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1 Introduction

Control charts are one of the most important tools in statistical process control since She-
whart proposed the first control chart in the 1920s. One of the important technical decisions
for the control charts is its design. Design of the control charts is referred to the selection
of design parameters such as sample size, sampling interval and control limit. It is impor-
tant because the design parameters affect the underlying process to be controlled. Recently
the economic design of control charts is an important issue in statistical process control.
The economic design procedure is to derive the optimal design parameters such that the
expected cost per hour for the cost model is minimized. Duncan [1] proposed the first
cost model for economically determining the design parameters for X̄ chart that minimizes
the average cost when a single out-of-control state (assignable cause) exists. Since then,
the economic designs of control charts have received much attention. The economic design
model for cumulative sum (CUSUM) chart was first studied by Taylor [2]. After that, the
economic design of CUSUM chart has been developed and received considerable attention.
Goel and Wu [3] presented a procedure for the economic design of CUSUM chart to control
the mean of a process with a normally distributed quality characteristic. Chiu [4] proposed
a production model for quality surveillance, which is based on CUSUM chart using the de-
cision interval criterion. Chung [5] presented a search algorithm for the economic design of
CUSUM chart using the one-dimensional H-pattern search technique. Simpson and Keats
[6] used two-level fractional factorial designs to identify highly significant parameters in the
Lorenzen and Vance economic control chart model under CUSUM condition. Pan and Chen
[7] proposed a new way of monitoring and evaluating the environmental performance using
the economic design of CUSUM chart. Nenes and Tagaras [8] proposed a model for the
design of CUSUM chart for monitoring the process mean in short production runs.
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When designing the control charts, one usually assumes that the measurements within
each sample are normally distributed. However, this assumption may not be acceptable in
practice. The normality assumption indicates that if the measurements are really normally
distributed, the sample mean X̄ is also normally distributed. If the measurement are not
normally distributed, the sample mean X̄ will be approximately normally distributed only
when the sample size is sufficient large according to the central limit theorem but the sample
size is not always sufficiently large due to the sampling cost. Therefore, if the measurements
are not normally distributed, the traditional design approach may not be appropriate for
designing control charts [9]. Lashkari and Rahim [10] and Haridy and El-Shabrawy [11]
independently considered the economic design of CUSUM chart to maintain the current
control of non-normal process means. Rahim [12] considered the economic design of X̄
chart under non-normality. For all these designs, the non-normal probability density func-
tion of the process is more complicated than the Burr distribution approach presented by
Burr [13]. The Burr distribution is a simple distribution function that has the capability
of approximating a wide range of distributions, including normal and non-normal distri-
butions. The advantage of the Burr distribution is its closed-form cumulative distribution
function that simplifies the computations of run length distribution or Type I and Type
II error probabilities of the control charts. The applications of the Burr distribution to
represent various non-normal distributions in the design of control charts can be found in
the literature [9]. Chou et al. [14] employed the Burr distribution to conduct the economic-
statistical design of X̄ chart for non-normal data, and from the sensitivity analysis, they
found out that small values of the skewness coefficient have no significant effect on the op-
timal design; however, a larger value of skewness coefficient leads to a slightly large sample
size and sampling interval, as well as wider control limits. Meanwhile, an increase on the
kurtosis coefficient results in an increase on the sample size and wider control limit. After
that, Chen [15] proposed a cost-quality model based on the Burr distribution for construct-
ing the economic-statistical design for variable sampling intervals X̄ chart, and his overall
finding indicates that the designed variable sampling interval chart always outperforms the
traditional chart with respected to the expected cost per unit time. Then, Chou et al. [16]
studied the effect of non-normality on the design of warning limit X̄ chart by combining
the Gordan and Weindling’s cost model with the Burr distribution. In their study, it is
observed that negative skewness leads to wider control and warning limits. In addition,
larger kurtosis results in a longer significant run length and wider control and warning lim-
its. After that, Chen [17] proposed a cost model where the Burr distribution is employed
to deal with the economic design of variable sampling intervals X̄ chart. In comparison
with the traditional chart, variable sampling interval chart requires to sample more often
with larger control limits and smaller sample size. After than, Chou et al. [18] used the
Burr distribution to determine the appropriate control limits or sample size for acceptance
control chart under non-normality. From their presented example, ignoring the effect of
non-normality in data leads to a higher type I or type II error probability. Then, Chen and
Yeh [19] developed the economic design of X̄ chart under Weibull shock models where the
Burr distribution is employed to calculate for non-normal data. Their research outcome
for non-normally distributed data is different from the original consequence of the example
present by Banerjee and Rahim [20] for normal assumption. In summary, their proposed
method requires slightly larger sample size. However, the sampling interval and the control
limit width become shorter. Furthermore, the skewness coefficient significantly affects both
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the sample size and the sampling interval, but does not affect the control limit. However,
the kurtosis coefficient does not significantly affect the design parameters of the X̄ chart.
In general, all the above studies show that the non-normality affects the design of control
charts.

Another basic assumption in designing the control charts is that the measurements
within each sample are independently distributed. However, it may not be tenable in
practice (Grant and Leavenworth [21]). Therefore, Neuhardt [22] considered the effect of
correlated data within subgroups that can be defined for the purposes for statistical process
control, and he showed that the effect of correlated measurements within the subgroup is
shown to increase the type I error rate for X̄ chart. After that, Yang and Hancock [23]
extended Neuhardt’s work to determine the effect of correlated data on X̄ , S, R and S2

charts, and their results show that if a positive correlation exists but is not recognized in X̄
chart, then the actual Type I error will be larger than assumed; whereas failure to recognize
the correlation will also slightly increase the Type I error in S, R and S2 charts. However,
theoretical analysis and Monte Carlo simulation studies show that these effects are not
substantial. So, the traditional control limits for S, R and S2 charts do not need to be
revised even if correlation exists. Then, Liu et al. [24] developed a minimum-loss design of
X̄ chart for correlated data within a sample by incorporating Taguchi’s quality loss function.
From their results of sensitivity analysis, they found out that as the measurements in the
sample are positively correlated, hightly correlated data result in a smaller sample size and
a frequent sampling interval; however, as the measurements in the sample are negatively
correlated, highly correlated data yield a smaller sample size and a narrower control limits.
After that, Liu et al. [25] studied the effect of correlated data on the design of warning limit
X̄ chart by combining the cost model given in Gordan and Weindling [26] with Yang and
Hancock’s correlation model. Based on their study, it is observed that among the parameters
in the economic design, only the significant run length is affected by the correlated data.
Highly correlated data or independent data result in a longer run in the warning band.
After that, Chen and Chiou [27] proposed a cost model combining the multivariate normal
distribution model given by Yang and Hancock [23] with cost model of Bai and Lee [28]
to develop the design of variable sampling intervals X̄ chart for correlated data. Their
results indicate that variable sampling interval charts outperform the traditional charts for
large mean shift when correlation is present. In addition, there is a different between the
design parameters of variable sampling interval charts when correlation is present or absent.
Recently, Chen et al. [29] studied the effect of correlation on the design parameters for the
economic design of X̄ chart with variable sample sizes and variable sampling intervals. The
magnitude of mean shift has a significant effect on the optimal values of the shortest and
longest sampling intervals, and the cost saving. Correlation coefficient within the sample is
highly associated with the optimum chart. From the results from all the above studies, it
can be seen that correlation generally affects the design of the control charts.

Recently, genetic algorithms (GA) have been widely applied for the optimal design
of quality control charts. GA is considered as an appropriate technique for solving the
optimization problems. Aparisi and Garćıa-Dı́az [30] used GA to carry out the design
of EWMA chart for in-control, indifference and out-of-control regions. Chen [31] applied
GA to minimize the cost model of variable sampling interval T 2 control chart. Chou et
al. [32] applied GA to search the optimal design parameters for the economic design of
EWMA chart using variable sampling intervals with sampling at fixed times. Lin et al. [33]
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employed GA to obtain the solution for the economic design of variable sampling intervals
X̄ chart with A&L switching rule. Chen [34] applied GA to the cost model for the economic
design of T 2 chart with variable sample sizes and sampling intervals. Kaya [35] used GA to
determine the sample size for attribute control chart. Torng et al. [36] applied GA to solve
the economic design model of double sampling X̄ chart for the determination of optimal
design parameters.

In this study, an approach for the economic design of CUSUM chart for non-normally
correlated data is presented. The major concern of this study is to give a general idea
on how non-normality parameters (i.e., skewness and kurtosis coefficients) and correlation
parameter (i.e., correlation coefficient) affect the economic design of the CUSUM chart. The
goal of the economic design of the CUSUM chart is to find the optimal design parameters
for minimizing the expected cost per hour, given the process and cost parameters of the cost
model. The optimal values of the design parameters based on the cost model are determined
by using GA. In the next section, a review of the CUSUM chart will be given. Lorenzen
and Vance’s cost model will be briefly discussed in Section 3. The Burr distribution and
the correlation model given in Yang and Hancock will be briefly reviewed in Section 4
and Section 5, respectively. The transition probabilities of Markov chain approach for the
CUSUM chart will be derived in Section 6. An example will be provided in Section 7 to
illustrate the solution procedure for the economic design of the CUSUM chart for non-
normally correlated data. A sensitivity analysis will also be performed in Section 7 to
investigate the effects of non-normality and correlation on the optimal economic design of
the CUSUM chart. Finally, some concluding remarks will be provided in the last section.

2 The CUSUM Chart

The CUSUM chart was introduced by Page [37], and has been widely used for monitoring
the process shift of production process. Consider a process in which the distribution of the
observations from the process is normally distributed with mean µ and standard deviation
σ. Then the t−th CUSUM statistic is

St = max(0, X̄t + St−1 − k) for t = 1, 2, 3, ... (1)

where X̄t is the t-th subgroup mean, µ0 is the in-control mean, and n is the sample size,
the initial value of St is usually set as 0, and k is the reference value of the CUSUM chart.

When a CUSUM chart is used to monitor a process, a sample of fixed size n is taken
every h hours, and the CUSUM statistic St is calculated at each sampling point. If the
plotted CUSUM statistic St goes beyond the control limit L, a signal will be given. Then
a search for an assignable cause is initiated. Otherwise, the process is considered as being
in-control, and the next sample is continually taken at the next sampling point.

3 The Cost Model

In this study, the unified cost model developed by Lorenzen and Vance [38] is adopted to the
economic design of the CUSUM chart for non-normally correlated data. In this cost model,
a process is assumed to start in an in-control state with mean µ0 and standard deviation
σ. The occurrence of the assignable cause results in a shift in the process mean from µ0
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to µ0 + δσ, where δ is the magnitude of shift in the process mean. The time between
occurrences of the assignable cause is assumed following an exponential distribution with a
mean of 1/θ hours. The expected cost per hour of the cost model is expressed as

C =
C0/θ + C1 (−τ + ne + ARL1 + γ1T1 + γ2T2) + sy/ARL0 + W

1/θ + (1 − γ1) sT0/ARL0 − τ + ne + ARL1 + T1 + T2

+

(

a + bn

h

)

1/θ − τ + ne + ARL1 + γ1T1 + γ2T2

1/θ + (1 − γ1) sT0/ARL0 − τ + ne + ARL2 + T1 + T2

(2)

where C0 = quality cost per hour for an in-control process; C1 = quality cost per hour for an
out-of-control process (C1 > C0); 1/θ = mean time the process is in-control;
a = fixed cost per sample; b = cost per unit sampled; y = cost per false alarm;
W = cost to locate and correct the assignable cause; e = time to sample and chart one
item; T0 = expected search time after a false alarm; T1 = expected time to discover the
assignable cause; T2 = expected time to correct the process; γ1 is a binary variable = 1 if
production continues during searches, and 0 if production ceases during searches; γ2 is a
binary variable = 1 if production continues during correction, and 0 if production ceases
during correction; ARL1 = out-of-control average run length; ARL0 = in-control average
run length; s = expected number of samples taken while in-control = e−θh/(1 − e−θh);
and τ = expected time of occurrence of the assignable cause between two samples while
in-control.

4 The Burr Distribution

In this study, the Burr distribution is used to represent various types of non-normal distri-
butions. The cumulative distribution function of the Burr distribution [13] is

F (y) =







1 − 1

(1 + yc)q
for y ≥ 0

0 for y < 0
(3)

where c and q are greater than one. Different combinations of c and q cover a wide range
of skewness and kurtosis coefficient of various practical data distributions such as normal,
Gamma and Beta. For example, the Burr distribution will be approximately as a normal
distribution with c = 4.85437 and q = 6.22665 [13].

Burr [13] tabulated the expected value, the standard deviation, the skewness coefficient
and the kurtosis coefficient of the Burr distribution for various combination of c and q.
After the sample skewness and kurtosis coefficient are estimated for a data set, the tables in
Burr [13] may be used to obtain the mean M and standard deviation S of the corresponding
Burr distribution. When the process is in-control (µ = µ0), the Burr distribution Y may
be transformed to the sample mean X̄ by the standardized transformation as follows:

X̄ − µ0

σ/
√

n
=

Y − M

S

X̄ = µ0 + (Y − M)
σ/

√
n

S
(4)
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When the process mean has shifted (µ = µ0 + δσ), the standardized transformation is as
follows:

X̄ − (µ0 + δσ)

σ/
√

n
=

Y − M

S

X̄ = µ0 + δσ + (Y − M)
σ/

√
n

S
(5)

5 Yang and Hancock’s Correlation Model

According to Yang and Hancock’s model, it is assumed that each sample or subgroup is a
realization of the random vector X = {X1, X2,. . . , Xn}, which has a multivariate normal
distribution N(µ, V), where µ = {µi}, i = 1,. . . , n, is the vector of mean values, and

V = {vij}, i,j = 1,. . . , n,

is the covariance matrix. In addition, V = σ2R, where R = {rij}, i,j = 1,. . . , n, is the
correlation matrix. Based on these assumptions, the sample mean X̄ can be shown to be
normally distributed with a mean and variance as follows:

E(X̄) = µ (6)

V ar(X̄) =
σ2

n
[1 + (n − 1)ρ] (7)

where ρ =
∑

i 6=j

rij/n(n − 1) is the correlation coefficient. The mean and variance of X̄ are

still valid even when the measurements are not normally distributed [9].

6 Transition Probabilities

In this study, the Markov chain approach of Prabhu et al. [39] is modified to evaluate the
performance of the CUSUM chart for non-normally correlated data. The CUSUM chart
can be modeled as a Markov chain with states denoted as 0, 1, 2,. . . , m, where state m
is the absorbing state. The interval between 0 and L is discretized into m states, such
that the width of the interval for each state is d = 2L/(2m− 1), except the width of state
0 is d/2. Based on Equations (1), (3), (5), (6) and (7), the transition probability pij for
i = 0, 1, 2,. . . , (m− 1) and j = 1, 2,. . . , (m– 1) in the transition probability matrix can be
expressed as

pij = Pr [(j − 0.5)d < St < (j + 0.5)d |St−1 = id ]

= Pr
ˆ

(j − i − 0.5)d + k < X̄ < (j − i + 0.5)d + k
˜

= Pr

(

M +
[(j − i − 0.5)d + k] S − δS

√
n

p

1 + (n − 1)ρ
< Y < M +

[(j − i + 0.5)d + k] S − δS
√

n
p

1 + (n − 1)ρ

)

=

2

6

6

4

1 − 1
„

1 +



M + [(j−i+0.5)d+k]S−δS
√

n√
1+(n−1)ρ

ffc«q

3

7

7

5

−

2

6

6

4

1 − 1
„

1 +



M + [(j−i−0.5)d+k]S−δS
√

n√
1+(n−1)ρ

ffc«q

3

7

7

5

pij =
1

„

1 +



M + [(j−i−0.5)d+k]S−δS
√

n√
1+(n−1)ρ

ffc«q − 1
„

1 +



M + [(j−i+0.5)d+k]S−δS
√

n√
1+(n−1)ρ

ffc«q (8)



Economic Design of Cumulative Sum Control Chart 85

Similarly, the transition probability pij for i = 0, 1, 2,. . . , (m – 1) and j = m can be
expressed as

pim = Pr

{

Y > M +
[(m − i − 0.5)d + k]S − δS

√
n

√

1 + (n − 1)ρ

}

= 1 − Pr

{

Y < M +
[(m− i − 0.5)d + k] S − δS

√
n

√

1 + (n − 1)ρ

}

=
1

(

1 +

{

M +
[(m − i − 0.5)d + k] S − δS

√
n

√

1 + (n − 1)ρ

}c)q (9)

and the transition probability pij for i = 0, 1, 2,(m− 1) and j = 0 can be expressed as

pi0 = Pr

{

Y < M +
[(−i + 0.5)d + k]S − δS

√
n

√

1 + (n − 1)ρ

}

pi0 = 1 − 1
(

1 +

{

M +
[(−i + 0.5)d + k] S − δS

√
n

√

1 + (n − 1)ρ

}c)q (10)

where Y is the probability density function of the Burr random variable.
The in-control transition probability matrix Q0 is obtained by using pij as its elements

based on the in-control condition (δ = 0). It is an (m m) matrix excluding the last row and
the last column since they correspond to the absorbing state. Then the in-control average
run length is given by

ARL0 = r′ (I−Q0)
−1

1 (11)

where r is the (m initial probability vector containing 1 for the first element and zeros
otherwise; I is the (mm) identity matrix; and 1 is the (m vector of all 1’s. The in-control
steady-state probability vector B = (b0, b1, b2, bm

−1
)′ is obtained by solving the following

equation (Prabhu et al. [39]):

B = Q̃′
0B subject to 1′B = 1 (12)

where Q̃0 is obtained by dividing each row of Q0 by the sum of the elements of that row.
For calculating the out-of-control average run length, it is assumed that the chart statistic
has reached its stationary distribution at the time when the process shift occurs. Then the
out-of-control average run length is calculated as

ARL1 = B′ (I− Q)
−1

1 (13)

where Q is the (mm) out-of-control transition probability matrix which can be obtained
similarly as Q0, except the elements pij of Q are evaluated based on the out-of-control
condition (δ >0).
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7 An Example and the Sensitivity Analysis

In this section, an application example from a set of hypothetical process and cost parame-
ters is provided to illustrate the solution obtained from the economic design of the CUSUM
chart for non-normally correlated data.

Consider a factory produces yogurt drink which is contained in bottles. The target
quantity of yogurt drink for each bottle is 0.02 liters. The yogurt drink is inserted into
fifteen bottles at a time in the production process, and the fifteen bottles of yogurt drink
will be packed in a box later. Before the fifteen bottles of yogurt drink are packed, the
first four bottles are sampled to check if the quantity of yogurt drink is 0.02 liters. The
process standard deviation is estimated to be 0.0012 liters. The recent 50 successive boxes
are viewed as a random sample from a multivariate distribution with the first four bottle
quantity averages are µ′ = (0.012, 0.025, 0.018, 0.022), and the corresponding covariance
matrix is

V =









2.5× 10−7 8.8 × 10−8 1.6× 10−7 9.9× 10−8

8.8× 10−8 2.5 × 10−7 1.3× 10−7 7.1× 10−8

1.6× 10−7 1.3 × 10−7 2.4× 10−7 9.3× 10−8

9.9× 10−8 7.1 × 10−8 9.3× 10−8 2.6× 10−7









Based on the covariance matrix, the correlation coefficient is estimated to be ρ = 0.4.
Suppose that the hourly cost for operating in the in-control state and the out-of-control

state are C0 = $10 and C1 = $100, respectively. Process shifts occur according to an
exponential distribution with the frequency of about one every hundred hours of operation.
Thus θ = 0.01. The fixed cost of sampling is a = $0.5, and the variable cost of sampling
is b = $0.1. The cost of investigating a false alarm is y = $50, and the cost to investigate
a true action signal is W = $25. It takes approximately three minutes (0.05 hours) to
take in and analyze a sample of observations. It takes about T1 = 2 hours to investigate
an action signal, and it takes about T2 = 2 hours to correct the process. The process
continues in operation during the search and repair of an assignable cause. Past historical
data indicate that the skewness and kurtosis coefficients of the quantity of a bottle of yogurt
drink are approximately 0.4836 and 3.3801, respectively, which can be described by the Burr
distribution with c = 3 and q = 6.

The economic design of the CUSUM chart optimizes the design parameters: sample size
n, sampling interval h, control limit L, and reference value k. Optimization is carried out
using the GA by minimizing the cost function in Equation (2) for each sample size n subject
to the following constraints:

0.01 ≤ h ≤ 2, 0.0001 ≤ L ≤ 5, 0.01 ≤ k ≤ 2

where n is ranged from 2 to 20. Table 1 shows the optimal design parameters of the CUSUM
chart with the corresponding minimum cost. As shown in Table 1, the expected cost per
hour C given in Equation (2) reaches a minimum of $17.54 for non-normally correlated data
(n = 2, h = 0.44, L = 4.89, k = 0.35), and a minimum of $16.78 for the condition under
independent and normality assumption (n = 2, h = 0.85, L = 1.69, k = 1.12). Accordingly,
the cost error of the independent and normality assumption is (17.54 – 16.78)/17.54 100%
= 4.33%.

Table 2 shows the optimal design parameters of the CUSUM chart with different magni-
tude of shift δ = 0.5, 1.0, 1.5 and 2.0. From this table, it is noted that the design parameters
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Table 1: The optimal design parameters (sample size n, sampling interval h, control limit
L, and reference value k) of CUSUM chart and the corresponding minimum expected cost
per hour C for non-normally correlated data (a = 0.5, b = 0.1, C0 = 10, C1 = 100,
y = 50, W = 25, e = 0.05, T0 = 0, T1 = 2, T2 = 2, θ = 0.01, γ1 = γ2 =
1, δ = 1, c = 3, q = 6, ρ = 0.4)

n h L k C

CUSUM chart for non-normally
correlated data

2 0.44 4.89 0.35 17.54

CUSUM chart under normality
and independent assumption

2 0.85 1.69 1.12 16.78

(i.e., the sampling interval, the control limit, the reference value and the expected cost per
hour) are significantly affected by the size of shift, except the sample size where the sample
size is constant (n = 2) for all the given shift sizes. When the magnitude of shift increases
from 0.5 to 2.0, the sampling interval becomes longer from 0.37 to 0.77, the control limit
becomes narrower from 5.00 to 2.03, the reference value becomes larger from 0.09 to 1.87,
and the corresponding expected cost per hour become lower from 18.88 to 15.77. This shows
that larger magnitude of shift leads to a longer sampling interval and a larger reference value
but leads to a smaller control limit and a lower expected cost per hour. It is also noted that
the sample size does not affected by the magnitude of shift.

Table 2: Effect of magnitude of shift δ on the optimal design parameters (sample size
n, sampling interval h, control limit L, and reference value k) of CUSUM chart and the
corresponding minimum expected cost per hour C for non-normally correlated data

δ n h L k C

0.5 2 0.37 5.00 0.09 18.88

1.0 2 0.44 4.89 0.35 17.54

1.5 2 0.61 3.15 1.03 16.33

2.0 2 0.77 2.03 1.87 15.77

A sensitivity analysis is conducted here to study the effects of non-normality and cor-
relation on the optimal economic design of the CUSUM chart. The combinations of the
skewness coefficient α3, kurtosis coefficient α4, and correlation coefficient ρ follow the values
given by Chou et al. [9]. The values of skewness coefficient α3 and kurtosis coefficient α4

are given in column 2 and 3, respectively in Tables 3-6 with the corresponding values of (c,
q) given in column 1. The correlation coefficient ρ with the values of -0.8, -0.4, 0, 0.4, and
0.8 are given in column 4, 5, 6, 7, and 8, respectively in Tables 3-6. Tables 3-6 give the
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optimal sample size n, optimal sampling interval h, optimal control limit L, and optimal
reference value k for the CUSUM chart in this study, respectively.

Table 3 shows the optimal sample size n for various combinations of skewness coefficient
α3, kurtosis coefficient and correlation coefficient ρ. It can be seen that higher negatively
correlated data give a smaller sample size for the given range of correlation coefficient. For
example, for (c, q) = (6, 11), the sample size decreases from 5 to 3 when the negative
correlation coefficient increase from -0.0 to -0.4; then the sample size decreases from 3 to
2 when the negative correlation coefficient further increases from -0.4 to -0.8 (Group I). If
the data are positively correlated, the positive correlation coefficient does not significantly
affect the sample size. It can be noticed that all the groups (Group I-VI) in Table 3 give
constant sample size. This means that the non-normality does not give significant effect on
the sample size. For example, the sample sizes of Group IV (skewness coefficient increases
from 0.434 to 1.014 and kurtosis coefficient is near to a constant and more than 4.0) are
constant with the values of 2, 3, 5, 2, and 2 for correlation coefficient ρ = -0.8, -0.4, 0.0,
0.4, and 0.8, respectively. Note that for correlation coefficient ρ = 0.0, although the sample
size is 4 for (α3, α4) = (0.434, 4.106) but the sample sizes are all 5’s for other combinations
of (α3, α4). Thus, from the results in this study we can consider that there is no significant
changes for sample size in Group VI for correlation coefficient ρ = 0.0. The results of Chou
et al. [9] for X̄ chart show that the higher positively and negatively correlated data reduce
the sample size. Meanwhile the results in this paper show that only negatively correlated
data reduce the sample size of the CUSUM chart, thus the CUSUM chart in this study is
more robust than the X̄ chart of Chou et al. [9] when the data are positively correlated.
Table 3 also shows that the sample size of the CUSUM chart in this study is not significantly
affected by the skewness and kurtosis coefficients.

Table 4 shows the optimal sampling interval h for various combinations of skewness
coefficient α3, kurtosis coefficient α4, and correlation coefficient ρ. From Table 4, it can
be observed that higher positively correlated data give a slightly shorter sampling interval.
For example, for Group III with (α3, α4) = (-0.465, 3.430), the sampling interval decreases
from 0.83 to 0.47 when the positive correlation coefficient increases from 0.0 to 0.4, and
the sampling interval decreases from 0.47 to 0.44 when the positive correlation coefficient
increases further from 0.4 to 0.8. If the data are negatively correlated, the sampling interval
is not significantly affected by correlation. If the data are negatively correlated, a change
from positive value to negative value in the skewness coefficient results in a shorter sampling
interval. For example, for Group III (α3 changes from -0.465 to 0.484 and α4 near a
constant), the sampling interval decreases from 0.81 to 0.72 for correlation coefficient ρ =
-0.8 whereas the sampling interval decreases from 0.93 to 0.87 for correlation coefficient ρ
= -0.4. Therefore, this study shows that if the data are positively correlated, there is no
specific effect of the skewness and kurtosis coefficients on the sampling interval; whereas
Chou et al. [9] show that an increase on the kurtosis coefficient usually leads to a longer
sampling interval when the data are positively correlated for X̄chart. Thus for positively
correlated data, the design of CUSUM chart in this study is more robust than the design
of X̄chart of Chou et al. [9] in terms of sampling interval.

Table 5 gives the optimal control limit L for various combinations of skewness coefficient
α3, kurtosis coefficient α4, and correlation coefficient ρ. When the data are negatively cor-
related, an increase in skewness coefficient α3 from negative to positive (Group I and III) or
an increase in skewness coefficient α3 (Group IV) gives a larger control limit. For example,
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Table 3: Optimal values for sample size (n) for various combinations of skewness coefficient
α3, kurtosis coefficient α4 with corresponding combinations of Burr parameters (c, q) and
correlation coefficient ρ

(c, q) α3 α4

ρ
Note

-0.8 -0.4 0 0.4 0.8

(6, 11)
(5, 5)
(3, 11)

-0.254
0.040
0.329

3.027
3.070
3.006

2
2
2

3
3
3

5
6
6

2
2
2

2
2
2

Group I
α3: from – to +
α4: close to normal

(4, 11)
(6, 4)
(10, 2)

0.050
-0.019
0.044

2.866
3.169
3.646

2
2
2

3
3
3

6
6
5

2
2
2

2
2
2

Group II
α3: close to normal
α4: increasing

(10, 7)
(10, 3)
(5, 3)
(3, 6)

-0.465
-0.208
0.277
0.484

3.430
3.418
3.485
3.380

2
2
2
2

3
3
3
3

5
5
5
6

2
2
2
2

2
2
2
2

Group III
α3: from – to +
α4: near a constant

(6, 2)
(5, 2)
(2, 10)
(2, 7)

0.434
0.635
0.884
1.014

4.106
4.630
4.122
4.707

2
2
2
2

3
3
3
3

4
5
5
5

2
2
2
2

2
2
2
2

Group IV
α3: increasing
α4: near a constant,
and >4.0

(2, 8)
(2, 6)
(9, 1)

0.958
1.094
1.060

4.443
5.118
7.215

2
2
2

3
3
3

4
5
5

2
2
2

2
2
2

Group V
α3: close to one
α4: increasng

(2, 4)
(2, 3)
(1, 9)
(1, 6)

1.432
1.909
2.940
3.810

7.356
12.460
19.760
38.670

2
2
2
2

3
3
3
3

5
4
4
4

2
2
1
2

2
2
2
2

Group VI
α3: increasing, >>0
α4: increasing, >>0
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the control limit L increases from 0.88 to 1.24 when the skewness coefficient increases from
0.434 to 1.014 for correlation coefficient ρ = -0.8 where the kurtosis coefficient is near a
constant and more than 4.0 (Group IV). If the data are positively correlated, an increase in
skewness coefficient from negative to positive (Group I and III) gives a larger control limit.
For example, the control limit L increases from 2.32 to 4.89 for correlation coefficient ρ =
0.4 when the skewness coefficient changes from -0.465 to 0.484 and kurtosis coefficient is
near a constant (Group III). Therefore, the results from this study show that if the data
are correlated, the control limit is not significantly affected by the correlation coefficient;
whereas the results of Chou et al. [9] show that the correlation coefficient significantly
affects the control limit of the X̄ chart when the data are positively and negatively corre-
lated. Therefore, the control limit for CUSUM chart in this study is more robust than the
control limit of X̄ chart of Chou et al. [9] in terms of correlation coefficient. Table 6 gives
the optimal reference value k for various combinations of skewness coefficient α3, kurtosis
coefficient α4, and correlation coefficient ρ. From this table, it can be noticed that if the
data are correlated, the reference value is not significantly affected by the correlation coef-
ficient. The reference value is also not significantly affected by the skewness and kurtosis
coefficients if the data are correlated.

8 Conclusion

The economic design of the CUSUM chart for non-normally correlated data is presented
based on the Lorenzen and Vance’s cost model. The cost model is employed with the
Burr distribution and Yang and Hancock’s correlation model. Appling GA to the cost
model, the design parameters are optimally determined such that the expected cost per
hour is minimized. The magnitude of shift has a significant effect on the optimal design
parameters of the CUSUM chart. According to the sensitivity analysis in this study, the
following conclusions can be drawn:

(i) If the data are negatively correlated, higher negative correlation coefficient gives a
smaller sample size. If the data are positively correlated, the positive correlation
coefficient does not significantly affect the sample size. The non-normality does not
give significant effect on the sample size.

(ii) Higher positively correlated data give a slightly shorter sampling interval. If the
data are negatively correlated, the sampling interval is not significantly affected by
correlation. If the data are negatively correlated, a change from positive value to
negative value in the skewness coefficient results in a shorter sampling interval. If the
data are positively correlated, there is no specific effect of the skewness and kurtosis
coefficients on the sampling interval.

(iii) If the data are correlated, the control limit is not significantly affected by the corre-
lation coefficient. When the data are negatively correlated, an increase in skewness
coefficient from negative to positive or an increase in skewness coefficient gives a larger
control limit. If the data are positively correlated, an increase in skewness coefficient
from negative to positive gives a larger control limit.

(iv) The reference value is not significantly affected by non-normality and correlation.
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Table 4: Optimal values for sampling interval (h) for various combinations of skewness
coefficient α3, kurtosis coefficient α4 with corresponding combinations of Burr parameters
(c, q) and correlation coefficient ρ

(c, q) α3 α4

ρ
Note

-0.8 -0.4 0 0.4 0.8

(6, 11)
(5, 5)
(3, 11)

-0.254
0.040
0.329

3.027
3.070
3.006

0.80
0.76
0.74

0.92
0.90
0.88

0.80
0.85
0.82

0.46
0.45
0.44

0.43
0.42
0.42

Group I
α3: from – to +
α4: close to normal

(4, 11)
(6, 4)
(10, 2)

0.050
-0.019
0.044

2.866
3.169
3.646

0.76
0.77
0.76

0.90
0.90
0.89

0.85
0.85
0.76

0.45
0.45
0.45

0.42
0.43
0.43

Group II
α3: close to normal
α4: increasing

(10, 7)
(10, 3)
(5, 3)
(3, 6)

-0.465
-0.208
0.277
0.484

3.430
3.418
3.485
3.380

0.81
0.78
0.74
0.72

0.93
0.91
0.88
0.87

0.83
0.79
0.74
0.80

0.47
0.45
0.44
0.44

0.44
0.43
0.42
0.42

Group III
α3: from – to +
α4: near a constant

(6, 2)
(5, 2)
(2, 10)
(2, 7)

0.434
0.635
0.884
1.014

4.106
4.630
4.122
4.707

0.73
0.71
0.68
0.68

0.87
0.86
0.84
0.83

0.65
0.72
0.70
0.69

0.44
0.44
0.44
0.44

0.43
0.43
0.42
0.42

Group IV
α3: increasing
α4: near a constant,
and >4.0

(2, 8)
(2, 6)
(9, 1)

0.958
1.094
1.060

4.443
5.118
7.215

0.68
0.67
0.68

0.83
0.83
0.86

0.62
0.69
0.71

0.44
0.44
0.45

0.42
0.42
0.43

Group V
α3: close to one
α4: increasing

(2, 4)
(2, 3)
(1, 9)
(1, 6)

1.432
1.909
2.940
3.810

7.356
12.460
19.760
38.670

0.66
0.65
0.60
0.67

0.82
0.81
0.73
1.00

0.69
0.62
0.61
0.62

0.44
0.45
0.40
0.47

0.43
0.39
0.45
0.46

Group VI
α3: increasing, >>0
α4: increasing, >>0
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Table 5: Optimal values for control limit (L) for various combinations of skewness coefficient
α3, kurtosis coefficient α4 with corresponding combinations of Burr parameters (c, q) and
correlation coefficient ρ

(c, q) α3 α4

ρ
Note

-0.8 -0.4 0 0.4 0.8

(6, 11)
(5, 5)
(3, 11)

-0.254
0.040
0.329

3.027
3.070
3.006

0.50
0.67
0.79

0.44
0.55
0.61

1.37
1.75
2.12

2.78
3.83
4.51

3.60
4.84
5.00

Group I
α3: from – to +
α4: close to normal

(4, 11)
(6, 4)
(10, 2)

0.050
-0.019
0.044

2.866
3.169
3.646

0.63
0.65
0.72

0.52
0.55
0.62

1.69
1.69
2.12

3.78
3.71
4.05

4.74
4.66
4.95

Group II
α3: close to normal
α4: increasing

(10, 7)
(10, 3)
(5, 3)
(3, 6)

-0.465
-0.208
0.277
0.484

3.430
3.418
3.485
3.380

0.45
0.60
0.80
0.89

0.40
0.52
0.64
0.67

1.20
1.67
2.39
2.41

2.32
3.38
4.49
4.89

2.92
4.15
5.00
5.00

Group III
α3: from – to +
α4: near a constant

(6, 2)
(5, 2)
(2, 10)
(2, 7)

0.434
0.635
0.884
1.014

4.106
4.630
4.122
4.707

0.88
0.98
1.15
1.24

0.68
0.72
0.76
0.80

2.93
2.92
3.25
3.41

4.79
5.00
5.00
5.00

5.00
5.00
5.00
5.00

Group IV
α3: increasing
α4: near a constant,
and >4.0

(2, 8)
(2, 6)
(9, 1)

0.958
1.094
1.060

4.443
5.118
7.215

1.20
1.29
1.27

0.79
0.81
0.74

3.61
3.48
3.30

5.00
5.00
5.00

5.00
5.00
5.00

Group V
α3: close to one
α4: increasng

(2, 4)
(2, 3)
(1, 9)
(1, 6)

1.432
1.909
2.940
3.810

7.356
12.460
19.760
38.670

1.45
1.57
1.72
1.71

0.86
0.86
1.94
0.35

3.67
4.11
4.77
4.62

5.00
5.00
5.00
5.00

5.00
5.00
5.00
5.00

Group VI
α3: increasing, >>0
α4: increasing, >>0
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Table 6: Optimal values for reference value (k) for various combinations of skewness coeffi-
cient α3, kurtosis coefficient α4 with corresponding combinations of Burr parameters (c, q)
and correlation coefficient ρ

(c, q) α3 α4

ρ
Note

-0.8 -0.4 0 0.4 0.8

(6, 11)
(5, 5)
(3, 11)

-0.254
0.040
0.329

3.027
3.070
3.006

0.70
0.65
0.62

0.82
0.81
0.82

1.17
1.09
1.00

0.72
0.51
0.41

0.66
0.45
0.43

Group I
α3: from – to +
α4: close to normal

(4, 11)
(6, 4)
(10, 2)

0.050
-0.019
0.044

2.866
3.169
3.646

0.67
0.66
0.64

0.82
0.81
0.80

1.13
1.11
0.91

0.52
0.53
0.46

0.47
0.47
0.42

Group II
α3: close to normal
α4: increasing

(10, 7)
(10, 3)
(5, 3)
(3, 6)

-0.465
-0.208
0.277
0.484

3.430
3.418
3.485
3.380

0.71
0.67
0.61
0.59

0.81
0.81
0.80
0.80

1.21
1.04
0.84
0.91

0.81
0.58
0.40
0.35

0.79
0.55
0.41
0.42

Group III
α3: from – to +
α4: near a constant

(6, 2)
(5, 2)
(2, 10)
(2, 7)

0.434
0.635
0.884
1.014

4.106
4.630
4.122
4.707

0.58
0.55
0.52
0.49

0.80
0.79
0.80
0.79

0.65
0.70
0.66
0.63

0.35
0.32
0.33
0.32

0.40
0.39
0.40
0.38

Group IV
α3: increasing
α4: near a constant,
and >4.0

(2, 8)
(2, 6)
(9, 1)

0.958
1.094
1.060

4.443
5.118
7.215

0.50
0.48
0.46

0.79
0.79
0.80

0.54
0.61
0.60

0.32
0.31
0.29

0.39
0.37
0.35

Group V
α3: close to one
α4: increasing

(2, 4)
(2, 3)
(1, 9)
(1, 6)

1.432
1.909
2.940
3.810

7.356
12.460
19.760
38.670

0.43
0.38
0.31
0.29

0.78
0.79
0.40
1.02

0.55
0.41
0.29
0.27

0.28
0.25
0.04
0.15

0.34
0.31
0.20
0.17

Group VI
α3: increasing, >>0
α4: increasing, >>0
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The conclusions above show that correlation gives significant effect on the sample size and
sampling interval but correlation does not give significant effect on the control limit and
reference value; whereas non-normality gives significant effect on the sampling interval and
control limit but non-normality does not give significant effect on the sample size and
reference value. In general, both non-normality and correlation affect the economic design
of the CUSUM chart. Therefore, estimation of non-normality and correlation coefficient is
an important topic on the economic design of the CUSUM chart.
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