (x) + 2
3a3y

(4) (x)
+ 2

3a4y
(4) (x) + 2

3a5y
(4) (x) + 4

15y
(5) (x)

)
+ h6

(
2
3a2a4y

(4) (x) + 2
3a2a5y

(4) (x) + 2
3a3a5y

(4) (x) + 4
15a2y

(5) (x) + 4
15a3y

(5) (x)
+ 4

15a4y
(5) (x) + 4

15a5y
(5) (x) + 4

45y
(6) (x)

)
+O

(
h7
)
.

(34)
Following Definition 1 and (5), it is readily deduced that

{C0 = −a0 + y (x) ,
C1 = −a1 − a0a2 − a0a3 − a0a4 − a0a5 + a2y (x) + a3y (x) + a4y (x) + a5y (x) + 2y′ (x) ,
C2 = −a1a3 − a1a4 − a0a2a4 − a1a5 − a0a2a5 − a0a3a5 + a2a4y (x) + a2a5y (x)

+ a3a5y (x) + 2a2y
′ (x) + 2a3y

′ (x) + 2a4y
′ (x) + 2a5y

′ (x) + 2y′′ (x) ,
C3 = −a1a3a5 + 2a2a4y

′ (x) + 2a2a5y
′ (x) + 2a3a5y

′ (x) + 2a2y
′′ (x) + 2a3y

′′ (x)
+ 2a4y

′′ (x) + 2a5y
′′ (x) + 4

3y
′′′ (x) ,

C4 = 2a2a4y
′′ (x) + 2a2a5y

′′ (x) + 2a3a5y
′′ (x) + 4

3a2y
′′′ (x) + 4

3a3y
′′′ (x) + 4

3a4y
′′′ (x)

+ 4
3a5y

′′′ (x) + 2
3y

(4) (x) ,
C5 = 4

3a2a4y
′′′ (x) + 4

3a2a5y
′′′ (x) + 4

3a3a5y
′′′ (x) + 2

3a2y
(4) (x) + 2

3a3y
(4) (x)

+ 2
3a4y

(4) (x) + 2
3a5y

(4) (x) + 4
15y

(5) (x) ,
C6 = 2

3a2a4y
(4) (x) + 2

3a2a5y
(4) (x) + 2

3a3a5y
(4) (x) + 4

15a2y
(5) (x) + 4

15a3y
(5) (x)

+ 4
15a4y

(5) (x) + 4
15a5y

(5) (x) + 4
45y

(6) (x)
}
.

With C0 = C1 = C2 = C3 = C4 = C5 = 0, we obtain a system of six simultaneous equations
which have the following solutions{

a0 = y (x) , a1 = 2y′ (x) , a2 = −y′′(x)
y′(x) , a3 = 3y′′(x)2−2y′(x)y′′′(x)

3y′(x)y′′(x) ,

a4 = −4y′(x)y′′′(x)2+3y′(x)y′′(x)y(4)(x)

3y′′(x)(3y′′(x)2−2y′(x)y′′′(x))
,

a5 = −y′′ (x)
(
40y′′′ (x)

3 − 60y′′ (x) y′′′ (x) y(4) (x) + 15y′ (x) y(4) (x)
2

+18y′′ (x)
2
y(5) (x)− 12y′ (x) y′′′ (x) y(5) (x)

)/(
5
(
3y′′ (x)

2 − 2y′ (x) y′′′ (x)
)(

−4y′′′ (x)
2
+ 3y′′ (x) y(4) (x)

))}
.

(35)
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Substituting the parameters in (35) into C6, we obtain

C6 =
50y(4) (x)

3 − 80y′′ (x) y(4) (x) y(5) (x) + 24y′′ (x) y(5) (x)
2

300y′′′ (x)
2 − 225y′′ (x) y(4) (x)

+
4

45
y(6) (x) . (36)

When y (x) is now taken as the theoretical solution of the initial value problem (1) at a
point xn i.e. y (x) = y (xn), (35) may be written as{

a0 = yn, a1 = 2y′n, a2 = −y′′
n

y′
n
, a3 =

3(y′′
n)

2−2y′
ny

′′′
n

3y′
ny

′′
n

, a4 =
−4y′

n(y
′′′
n )

2
+3y′

ny
′′
ny(4)

n

3y′′
n(3(y′′

n)2−2y′
ny

′′′
n )

,

a5 = −
y′′
n

(
40(y′′′

n )
3−60y′′

ny′′′
n y(4)

n +15y′
n(y

(4)
n )

2
+18(y′′

n)
2
y(5)
n −12y′

ny
′′′
n y(5)

n

)
5(3(y′′

n)2−2y′
ny

′′′
n )

(
−4(y′′′

n )2+3y′′
ny

(4)
n

) }
,

(37)

where yn = y (xn) and y
(m)
n = y(m) (xn), m = 1, 2, 3, 4, 5 by the localizing assumption. By

taking k = 4, (2) becomes

yn+2 = a0 +
a1h

(
1 + a3h+ a4h+ a5h+ a3a5h

2
)

1 + a2h+ a3h+ a4h+ a5h+ a2a4h2 + a2a5h2 + a3a5h2
, (38)

with 1 + a2h + a3h + a4h + a5h + a2a4h
2 + a2a5h

2 + a3a5h
2 ̸= 0, which is in the form of

(3). We indicate (38) based on (37) as RMM2(2,5) is given as

yn+2 = yn + 2hy′n +
6h2(y′′

n)
2

3y′′
n−2hy′′′

n

−
10h4

(
−4(y′′′

n )
2
+3y′′

ny(4)
n

)2

3(3y′′
n−2hy′′′

n )

(
20(y′′′

n )2−15y′′
ny

(4)
n −10hy′′′

n y
(4)
n +5h2

(
y
(4)
n

)2
+6hy′′

ny
(5)
n −4h2y′′′

n y
(5)
n

) ,
(39)

provided |y′′n|+ |y′′′n | ̸= 0 and |y′′′n |+
∣∣∣y(4)n

∣∣∣+ ∣∣∣y(5)n

∣∣∣ ̸= 0, as to ensure that the denominators of

the two rational expressions in (39) do not equal to zero. We also note that the conditions

|y′′n| + |y′′′n | ̸= 0 and |y′′′n | +
∣∣∣y(4)n

∣∣∣ + ∣∣∣y(5)n

∣∣∣ ̸= 0 are only impose to the formula (39), not on

the parameters in (37). From Definition 2 and (36), LTE of RMM2(2,5) becomes

LTERMM2(2,5) = h6

50
(
y
(4)
n

)3
− 80y′′′n y

(4)
n y

(5)
n + 24y′′n

(
y
(5)
n

)2
300 (y′′′n )

2 − 225y′′ny
(4)
n

+
4

45
y(6)n

+O
(
h7
)
, (40)

where y
(m)
n = y(m) (xn), m = 2, 3, 4, 5, 6 by the localizing assumption. This LTE analysis

has confirmed that RMM2(2,5) is a fifth order method. If we apply RMM2(2,5) to the
Dahlquist’s test equation y′ = λy, Re (λ) < 0, yielding the difference equation

yn+2 =
15 + 18hλ+ 9h2λ2 + 2h3λ3

15− 12hλ+ 3h2λ2
yn. (41)

Setting z = hλ, yn+2 = ξ2 and yn = ξ0 = 1 in (41) yield the characteristic equation

ξ2 − 15 + 18z + 9z2 + 2z3

15− 12z + 3z2
= 0. (42)
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The roots of (42) are given by

ξ(42,1) = −
√
15 + 18z + 9z2 + 2z3√

15− 12z + 3z2
and ξ(42,2) =

√
15 + 18z + 9z2 + 2z3√

15− 12z + 3z2
.

By taking z = x+iy in the roots of (42), we get the region of absolute stability of RMM2(2,5)
as shown in Figure 4.

Figure 4: Stability Region of RMM2(2,5)

The shaded region in Figure 4 is the region of absolute stability of RMM2(2,5), where
the conditions:

∣∣ξ(42,1)∣∣ ≤ 1 and
∣∣ξ(42,2)∣∣ ≤ 1 are satisfied. From Figure 4, we can see that

the region of absolute stability of RMM2(2,5) is a bounded region on the left-hand half
plane, which show that RMM2(2,5) is not A-stable.

6 Numerical Experiments and Comparisons

In this section, some test problems are used to check the performance of all newly derived
2-step RMM2 using different number of integration steps. We choose the 6-stage fifth order
Kutta-Nyström method shown in page 122 of Lambert [1] as the starting method for 2-
step RMM2 of order 2 until order 5. We present the maximum absolute errors over the
integration interval given by max

0≤n≤N
{|y (xn)− yn|} where N is the number of integration

steps; and absolute errors at the end-point given by |y (xN )− yN |. We note that y (xn)
and yn represents the exact solution and numerical solution of a test problem at point xn.
The numerical results obtained from our new proposed methods are compared with the
numerical results obtained from the RMMs of Okosun and Ademiluyi [5] and Okosun and
Ademiluyi [6]. These existing RMMs are 2-step second order method given by

yn+2 =
y3n

y2n − 2hyny′n + h2
(
4 (y′n)

2 − 2yny′′n

) , (43)
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3-step third order method given by

yn+3 =
2 (yn)

4

2 (yn)
3 − 3h (yn)

2
(2y′n + 3h (y′′n + hy′′′n )) + 18h2yny′n (y

′
n + 3hy′′n)− 54h3 (y′n)

3 ,

(44)
4-step fourth order method given by

yn+4 = 3 (yn)
5
/(

3 (yn)
4 − 12h (yn)

3
y′n + h2

(
48 (yn)

2
(y′n)

2 − 24 (yn)
3
y′′n

)
+ h3

(
192 (yn)

2
y′ny

′′
n − 192yn (y

′
n)

3 − 32 (yn)
3
y′′′n

)
+ h4

(
768 (y′n)

4 − 1152yn (y
′
n)

2
y′′n + 192 (yn)

2
(y′′n)

2

+256 (yn)
2
y′ny

′′′
n − 32 (yn)

3
y
(4)
n

))
,

(45)

and 5-step fifth order method given by

yn+5 = 24 (yn)
6
/(

24 (yn)
5 − 120h (yn)

4
y′n − 300h2 (yn)

3
(
yny

′′
n − 2 (y′n)

2
)

− 500h3 (yn)
2
(
6 (y′n)

3 − 6yny
′
ny

′′
n + (yn)

2
y′′′n

)
− 625h4yn

(
36yn (y

′
n)

2
y′′n − 24 (y′n)

4 − 8 (yn)
2
y′ny

′′′
n

+(yn)
2
(
yny

(4)
n − 6 (y′′n)

2
))

− 625h5
(
120 (y′n)

5 − 240yn (y
′
n)

3
y′′n + 60 (yn)

2
(y′n)

2
y′′′n

−10 (yn)
2
y′n

(
yny

(4)
n − 9 (y′′n)

2
)
+ (yn)

3
(
yny

(5)
n − 20y′′ny

′′′
n

)))
.

(46)
The starting method for (43) – (46) is the same 6-stage fifth order Kutta-Nyström method
mentioned above. It is very clear that all methods in (43) – (46) cannot solve problem with
initial value equals to zero.

Problem 1 ([7])
y′ (x) = −100y (x) + 99e2x, y (0) = 0, x ∈ [0, 0.5] .

The exact solution is given by y (x) = 33
34

(
e2x − e−100x

)
.

Problem 2 ([8])

y′′ (x) + 101y′ (x) + 100y (x) = 0, y (0) = 1.01, y′ (0) = −2, x ∈ [0, 10] .

The exact solutions is given by y (x) = 0.01e−100x + e−x. Problem 2 can also be written as
a system, i.e.

y′1 (x) = y2 (x) , y1 (0) = 1.01, x ∈ [0, 10] ;

y′2 (x) = −100y1 (x)− 101y2 (x) , y2 (0) = −2, x ∈ [0, 10] .

The exact solutions of this system are given by y1 (x) = y (x) = 0.01e−100x + e−x, y2 (x) =
y′ (x) = −e−100x − e−x.

Problem 3 ([7])

y′ (x) = 1 + y (x)
2
, y (0) = 1, x ∈ [0, 0.8] .
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The exact solution is y (x) = tan (x+ π/4). From the exact solution, we notice that
the solution becomes unbounded in the neighbourhood of the singularity at x = π/4 ≈
0.785398163367448.

Table 1: Maximum absolute errors for various second order methods with respect to number
of steps (Problem 1 )

N Method (43) RMM2(2,2)
64 - 7.81545(-02)
128 - 1.78169(-02)
256 - 4.14749(-03)
512 - 1.03195(-03)

Table 2: Absolute Errors at the End-point for Various Second Order Methods with Respect
to Number of Steps (Problem 1 )

N Method (43) RMM2(2,2)
64 - 2.06636(-05)
128 - 1.74957(-06)
256 - 3.28580(-07)
512 - 7.30578(-08)

Table 3: Maximum Absolute Errors for Various Third Order Methods with Respect to
Number of Steps (Problem 1 ))

N Method (44) RMM2(2,3)
64 - 2.97028(-02)
128 - 2.95546(-03)
256 - 3.28246(-04)
512 - 3.91259(-05)

7 Discussion and Conclusion

All 2-step RMM2 of order 2 until order 5 proposed above have no problem in solving
Problem 1, Problem 2 and Problem 3. As expected, all RMMs proposed by Okosun and
Ademiluyi [5] and Okosun and Ademiluyi [6] cannot solve Problem 1 whose initial value
equals to zero, while all RMM2 do not face such difficulty. Next, in solving Problem 2, we
have observed that all RMM2 give smaller absolute errors along the integration interval
compare to all existing RMMs of order 2 and order 5 of Okosun and Ademiluyi [5] and
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Table 4: Absolute Errors at the End-point for Various Third Order Methods with Respect
to Number of Steps (Problem 1 )

N Method (44) RMM2(2,3)
64 - 3.49581(-08)
128 - 3.86154(-09)
256 - 4.13332(-10)
512 - 4.71689(-11)

Table 5: Maximum Absolute Errors for Various Fourth Order Methods with Respect to
Number of Steps (Problem 1 )

N Method (45) RMM2(2,4)
64 - 3.39927(-03)
128 - 2.13926(-04)
256 - 2.16793(-05)
512 - 2.35624(-06)

Table 6: Absolute Errors at the End-point for Various Fourth Order Methods with Respect
to Number of Steps (Problem 1 )

N Method (45) RMM2(2,4)
64 - 1.49681(-10)
128 - 6.23945(-12)
256 - 3.24629(-13)
512 - 1.82077(-14)

Table 7: Maximum Absolute Errors for Various Fifth Order Methods with Respect to
Number of Steps (Problem 1 )

N Method (46) RMM2(2,5)
64 - 5.93616(-04)
128 - 1.64123(-05)

Table 8: Absolute Errors at the End-point for Various Fifth Order Methods with Respect
to Number of Steps (Problem 1 )

N Method (46) RMM2(2,5)
64 - 4.16556(-13)
128 - 9.32587(-15)
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Table 9: Maximum Absolute Errors for Various Second Order Methods with Respect to
Number of Steps (Problem 2 )

N Method (43) RMM2(2,2)
2560 1.20431(-03) 8.25702(-04)
5120 2.88964(-04) 2.19023(-04)
10240 7.04627(-05) 5.63484(-05)

Table 10: Absolute Errors at the End-point for Various Second Order Methods with Respect
to Number of Steps (Problem 2 )

N Method (43) RMM2(2,2)
2560 6.02652(-08) 3.41360(-08)
5120 1.45421(-08) 9.56597(-09)
10240 3.55574(-09) 2.52341(-09)

Table 11: Maximum Absolute Errors for Various Third Order Methods with Respect to
Number of Steps (Problem 2 )

N Method (44) RMM2(2,3)
2560 2.59963(-03) 1.18777(-03)
5120 6.90425(-04) 3.33834(-04)
10240 1.79972(-04) 8.86875(-05)

Table 12: Absolute Errors at the End-point for Various Third Order Methods with Respect
to Number of Steps (Problem 2 )

N Method (44) RMM2(2,3)
2560 9.00560(-08) 3.90264(-10)
5120 3.29976(-08) 5.66864(-11)
10240 4.76091(-09) 7.71492(-12)

Table 13: Maximum Absolute Errors for Various Fourth Order Methods with Respect to
Number of Steps (Problem 2 )

N Method (45) RMM2(2,4)
2560 2.43180(-03) 1.19841(-03)
5120 8.32097(-04) 3.34438(-04)
10240 2.42351(-04) 8.87017(-05)
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Table 14: Absolute Errors at the End-point for Various Fourth Order Methods with Respect
to Number of Steps (Problem 2 )

N Method (45) RMM2(2,4)
2560 1.89700(-08) 9.96633(-10)
5120 9.87620(-10) 5.68070(-11)
10240 5.54945(-11) 3.37347(-12)

Table 15: Maximum Absolute Errors for Various Fifth Order Methods with Respect to
Number of Steps (Problem 2 )

N Method (46) RMM2(2,5)
2560 3.30441(-03) 1.18719(-03)
5120 1.05235(-03) 3.33575(-04)
10240 3.11077(-04) 8.86222(-05)

Table 16: Absolute Errors at the End-point for Various Fifth Order Methods with Respect
to Number of Steps (Problem 2 )

N Method (46) RMM2(2,5)
2560 1.04503(-08) 5.77391(-13)
5120 2.26729(-10) 2.02457(-13)
10240 3.63159(-12) 5.10026(-15)

Table 17: Maximum Absolute Errors for Various Second Order Methods with Respect to
Number of Steps (Problem 3 )

N Method (43) RMM2(2,2)
64 7.85505(+01) 3.95730(+01)
128 1.78097(+01) 9.46824(+00)
256 1.74431(+01) 9.62127(+00)
512 1.61376(+01) 8.81944(+00)
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Table 18: Absolute Errors at the End-point for Various Second Order Methods with Respect
to Number of Steps (Problem 3 )

N Method (43) RMM2(2,2)
64 1.49174(+00) 7.90470(-01)
128 3.60665(-01) 1.95977(-01)
256 8.90473(-02) 4.88927(-02)
512 2.21457(-02) 1.22169(-02)

Table 19: Maximum Absolute Errors for Various Third Order Methods with Respect to
Number of Steps (Problem 3 )

N Method (44) RMM2(2,3)
64 4.96315(+00) 1.35285(-01)
128 5.99106(-01) 1.72803(-02)
256 3.01238(-01) 8.96655(-03)
512 1.35801(-01) 4.03688(-03)

Table 20: Absolute Errors at the End-point for Various Third Order Methods with Respect
to Number of Steps (Problem 3 )

N Method (44) RMM2(2,3)
64 9.82065(-02) 2.90726(-03)
128 1.17654(-02) 3.58019(-04)
256 1.49877(-03) 4.44172(-05)
512 1.85270(-04) 5.53127(-06)

Table 21: Maximum Absolute Errors for Various Fourth Order Methods with Respect to
Number of Steps (Problem 3 )

N Method (45) RMM2(2,4)
64 5.86819(-01) 1.52254(-03)
128 3.89199(-02) 9.67086(-05)
256 1.00813(-02) 2.53043(-05)
512 2.28366(-03) 5.71485(-06)
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Table 22: Absolute Errors at the End-point for Various Fourth Order Methods with Respect
to Number of Steps (Problem 3 )

N Method (45) RMM2(2,4)
64 1.47062(-02) 3.25678(-05)
128 8.60947(-04) 2.03572(-06)
256 5.20720(-05) 1.27235(-07)
512 3.20141(-06) 7.95028(-09)

Table 23: Maximum Absolute Errors for Various Fifth Order Methods with Respect to
Number of Steps (Problem 3 )

N Method (46) RMM2(2,5)
64 9.07345(-02) 3.68169(-05)
128 3.12186(-03) 1.40410(-06)
256 3.97995(-04) 1.95575(-07)
512 4.31393(-05) 3.14233(-08)

Table 24: Absolute Errors at the End-point for Various Fifth Order Methods with Fespect
to Number of Steps (Problem 3 )

N Method (46) RMM2(2,5)
64 1.73730(-03) 9.87275(-07)
128 5.97527(-05) 2.28826(-07)
256 1.95537(-06) 5.27152(-10)
512 5.96851(-08) 2.50395(-11)
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Okosun and Ademiluyi [6]. Lastly, we also discovered that all RMM2 are more accurate
than existing RMMs of Okosun and Ademiluyi [5] and Okosun and Ademiluyi [6] in solving
Problem 3, as the superiority of RMM2 can be observed from Table 19 to Table 24. In
conclusions, all RMM2 of different order can be used to solve initial value problems of
different dimension due to less computational effort since they are all explicit methods.

In this paper, we have showed the existence of 2-step variable order RMM2. If 2-step
variable order RMM2 do exist, it is reasonable to deduce that r -step variable order RMM2
are possible as well. From (2), we generalize 2-step RMM2 to r -step RMM2 given by

yn+r = a0 +
a1h

1 + a2h

1+
a3h

1 + · · ·
...

akh
1+ak+1h

. (47)

Before establishing the difference operator for (47), we need to simplify the right-hand side
of (47). We assume that the simplified version of (47) is given by

yn+r = a0 +
P (aj , h)

Q (aj , h)
, (48)

where P (aj , h) and Q (aj , h) are functions that contain the parameters

aj for j = 1, 2, . . . , k, k + 1 and k ≥ 1.

With the r -step RMM2 in (48), we associate the difference operator L defined by

L [y (x) ;h]RMM2 = (y (x+ rh)− a0)×Q (aj , h)− P (aj , h) , (49)

where y (x) is an arbitrary function, continuously differentiable on x ∈ [a, b] ⊂ R. Expanding
y (x+ rh) as Taylor series and collecting terms in (49) gives the following expressions:

L [y (x) ;h]RMM2 = C0h
0 + C1h

1 + · · ·+ Ckh
k + Ck+1h

k+1 + · · · . (50)

We note that the “C” in (50) contain corresponding parameters that need to be determined
in the derivation processes. Therefore, the order and local truncation error of r -step RMM2
based on (47) are defined as follows.

Definition 3 The difference operator (49) and the associated rational multistep method
(47) are said to be of order p = k + 1 if, in (50), C0 = C1 = · · · = Ck+1 = 0, Ck+2 ̸= 0.

Definition 4 The local truncation error at xn+r of (47) is defined to be the expression
L [y (xn) ;h]RMM2 given by (49), when y (xn) is the theoretical solution of the initial value
problem (1) at a point xn. The local truncation error of (47) is then

L [y (xn) ;h]RMM2 = Ck+2h
k+2 +O

(
hk+3

)
. (51)

From Definition 3 and Definition 4, we have noticed that the order of accuracy of a
r -step RMM2 is not affected by the number of step r. In other words, there exist 4-step
RMM2 of order 2 and even 5-step RMM2 of order 2. However, in the sense of cheaper
computational cost but higher accuracy, we found that a RMM2 with r greater than the
order possessed has less practical use. Below, we show those r -step RMM2 which have more
value in computational practice in Table 25.
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Table 25: Potential r -step RMM2 of Order p

p
r 2 3 4 5 6 · · ·
2 X
3 X X
4 X X X
5 X X X X
6 X X X X X
...

...
...

...
...

...
. . .
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