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Abstract It is known that Chebyshev polynomials are an orthogonal set associated

with a certain weight function. In this paper, we present an approach for the con-

struction of a special wavelet function as well as a special scaling function. Main

tool of the special wavelet is a first kind Chebyshev polynomial. Based on Chebyshev

polynomials and their zero, we define our scaling function and wavelets, and by using

Christoffel-Darboux formula for Chebyshev polynomials, we prove that these functions

are orthogonal. Finally, we provide several examples of scaling function and wavelets

for illustration.
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1 Introduction

Consider the polynomial
Tn(t) = cos (nθ) (1)

where n is a nonnegative integer, θ = arccos (t), and 0 ≤ θ ≤ π. As θ increases from 0 to
π, t decreases from 1 to -1. The polynomial Tn(t) defined by (1) on the interval [−1, 1], is
called the first kind Chebyshev polynomial of degree n. For more detail, the properties of
Chebyshev polynomial can be found in [1], [2], and [3].

Chui and Mhaskar [4] have introduced wavelet analysis by trigonometric polynomial.
Then Kilgore and Prestin [5] used algebraic polynomial to obtain orthogonality with respect
to Chebyshev weight between the wavelets and corresponding scaling functions. These
underlying functions fullfilled interpolatory condition on extremes and zeros of Chebyshev
polynomials [5]. Wavelet techniques for polynomials wavelet have been developed in [6],
[7], and [8]. Orthognal polynomial wavelet has been constructed by kernel function of
orthogonal polynomials [4], and [5]. For detail discussing kernel function of orthogonal
polynomials can be found in [9]. Capobiancho and Themistoclakis [6] combined Lagrange
interpolation and the De la Vallée Poussin interpolation process to construct polynomial
wavelet based on four kinds of Chebyshev polynomials. A general theory of orthogonal
polynomial wavelet has been developed in [7], and [8].

In this paper, in order to introduce our own version of wavelet analysis which is slightly
different from what had been constructed in the several articles mentioned above, we only
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use the zeroes of Chebyshev polynomials which have orthogonality property with respect to
Chebyshev weight among the scaling and wavelet functions. The idea for constructing our
own different scaling and wavelet, is according to the Christofel-Darboux rule. In this case,
we show the orthogonality of scaling and wavelet functions using the Christofel-Darboux
formula for Chebyshev polynomials.

The rest of this paper is organized as follows. Some notes about the Chebyshev poly-
nomial are given in Section 2 and Section 3. Section 4 contains our contribution of scaling
and wavelet functions including their properties. Some remark and conclusion which are
given in Section 5 and Section 6 respectively, will end this paper.

2 Notations

For obtaining the special scaling and wavelet functions as mentioned in Section 1, we need
to establish some notes about the Chebyshev polynomials as given in this section.

Throughout this paper, P and Tn(t) denote the space of all real polynomials and the
first kind of Chebyshev polynomial of degree n, respectively.

The set of all zeroes of Chebyshev polynomial Tn+1(t) which are denoted by

{η0, η1, η2, · · · , ηn}

are located in [−1, 1] ([10]).
The notation

span {a0, a1, · · · , an}
denotes the space of all linear combination of {a0, a1, · · · , an}. In particular, if {p0, p1, · · · , pn}
is a set of polynomials, then

Pn = span {p0, p1, · · · , pn}

is the space of all real polynomials whose degree does not exceed n.
The inner product space of P is defined by

〈f, g〉ch =

∫ 1

−1

f(t)g(t)√
1 − t2

dt (2)

for all f, g ∈ P .
Throughout the inner product space (2), the set {p0, p1, · · · , pn} is orthogonal and be-

comes the basis for Pn. The best basis polynomials have the valuable extra property that
the polynomials are orthogonal to each other.

3 Chebyshev Polynomial

As mentioned in [1], [2], and [3], the Chebyshev polynomials Tn(t) of degree have precisely
zeros denoted by ηk (k = 1, ..., n) or ηk (k = 0, 1, ..., n− 1) in the interval [−1, 1] where

ηk = cos

(

π
(

k − 1

2

)

n

)

= cos

(

π (2k − 1)

2n

)

(k = 1, 2, · · · , n) .
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The Chebyshev polynomials are orthogonal in the interval [−1, 1] over weight function

ω(t) =
(

1 − t2
)−1/2

. In particular,

∫ 1

−1

Tm(t)Tn(t)√
1 − t2

dt =















0 (m 6= n)
π

2
(m = n = 1, 2, 3, · · ·)

π (m = n = 0)

. (3)

From trigonometry identity (see [1] and [2]), we obtain

cos ((n+ 1) θ) + cos ((n− 1) θ) = 2 cos (θ) cos (nθ)

from which, by using (1), we have the relation

Tn(t) = 2tTn−1(t) − Tn−2(t), n ≥ 2 (4)

where T0(t) = 1, T1(t) = t, and also we can produce the result written in the following
Theorem 3.1 which has already been proved in [3].

Theorem 3.1 ([3])

Let Tn(t) be the first kind Chebyshev polynomial of degree n > 0. Then

Tn+m (t) + Tn−m (t) = 2Tn (t)Tm (t)

for all t ∈ [−1, 1] and m = 1, 2, · · · , n.�

If we observe Theorem 3.1 more carefully, we will obtain the following theorem.

Theorem 3.2

If a and b be the zeros of Chebyshev polynomial Tn(t) then

2n−1
∑

m=n+1

Tm(a)Tm(b) =

n−1
∑

m=1

Tm(a)Tm(b)

Proof

Let a and b be the two zeros of Chebyshev polynomial Tn(t). Using Theorem 3.1, we
have

Tn+m(a) + Tn−m(a) = 2Tn(a)Tm(a) = 0

and
Tn+m(b) + Tn−m(b) = 2Tn(b)Tm(b) = 0

for m = 1, 2, 3, · · · , n− 1.Therefore,

Tn+m(a)Tn+m(b) = (−Tn−m(a)) (−Tn−m(b)) = Tn−m(a)Tn−m(b)

for m = 1, 2, 3, · · · , n− 1. By summation, we obtain

Tn+1 (a)Tn+1 (b)+...+Tn+n−1 (a)Tn+n−1 (b) = Tn−1 (a)Tn−1 (b)+...+Tn−n+1 (a)Tn−n+1 (b)
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Tn+1 (a)Tn+1 (b) + ...+ T2n−1 (a)T2n−1 (b) = Tn−1 (a)Tn−1 (b) + ...+ T1 (a)T1 (b)

Finally, we have

2n−1
∑

m=n+1

Tm (a)Tm (b) =

n−1
∑

m=1

Tm (a)Tm (b).�

The following theorem is called the Christofel-Darboux formula for Chebyshev poly-
nomial. The proof of the theorem can be found in [3].

Theorem 3.3 ([3])

If Tm(t) is the first kind Chebyshev polynomial with m > 0 order then

n
∑

m=0

⊕

Tm(x)Tm(y) =
1

2

[

Tn+1(x)Tn(y) − Tn(x)Tn+1(y)

x− y

]

(5)

where
n
∑

m=0

⊕

am = 1

2
a0 +

n
∑

m=1

am (6)

for x, y ∈ [−1, 1] and x 6= y.�

By using Theorem 3.2 and Theorem 3.3, we can show the orthogonality property of
Chebyshev polynomials as given in the following corollary.

Corollary 3.1

Let a and b be the zeros of Chebyshev polynomial Tn+1(t) with a 6= b then

n
∑

m=0

⊕

Tm(a)Tm(b) = 0

Proof

Let a and b be the zeros of Chebyshev polynomial Tn+1(t). Then Tn+1(a) = Tn+1(b) =
0. As a consequence of Theorem 3.3, we get

⊕
n
∑

m=0

Tm(a)Tm(b) =
1

2

[

Tn+1(a)Tn(b) − Tn(a)Tn+1(b)

a− b

]

= 0.�

By using the first kind Chebyshev polynomial and its properties as shown in this section,
we can construct scaling and wavelet functions as explained in the next section.

4 Scaling Function and Wavelets

Since the scaling and wavelet functions to be built based on the zeroes of Chebyshev poly-
nomial with orthogonality property, we need to establish the scaling and wavelet functions
which satisfy the criteria described in Section 2, and we will do these separately.

Let Pn be the space of all polynomials of degree does not exceed n where its basis is
an orthogonal basis. We define a new Scaling function φn,k (k = 0, 1, 2, · · · , n) which
satisfies the orthogonality property of Chebyshev polynomials as follows.
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Definition 4.1 (Scaling Function)
If η0, η1, · · · , ηn are the zeros of Chebyshev polynomial Tn+1(t). Then we defined

Vn = span {φn,k | k = 0, 1, 2, · · · , n} (7)

as a new space of real polynomials where

φn,k (t) =
n
∑

m=0

⊕

Tm (t)Tm (ηk) (8)

for k = 0, 1, 2, · · · , n are called the Chebyshev scaling functions in Vn.�

From Definition 4.1, we note that Pn = Vn whenever the set {φn,k | k = 0, 1, 2, · · · , n}
is orthogonal as shown in the following theorem.

Theorem 4.1
If φn,k, φn,s ∈ Vn then

〈

φn,k, φn,s

〉

Ch
= dk,s λn

where

dk,s =

{

1 (k = s)
0 (k 6= s)

and

λn =
π

2

n
∑

m=0

⊕

T 2
m(ηk).

Proof
Since {T0, T1, T2, · · · , Tn} is an orthogonal set shown by (3), we have

〈

φn,k, φn,s

〉

Ch
=

〈

n
∑

m=0

⊕

Tm (t)Tm (ηk) ,

n
∑

m=0

⊕

Tm (t)Tm (ηs)

〉

Ch

=
1

4
T0 (ηs) T0 (ηk)

∫ 1

−1

T 2
0 (t)√
1 − t2

dt+

n
∑

m=1

Tm (ηs)Tm (ηk)

∫ 1

−1

T 2
m (t)√
1 − t2

dt

=
1

4
T0(ηs)T0(ηk) (π) +

n
∑

m=1

Tm(ηs)Tm(ηk)
(π

2

)

=
π

4
T0(ηs)T0(ηk) +

π

2

n
∑

m=1

Tm(ηs)Tm(ηk)

=
π

2

[

1

2
T0(ηs)T0(ηk) +

n
∑

m=1

Tm(ηs)Tm(ηk)

]

=
π

2

[

n
∑

m=0

⊕

Tm(ηs)Tm(ηk)

]

. (9)

For k = s, we obtain
〈

φn,k, φn,s

〉

Ch
= λn
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where

λn =
π

2

⊕
n
∑

m=0

T 2
m(ηk).

Next, we will show that

〈

φn,k, φn,s

〉

Ch
= 0 for k 6= s.

By using Corollary 3.1 and Definition 4.1, the equation (9) becomes

〈

φn,k, φn,s

〉

Ch
=
π

2







⊕
n
∑

m=0

Tm(ηs)Tm(ηk)






= 0

for k, s = 0, 1, 2, · · · , n and k 6= s. The proof is complete.�

From Definition 4.1 and properties of Chebyshev polynomial, if f ∈ Vn then
f ∈ span {T0, T1, T2, · · · , Tn} and vice versa. It shows that

Vn = span {T0, T1, T2, · · · , Tn} .

We shall define wavelets and discuss their proofs for wavelets to be orthogonal to each other.
The proof will be done by using Christofel-Darboux formula for Chebyshev polynomial.

We will define a new wavelet function ψn,k (t) (k = 0, 1, 2, · · · , n− 1) which satisfies the
orthogonality property of Chebyshev polynomials as follows.

Definition 4.2
Let η0, η1, η2, · · · , ηn−1 zeroes of Chebyshev polynomial Tn(t). For each n nonnegative

integer, we define

Wn = span {ψn,k | k = 0, 1, 2, · · · , n− 1} (10)

as a new space of real polynomials where

ψn,k (t) =

2n−1
∑

m=n+1

Tm (t)Tm (ηk) +
1√
2
T2n (t)T2n (ηk) (11)

for k = 0, 1, 2, · · · , n− 1.�

The function ψn,k (t)for k = 0, 1, 2, · · · , n− 1 defined by (11) are called Chebyshev
wavelet function.

By using this new definition and Corollary 3.1, we will obtain a new theorem which
proves the orthogonality of the set of Chebyshev wavelet functions as follows.

Theorem 4.2
If ψn,k, ψn,s ∈Wn with k 6= s, then

〈

ψn,k, ψn,s

〉

Ch
= 0.
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Proof
We denote η0, η1, η2, · · · , ηn−1 as zeroes of Chebyshev polynomial Tn(t). By using Corol-

lary 3.1, we have

n−1
∑

m=0

⊕

Tm(ηs)Tm(ηk) =

[

Tn(ηk)Tn−1(ηs) − Tn(ηs)Tn−1(ηk)

ηk − ηs

]

= 0 (12)

for k, s = 0, 1, 2, 3, · · · , n− 1 and k 6= s.
Since the polynomial Chebyshev {Tn+1, Tn+2, Tn+3, · · · , T2n} is orthogonal. Therefore,

we obtain
〈

ψn,k, ψn,s

〉

Ch

=

〈

2n−1
∑

m=n+1

Tm (t)Tm (ηk) +
1√
2
T2n (t)T2n (ηk) ,

2n−1
∑

m=n+1

Tm (t)Tm (ηs) +
1√
2
T2n (t)T2n (ηs)

〉

=
1

2
T2n (ηs)T2n (ηk)

∫ 1

−1

T 2
2n (t)√
1 − t2

dt+

2n−1
∑

m=n+1

Tm (ηs)Tm (ηk)

∫ 1

−1

T 2
m (x)√
1 − t2

dt

=
π

4
T2n(ηs)T2n(ηk) +

π

2

2n−1
∑

m=n+1

Tm(ηs)Tm(ηk).

By using Theorem 3.1, Theorem 3.2, and equation (12), the above equation can be written
as

〈

ψn,k, ψn,s

〉

Ch
=
π

4
T0(ηs)T0(ηk) +

π

2

n−1
∑

m=1

Tm(ηs)Tm(ηk)

=
π

2

[

1

2
T0(ηs)T0(ηk) +

n−1
∑

m=1

Tm(ηs)Tm(ηk)

]

=
π

2







⊕

n−1
∑

m=0

Tm(ηs)Tm(ηk)







= 0

for k 6= s. The proof is complete.�
By the above explanation, the scaling and wavelet functions are constructed as follows.

Firstly, choose a Chebyshev polynomial Tn (t) of degree n and identifying its zeroes. Sec-
ondly, define the scaling Chebyshev and wavelet Chebyshev functions by using Definition
4.1 and Definition 4.2 respectively. By using the Christofel-Darboux rule and Chebyshev
polynomial, both functions can be shown to possess the orthogonality property.

5 Discussion

As mentioned in Section 1, in this paper, we have introduced wavelet function based on
Chebyshev polynomial. The wavelet concept to be suggested is really built using the zeroes
of Chebyshev polynomials with certain degree as shown in Section 4.
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In Definition 4.1, we have created Chebyshev scaling functions in Vn where Vn is defined
by (7). These scaling functions have orthogonality property as have been proved by using
Christofell-Darboux formula for Chebyshev polynomials in Section 4.

In Definition 4.2, we have defined our own Chebyshev wavelet functions in Wn where
Wn is defined by (10). These wavelet functions have orthogonality property as been proven
by using Christofell-Darboux formula for Chebyshev polynomials in Section 4.

Theorem 4.1 and Theorem 4.2 show that the set of scaling functions

{φn,k | k = 0, 1, 2, · · · , n}

and the set of wavelets
{ψn,k | k = 0, 1, 2, · · · , n− 1}

are the orthogonal sets respectively.
In Figure 1 and Figure 2, we display some scaling and wavelet functions in their certain

subspaces Vn and Wn respectively which are obtained by using Matlab. The Matlab codes
and further information can be obtained from the authors.

By definitions, φ16,k (t) (k = 2, 8, 13) and ψ16,k (t) (k = 2, 8, 13) are the polynomials of
degree 16 respectively. In Figure 1, the position of maximum of φ16,k (t) (k = 2, 8, 13) will
move from right to left as kincreases from 2 to 13. The same case is applied to ψ16,k (t) (k =
2, 8, 13). Therefore, we can conclude that the scaling and wavelet functions have the same
pattern of graphs for n = 16 and (k = 2, 8, 13).

6 Conclusion

In this paper, in order to obtain the special scaling and wavelet functions different from what
have been created in ([1],[7]), we have used the zeroes of Chebyshev polynomial for creating
the scaling and wavelet functions which have orthogonality property. The capability of the
said functions for satisfying the property of scaling and wavelet functions is proven by the
Christoffel-Darboux formula’ These findings are further illustrated in Figure 1 and Figure 2.
These scaling and wavelet functions can be used as a choice wavelets in wavelet analysis.
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Figure 1: Scaling Function with n = 16 for k = 2, 8, 13
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Figure 2: Chebyshev Wavelet with n = 16 for k = 2, 8, 13
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