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1 Preliminaries and Basic Results

Zadeh introduced the concept of fuzzy sets [1] in 1965, which provides a natural framework
for generalizing the basic notions of algebra e.g. set theory, group theory, groupoids, real
analysis etc. Several researchers get sufficient motivation to review various concepts and
results from the realm of algebra in broader framework of fuzzy setting.

Mordeson et al. in [2] introduced an up to date account of fuzzy subsemigroups and
fuzzy ideals of a semigroup. Although semigroups concentrate on theoretical aspects, they
also include applications in error-correcting codes, control engineering, formal language,
computer science and information science. Biswas [3] applied the fuzzy concept to Rosen-
feld’s fuzzy subgroups and studied some properties of interval valued membership function
in terms of fuzzy subgroups (also see [4, 5]). Kuroki [6] characterized inverse semigroups by
the properties of their fuzzy congruences. In [7], Tan studied regular semigroups in terms
of fuzzy congruences and investigated some important results.

In this paper, we introduced the concept of a quotient semigroup S/δ by an interval-
valued fuzzy congruence relation δ on a semigroup S, and present Homomorphism The-
orems with respect to an interval-valued fuzzy congruence relation. We also investigate
idempotent-separating interval-valued fuzzy congruence, a group interval-valued fuzzy con-
gruence on inverse semigroup and studied some important results.

A non-empty set S together with a binary operation “∗” defined on it is called a semi-
group if it is associative. An element a of a semigroup S is called a regular element if there
exists an element x ∈ S such that a = axa. A semigroup S is called regular if each element
of S is regular. By an idempotent element of S we mean that an element a of S such that
a2 = a, and a−1 is an inverse element of a in S if aa−1a = a and a−1aa−1 = a−1. By an
inverse semigroup we mean that every element of S will possess a unique inverse.
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A function f from a nonempty set X to the unit interval [0, 1] is called a fuzzy subset
of X. Throughout this paper S will denote a semigroup and X be any nonempty set.

Definition 1 [8] Let A be a non-empty subset of a set X. Then the characteristic function

of A is the function CA of X into [0, 1] defined by,

CA (x) =

{

1 if x ∈ A,
0 if x /∈ A.

Definition 2 [9] For fuzzy subsets δ and γ of X, δ ⊆ γ means that for all x ∈ X, δ (x) ≤
γ (x) .

Definition 3 [9] Let S be a semigroup. A function λ from S × S to the unit interval [0, 1]
is called a fuzzy relation on S.

Definition 4 A fuzzy relation λ on S is called fuzzy reflexive if λ (a, a) = 1 for all a ∈ S,
fuzzy symmetric if λ (a, b) = λ (b, a) for all a, b ∈ S.

Definition 5 [9] Let λ and µ be two fuzzy relations on S. Then the product λ ◦ µ of λ and

µ is defined by

λ ◦ µ (a, b) = ∨x∈S(λ (a, x) ∧ µ (x, b))

for all a, b ∈ S.

If λ = µ, say and λ ◦ λ ⊆ λ, then the fuzzy relation λ is called fuzzy transitive.
A fuzzy relation λ on S is called a fuzzy equivalence relation on S if it is fuzzy reflexive,

fuzzy symmetric and fuzzy transitive.
A fuzzy relation λ on S is called compatible if

λ (ax, bx) ≥ λ (a, b) and λ (xa, xb) ≥ λ (a, b)

for all a, b, x ∈ S. A fuzzy equivalence relation on a semigroup S which is compatible is
called a fuzzy congruence relation on S.

Lemma 6 [10] If S is a regular semigroup, then the following conditions are equivalent.

(i) S has exactly one idempotent.

(ii) S is cancellative.

(iii) S is a group.

Lemma 7 [10] A semigroup S is an inverse semigroup if and only if S is regular and

idempotents of S commute.

Throughout this paper S will denote semigroup, δ fuzzy subset and δ an interval-valued
fuzzy subset unless otherwise stated.

Definition 8 Let Ω denote the family of all closed sub-intervals of the interval [0, 1] with

minimal element O = [0, 0] and maximal element I = [1, 1]. Let I1 = [a1, b1], I2 = [a2, b2]
and Ii = [ai, bi] be the elements of Ω. Then define
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I1 ∧ I2 = [a1 ∧ a2, b1 ∧ b2].

I1 ∨ I2 = [a1 ∨ a2, b1 ∨ b2].

∧i{Ii} = [∧i{ai}, ∧i {b2}].

∨i{Ii} = [∨i{ai}, ∨i {b2}].

We say I2 ≤ I1 if and only if a2 ≤ a1 and b2 ≤ b1 for all ai, bi ∈ S.

Definition 9 [4] Let X be a non-empty set and µl
A, µu

A be two fuzzy subsets of X. That is

µl
A : X → [0, 1] and µu

A : X → [0, 1] such that 0 ≤ µl
A (x) ≤ µu

A (x) ≤ 1 for each x ∈ X.
Then A : X → Ω defined by A(x) = [µl

A (x) , µu
A (x)] ⊆ [0, 1] for each x ∈ X, is called an

interval-valued fuzzy subset of X.

2 Interval-valued Fuzzy Congruences

In this section we will introduce the concept of an interval valued fuzzy congruence relation,
and investigate some of its properties. We will define an interval valued fuzzy equivalence
class on S in this section.

Definition 10 [4] Let S be a semigroup and δl, δu be two fuzzy subsets of S × S, that is

δl : S×S → [0, 1] and δu : S×S → [0, 1], such that δl(a, b) ≤ δu(a, b) for all (a, b) ∈ S×S.
Then a function δ : S × S → Ω defined by

δ(a, b) = [δl(a, b), δu(a, b)]

is called an interval-valued fuzzy relation on S.

Definition 11 An interval-valued fuzzy relation δ of S is called an interval-valued fuzzy

reflexive relation on S if δ(a, a) = I = [1, 1] for all (a, a) ∈ S × S. δ is an interval-valued

fuzzy symmetric if δ (a, b) = δ (b, a) for all (a, b) ∈ S × S.

Definition 12 Let δ and λ be two interval-valued fuzzy relations on S. Then the product

of δ and λ is defined by

δ ◦ λ (a, b) = ∨x∈S{δ (a, x)∧ λ (x, b)} for all (a, b) ∈ S × S.

If δ = λ, and δ ◦ δ ⊆ δ, then the interval-valued fuzzy relation δ on S is called an interval-

valued fuzzy transitive relation.

An interval-valued fuzzy relation δ on S is called compatible if δ (ax, bx) ≥ δ (a, b) and
δ (xa, xb) ≥ δ (a, b) for all a, b, x ∈ S.

Definition 13 An interval-valued fuzzy equivalence relation of a semigroup S which is

compatible is called an interval-valued fuzzy congruence relation of S.

Definition 14 Let S be a semigroup and R be a relation on S. Then δR:S×S → Ω defined

by

δR (a, b) =

{

I = [1, 1] when (a, b) ∈ R,
O = [0, 0] when (a, b) /∈ R,

is called an interval-valued characteristic function of S.



112 F. M. Khan, N. H. Sarmin, M. Shabir and A. Khan

Lemma 15 Let R be a relation on S. Then R is an equivalence relation on S if and only

if δR is an interval-valued fuzzy equivalence relation on S.

Proof. (⇐=) Let δR be an interval-valued fuzzy equivalence relation on S. Then δR(a, a) =
I = [1, 1] for all (a, a) ∈ S × S, implies that (a, a) ∈ R for all (a, a) ∈ S × S. Hence R
is reflexive. Let (a, b) ∈ R, then δR(a, b) = I and since δR is an interval-valued fuzzy
symmetric relation, so δR(a, b) = δR(b, a). Hence δR(b, a) = I = [1, 1], so (b, a) ∈ R means
that R is symmetric. Suppose (a, b), (b, c) ∈ R. Then δR(a, b) = I = δR(b, c). Since δR is
an interval-valued fuzzy transitive relation, so by Definition 12, δR ◦ δR ⊆ δR. Therefore we
have

δR(a, c) ≥ δR ◦ δR(a, c)

= ∨x∈S{δR (a, x) ∧ δR(x, c)}

≥ δR (a, b)∧ δR (b, c)

= I ∧ I

= I = [1, 1].

This implies that δR (a, c) ≥ [1, 1]. Hence δR (a, c) = [1, 1]. Therefore (a, c) ∈ R. Thus R is
transitive and consequently R is an equivalence relation.

(=⇒) Suppose that R is an equivalence relation. So (a, a) ∈ R for all (a, a) ∈ S × S.
Therefore δR (a, a) = I = [1, 1] for all (a, a) ∈ S × S which implies δR is an interval-valued
fuzzy reflexive. Let (a, b) ∈ S × S. If δR (a, b) = I, then (a, b) ∈ R. Since R is symmetric,
so (b, a) ∈ R. Hence δR (b, a) = I. If δR (a, b) = O then (a, b) /∈ R implies that (b, a) /∈ R.
Thus δR (b, a) = O = [0, 0]. Thus in any case δR (a, b) = δR (b, a) . Now let (a, b) ∈ S×S. If
(a, b) ∈ R then we have δR (a, b) = I = [1, 1] ≥ δR◦δR (a, b) . If (a, b) /∈ R, then by Definition
12, δR ◦ δR (a, b) = ∨x∈S{δR (a, x)∧ δR (x, b)}. If (a, x) , (x, b) ∈ R then (a, b) ∈ R which is
a contradiction. Hence (a, x) /∈ R or (x, b) /∈ R. This implies δR (a, x) = O or δR (x, b) = O
which gives δR (a, x) ∧ δR (x, b) = O. Therefore ∨x∈S{δR (a, x) ∧ δR (x, b)} = O = [0, 0].
So δR ◦ δR (a, b) = δR (a, b) which shows that δR ◦ δR ⊆ δR. Hence δR is an interval-valued
fuzzy transitive relation on S.

Theorem 16 Let R be a binary relation on a semigroup S. Then R is a congruence relation

on S if and only if δR is an interval-valued fuzzy congruence relation on S.

Proof. The proof follows frome Lemma 15.

Definition 17 Let δ be an interval-valued fuzzy equivalence relation on a semigroup S. For

each a ∈ S, we define an interval-valued fuzzy subset δa of S as follows,

δa (x) = δ (a, x) for all x ∈ S.

Theorem 18 Let δ be an interval-valued fuzzy equivalence relation on a semigroup S. Let

a, b ∈ S. Then δa = δb if and only if δ (a, b) = I = [1, 1].

Proof. Suppose δa = δb, for some a, b ∈ S. Then

δ (a, b) = δa (b) = δb (b) = δ (b, b) = I = [1, 1].
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Conversely, suppose that δ (a, b) = I.

Now δa (x) = δ (a, x)

≥ δ ◦ δ (a, x)

= ∨y∈S{δ (a, y) ∧ δ (y, x)}

≥ δ (a, b)∧ δ (b, x)

= I ∧ δ (b, x)

= δ (b, x)

= δb (x) for all x ∈ S.

Thus δa ⊇ δb. Since δ is an interval-valued fuzzy equivalence relation, so interval-valued
fuzzy symmetric relation, thus δ (a, b) = δ (b, a) for all (a, b) ∈ S × S. Since δ (a, b) = I, so
δ (b, a) = I.Therefore we also have δb ⊇ δa. Consequently δa = δb.

Definition 19 An interval-valued fuzzy subset δa of semigroup S is called an interval-valued

fuzzy equivalence class of δ containing a ∈ S. Let δ be an interval-valued fuzzy congruence

relation on S. Denote

S/δ =
{

δa : a ∈ S
}

.

Let δ and λ be two interval-valued fuzzy subsets of S. Then the product δ ◦ λ of δ and
λ is defined by

δ ◦ λ (x) =

{

∨x=yz

(

δ (y) ∧ δ (z)
)

if x is expressible as x = yz,

O = [0, 0] otherwise.

Note that the same symbol is used for both this product and the product of interval-
valued fuzzy relation.

Let δ be an interval-valued fuzzy congruence on S. Let a, b ∈ S and δa, δb be two
interval-valued fuzzy congruence classes of δ, and let x ∈ S. Then,

δa ◦ δb (x) = ∨x=yz

(

δa (y) ∧ δb (z)
)

= ∨x=yz

(

δ (a, y) ∧ δ (b, z)
)

≤ ∨x=yz

(

δ (ab, yb) ∧ δ (yb, yz)
)

= ∨x=yz

(

δ (ab, yb) ∧ δ (yb, x)
)

≤ ∨t∈S

(

δ (ab, t)∧ δ (t, x)
)

= δ ◦ δ (ab, x)

≤ δ (ab, x)

= δab (x) for all x ∈ S.

This implies δa ◦ δb ⊆ δab. Therefore we can define the binary operation “∗” on S/δ as
follows:

δa ∗ δb = δab for all δa, δb ∈ S/δ.

Lemma 20 The binary operation “∗” on S/δ is well-defined.
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Proof. Assume that δa = δb and δc = δd. Then by Theorem 18, δ (a, b) = δ (c, d) = I.
Thus

δ (ac, bd) ≥ δ ◦ δ (ac, bd)

= ∨x∈S{δ (ac, x)∧ δ (x, bd)}

≥ δ (ac, bc)∧ δ (bc, bd)

≥ δ (a, b) ∧ δ (c, d)

= I ∧ I

= I = [1, 1].

This shows that δ (ac, bd) ≥ [1, 1] which implies that δ (ac, bd) = I = [1, 1]. Hence by
Theorem 18 we get δac = δbd. It implies that δa ∗ δc = δb ∗ δd, which shows that the binary
operation “∗” is well-defined on S/δ.

Theorem 21 Let δ be an interval-valued fuzzy congruence on a semigroup S. Then

δ
−1

([1, 1]) =
{

(a, b) ∈ S × S | δ (a, b) = I
}

is a congruence on S.

Proof. It is easy to see that δ
−1

([1, 1]) is both reflexive and symmetric. To prove transi-

tivity let (a, b) , (b, c) ∈ δ
−1

([1, 1]). Then, since δ (a, b) = I = δ (b, c) so we have

δ (a, c) ≥ δ ◦ δ (a, c)

= ∨x∈S{δ (a, x)∧ δ (x, c)}

≥ δ (a, b) ∧ δ (b, c)

= I ∧ I

= I.

So δ (a, c) = I . Thus (a, c) ∈ δ
−1

([1, 1]) implies that δ
−1

([1, 1]) is transitive. Hence

δ
−1

([1, 1]) is an equivalence relation on S.

Now suppose (a, b) ∈ δ
−1

([1, 1]) and x ∈ S. Since δ is an interval-valued fuzzy congru-
ence relation on S so

δ (ax, bx) ≥ δ (a, b) = I .

This implies that δ (ax, bx) = I, that is (ax, bx) ∈ δ
−1

([1, 1]). Similarly we can show

that (xa, xb) ∈ δ
−1

([1, 1]), which implies that δ
−1

([1, 1]) is compatible. Consequently

δ
−1

([1, 1]) is a congruence relation on S.

3 Homomorphism Theorems for Interval-valued Fuzzy Congruences

Homomorphism theorems for an interval valued fuzzy congruence relation will be proved
and an interval valued fuzzy kernel of homomorphism will also be defined in this section.

Lemma 22 [6] Let S and Y be two semigroups and f a homomorphism of S into Y . Then

the relation,

Ker (f) = {(a, b) ∈ S × S | f (a) = f (b)}
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is a congruence on S.

Definition 23 Suppose K(f) = δker(f). Then K(f) is an interval-valued fuzzy congruence

called the interval-valued fuzzy kernel of f. Obviously for all (a, b) ∈ S × S,

K (f) (a, b) =

{

I = [1, 1] if f(a) = f(b),
O = [0, 0] if f(a) 6= f(b).

Theorem 24 If δ is an interval-valued fuzzy congruence relation on a semigroup S. Then

S/δ is a semigroup with respect to the binary operation “∗” (defined as δa ∗ δb = δab by

Definition 19 ). The function δ
k

: S → S/δ defined by δ
k
(a) = δa for all a ∈ S is a

homomorphism. Suppose S and Y be semigroups. If f : S → Y is a homomorphism, then

the interval-valued fuzzy relation K(f) is an interval-valued fuzzy congruence on S, and

there is a monomorphism q : S/K(f) → Y such that the diagram

S
......................................................................................................................................................................................................................................................
.....
.....
.....
.....
..

....

.....

.....

.....

.....
..

f
............................................................................................................................................................................................................................................................................

.......................
... Y

......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
...........................

..........................

q

S/K(f)

(k(f))k

commutes.

Proof. By using Definition 19, S/δ is a semigroup. Let a, b ∈ S, then by definition of δ
k

we

have δ
k
(ab) = δab = δa∗δb = δ

k
(a)∗δ

k
(b) . Since K (f) = δker(f) is an interval-valued fuzzy

congruence, so S/K (f) is a semigroup. Let us define q : S/K (f) → Y by q ((K (f))a) =
f (a) for all a ∈ S. Let a, b ∈ S such that, (K (f))a = (K (f))b . Then K (f) (a, b) = I = [1,
1] by Theorem 18. But K (f) = δker(f) so δker(f) (a, b) = I. Thus (a, b) ∈ ker (f) . Hence
f (a) = f (b) . This implies q ((K (f))a) = q ((K (f))b). Hence q is well defined. Now suppose
(K (f))a , (K (f))b ∈ S/K (f) such that q ((K (f))a) = q ((K (f))b) . Thus f (a) = f (b) .
This implies that (a, b) ∈ Ker (f) so δker(f) (a, b) = I. However, since K (f) = δker(f), so

K (f) (a, b) = I = [1, 1]. Hence by Theorem 18, (K (f))a = (K (f))b. This shows that q is
one to one function. Let (K (f))a, (K (f))b ∈ S/K (f) , then

q ((k (f))a ∗ (k (f))b) = q((K (f))ab)

= f (ab)

= f (a) f (b)

= q((K (f))a)q ((K (f))b) .

Thus q is a homomorphism. Consequently q is a monomorphism.
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Let a ∈ S, then we have

(q (k (f))k) (a) = q ((k (f))a)

= f (a)

which shows that q (k (f))
k

= f. Thus the diagram commutes.

Theorem 25 Let δ and λ be interval-valued fuzzy congruences on a semigroup S such that

δ ⊆ λ. Then there is a unique homomorphism g : S/δ → S/λ such that the diagram

S
......................................................................................................................................................................................................................................................
....
.....
.....
.....
...

....

....

.....

.....

.....
...

f
............................................................................................................................................................................................................................................................................

......................
.... S/λ

......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
...........................

..........................

g

S/δ

δ
k

commutes, and
(

S/δ
)

/K (g) is isomorphic to S/λ.

Proof. Sine δ and λ are interval-valued fuzzy congruences on a semigroup S, therefore S/δ
and S/λ are semigroups with respect to the binary operation “∗” by Theorem 24. Also

δ
k

: S → S/δ and λ
k

: S → S/λ defined by δ
k
(a) = δa and λ

k
(a) = λa respectively

for all a ∈ S are homomorphisms. Now define g : S/δ → S/λ by g(δa) = λa for all
a ∈ S. Let δa, δb ∈ S/δ such that δa = δb. Thus δ (a, b) = I by Theorem 18. Since δ ⊆ λ
so I = δ (a, b) ≤ λ (a, b). Therefore λ (a, b) = I = [1, 1], which gives λa = λb. Hence
g(δa) = g(δb) so g is well defined. Let δa, δb ∈ S/δ. Then

g(δa ∗ δb) = g
(

δab

)

= λab = λa ∗ λb = g
(

δa

)

∗ g
(

δb

)

.

So g is a homomorphism.
The remaining proof is left for the reader.

4 Idempotent-separating Interval-valued Fuzzy Congruences

In this section we will give the necessary and sufficient conditions for interval valued fuzzy
congruence relation δ to be an idempotent-separating. Also some theorems for an interval
valued fuzzy congruence relation δ on S will be proved here.

Definition 26 An interval-valued fuzzy congruence δ on a semigroup S is called an idempotent-

separating if for all e, f ∈ E (S), the equality δe = δf implies that e = f where E (S) is the

set of all idempotents of S.
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Theorem 27 Let S be a regular semigroup δ ∈ i-Conf (S) (the set of all interval-valued

fuzzy congruences of S), and a ∈ S. Then the following conditions are equivalent.

(i) δa ∈ E
(

S/δ
)

.

(ii) δa = δe for some e ∈ E (S) and Se ⊆ Sa, eS ⊆ aS.

(iii) δa = δe for some e ∈ E (S).

Proof. First we prove that (i) implies (ii).
Let δa ∈ E

(

S/δ
)

where a ∈ S. Then

δa = δa ∗ δa = δaa = δa2 .

Let s be the inverse of a2 in S, that is a2 = a2sa2 and s = sa2s. Now set e = asa then we
can write,

e2 = (asa) (asa)

= as (aa) sa

= asa2sa

= asa

= e,

so e ∈ E (S). Now δa ∈ E
(

S/δ
)

implies that

δa = δa ∗ δa = δaa = δa2 .

So we have,

δe = δasa

= δa ∗ δs ∗ δa

= δa2 ∗ δs ∗ δa2 since δa = δa2

= δa2sa2

= δa2

= δa

Thus δe = δa. On the other hand we have, eS = (asa)S = a (saS) ⊆ aS which implies
eS ⊆ aS and also Se = S (asa) = (Sas) a ⊆ Sa. Therefore Se ⊆ Sa.

(ii) implies (iii) is clear. Next we show that (iii) implies (i). Let δa = δe for some
e ∈ E (S) . Then δa ∗ δa = δe ∗ δe = δe·e = δe2 = δe = δa which implies that δa is an
idempotent in S/δ so δa ∈ E

(

S/δ
)

.

Lemma 28 [6] If S is an inverse semigroup with semilattice of idempotents E (S) . Then

the relation,

η =
{

(a, b) ∈ S × S : a−1ea = b−1eb for all e ∈ E (S)
}

is the greatest idempotent-separating congruence relation on S.
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Theorem 29 Let δ be an interval-valued fuzzy congruence on an inverse semigroup S.

Then S/δ is an inverse semigroup and δ
(

a−1, b−1
)

= δ (a, b) for all a, b ∈ S.

Proof. Let a ∈ S. Since S is an inverse semigroup so regular by Lemma 7 implies that
there exist an element t ∈ S such that a = ata. Now suppose δa ∈ S/δ we have, δa = δata =
δa ∗ δt ∗ δa where δt ∈ S/δ. This shows that δa is regular. Now let δa, δb ∈ E

(

S/δ
)

where

a, b ∈ S. Then by Theorem 27, there exist idempotents e, f ∈ E (S) such that δa = δe

and δb = δf . Since S is an inverse semigroup so by Lemma 7, we have ef = fe. Therefore
δa ∗ δb = δe ∗ δf = δef = δfe = δf ∗ δe = δb ∗ δa. Hence S/δ is regular, and idempotent of
S/δ commutes. So by Lemma 7, S/δ is an inverse semigroup. Let δa−1 , δa ∈ S/δ, then we
have δa ∗δa−1 ∗δa = δaa−1a = δa (since S is regular). Also δa−1 ∗δa∗δa−1 = δa−1aa−1 = δa−1

implies δa−1 is the inverse of δa. Hence (δa)−1 = δa−1 . Now we prove δ
(

a−1, b−1
)

= δ (a, b)
for all a, b ∈ S. Suppose a, b ∈ S then

δ
(

a−1, b−1
)

= δa−1

(

b−1
)

= (δa

(

b−1
)

)−1

=
(

δ
(

a, b−1
))−1

=
(

δ
(

b−1, a
))−1

=
(

δb−1 (a)
)−1

= (
(

δb (a)
)−1

)−1

= δb (a)

= δ (b, a)

= δ (a, b) .

Hence δ
(

a−1, b−1
)

= δ (a, b) for all a, b ∈ S.

Theorem 30 Let δ be an interval-valued fuzzy congruence on an inverse semigroup S.

Then δ is an idempotent-separating if and only if δ
−1

([1, 1]) ⊆ η, where η is as defined in

Lemma 28.

Proof. Suppose δ is an idempotent-separating. Let (a, b) ∈ δ
−1

([1, 1]) . Then δ (a, b) = [1,
1]. Now let e ∈ E (S). Since δ is an interval-valued fuzzy congruence relation on S, so we
have,

δ
(

a−1ea, b−1eb
)

≥ δ ◦ δ
(

a−1ea, b−1eb
)

= ∨x∈S{δ
(

a−1ea, x
)

∧ δ
(

x, b−1eb
)

}

≥ δ
(

a−1ea, b−1ea
)

∧ δ
(

b−1ea, b−1eb
)

≥ δ
(

a−1, b−1
)

∧ δ (a, b)

= δ (a, b) ∧ δ (a, b) by Theorem 29

= I ∧ I

= I = [1, 1].
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This shows that δ
(

a−1ea, b−1eb
)

≥ [1, 1]. Hence δ
(

a−1ea, b−1eb
)

= [1, 1], which further,

by Theorem 18, implies that δa−1ea = δb−1eb. Since δ is an idempotent-separating and both
a−1ea and b−1eb are idempotent, so a−1ea = b−1eb by Definition 26. Hence (a, b) ∈ η.

Therefore δ
−1

([1, 1]) ⊆ η.

Conversely, assume that δ
−1

([1, 1]) ⊆ η. Let δe = δf for some e, f ∈ E (S) . Then

δ (e, f) = [1, 1], which implies that (e, f) ∈ δ
−1

([1, 1]) ⊆ η so (e, f) ⊆ η. Since η is
idempotent-separating we have e = f . Thus δ is an idempotent-separating interval-valued
fuzzy congruence on S.

Theorem 31 Let S be an inverse semigroup. Then an interval-valued fuzzy relation δη is

an interval-valued idempotent-separating fuzzy congruence relation on S.

Proof. Follows from above and Theorem 16.

5 Group Interval-valued Fuzzy Congruences

In this last section, we will provide the necessary and sufficient conditions for δ to be group
interval valued fuzzy congruence relation.

Definition 32 An interval-valued fuzzy congruence δ on a semigroup S is called a group

interval-valued fuzzy congruence if S/δ is a group under the binary operation “∗” defined in

Definition 19. A group is an inverse semigroup having only one idempotent [6].

Lemma 33 [6] If S is an inverse semigroup with semilattice of idempotents E (S) . Then

the relation

σ = {(a, b) ∈ S × S : ea = eb for some e ∈ E (S)}

is the least group congruence relation on S.

Theorem 34 Let S be an inverse semigroup and δ be interval-valued fuzzy congruence rela-

tion on S. Then δ is a group interval-valued fuzzy congruence if and only if σ ⊆ δ
−1

([1, 1]).

Proof. Let δ be a group interval-valued fuzzy congruence relation on S. This implies that
S/δ is a group by Definition 32. Let (a, b) ∈ σ, then ea = eb for some e ∈ E (S), so we have
δa = δe ∗ δa = δea = δeb = δe ∗ δb = δb, where δe is identity element of S/δ. This shows that

δa = δb. Hence δ (a, b) = [1, 1]. Therefore (a, b) ∈ δ
−1

([1, 1]). Thus σ ⊆ δ
−1

([1, 1]).

Conversely, assume that σ ⊆ δ
−1

([1, 1]). Let e, f ∈ E (S). Since S is an inverse
semigroup so E (S) is commutative by Lemma 7, also efe ∈ E (S) and (efe)e = (efe)f .

Therefore by Lemma 33, we have (e, f) ∈ σ. But σ ⊆ δ
−1

([1, 1]) implies that (e, f) ∈

δ
−1

([1, 1]). Hence δ (e, f) = [1, 1], which further implies that δe = δf . This shows that
S/δ has exactly one idempotent. Since S is an inverse semigroup, therefore S/δ is an inverse
semigroup by Theorem 29. This clears that S/δ is regular by Lemma 7. Thus S/δ is group
by Lemma 6. Hence δ is a group interval-valued fuzzy congruence relation on S by Definition
32.

Theorem 35 Let S be an inverse semigroup. Then δσ is a group interval-valued fuzzy

congruence relation on S.

Proof. From the above, Lemma 33 and Theorem 16 we can prove the required theorem.
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6 Conclusion

In this research we have succeeded to introduce the concept of an interval valued fuzzy
congruence relation and quotient semigroup S/δ, which satisfy some properties on inverse
semigroup. We also defined an interval valued fuzzy kernel of homomorphism and success-
fully proved homomorphism theorems with respect to an interval valued fuzzy congruence
relation δ in this paper.
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