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Abstract In this paper we study a fractional differential equation (FDE) model which
describes the spread of Hantavirus infection in a system consisting of the host species
and a non-host competitor species. The host species is a mouse species of which a
portion is susceptible to infection and the remaining portion is already infected. The
main reason we propose this model is due to the condition in real ecosystems where
mice compete for resources with other species and the interaction processes among
species in the ecosystem become an important agent in controlling the Hantavirus
infection. Our results show our FDE model is able to reproduce results which are
consistent with a previous study involving ordinary differential equations.
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1 Introduction

Since the discovery of Sin Nombre Virus in 1993 as the agent of the severe Hantavirus Car-
diopulmonary Syndrome (HCPS) disease in the North American Southwest, several studies
have addressed the long-term dynamics of its principal host, the deer mouse (Peromyscus

maniculatus), and the spread of Hantavirus infection [1–5]. Once infected, the infected
mouse will carry the virus without themselves being harmed by it. The infected mouse also
does not transmit the disease to offspring since the virus is not vertically transmitted. The
most common means of transmission among the mice is generated by pairwise interactions
between susceptible and infected mice. Transmission of Hantaviruses to humans most often
occurs via inhalation of aerosolized, virus-laden mice excreta [1, 2].

In order to understand the dynamics of the Hantavirus, a mathematical framework has
been proposed and analyzed by Abramson et al. [3]. This basic mathematical framework,
also known as Abramson-Kenkre model, describes transmission of virus from infected to
susceptible mice with a system of (deterministic) nonlinear differential equations. However,
basic single species model of Hantavirus dynamics does not consider the effects of predator
or other competitor species. In line with this hyphothesis, it has been found that the
incidence of the disease decreases with an increasing number of predators [6, 7].

In real ecosystems, mice share the environment with many other animals. In addi-
tion, mice may be preyed upon by and compete for resources with other animals. The
effect of competitor or predator species, therefore needs to be incorporated into the math-
ematical model. Peixoto and Abramson [8] proposed a model that takes into account the
effect of biodiversity on Hantavirus infection. In their study, they have found that com-
petition reduces, the prevalence of infection. This result is supported by empirical work
done with populations of Z. brevicauda, the host of Calazabo Hantavirus, in field studies
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in Panama [9]. Because of these factors, the modelling of Hantavirus-mice system should
include the feedback effect of other species.

Here, we are interested to study the phenomenon of nonhomogeneity in the ecosystems,
which occurs when there is a mixing between host and non-host populations. Previously,
the equations for basic Hantavirus system proposed by Abramson et al. [3] have limitations
due to their unsuitability for a nonhomogeneous setting. Later, Peixoto and Abramson [8]
extended the equations developed by Abramson et al. [3] to include the feedback of non-
host species. In this paper, we provide an alternative model based on Abramson et al. [3]
equations using fractional differential equations to represent the dynamic of interactions
among host and non-host populations. In particular, we have two nonlinear ordinary differ-
ential equations, and in order to represent the variability of the competitors, we have used
D1−α

t f(t) to represent a differential operator of noninteger order. When the power expo-
nent is α = 1, this corresponds to the basic Hantavirus model [3] and when 0 < α < 1 the
system is comprised of both host and competitor species. Comparisons between fractional
model and biodiversity model proposed by Peixoto and Abramson [8] are also tested on
Hantavirus infection system and the results behave as we expected.

The outline of the paper is as follows. The descriptions of the basic system of Hantavirus
infection model is given in Section 2. This is followed by an introduction to the biodiversity
model in Section 3. Then, an introduction to the fractional differential equations is presented
in Section 4. In Section 5, we introduce the fractional form of the Hantavirus infection
system. We further state and discuss our findings in Section 6. Finally, we end this paper
by some conclusions in Section 7.

2 A Basic System of Hantavirus Infection

A mathematical model originally a system of partial differential equations (PDEs) has
been proposed by Abramson and Kenkre [3], with the purpose of providing a theoretical
framework for Hantavirus infection. In the model, they assume that the whole population
is composed of two classes of mice, susceptible and infected, represented as Ms and MI .
This model incorporates the decay by death of the mice population, the spread of infection
through their interaction, the increase by birth and effect of the environment to stabilize
the population, and also their movement as a process of diffusion. If movement from one
location to another is ignored, the following system of ordinary differential equations is
obtained.

dMs

dt
= bM − cMs −

MsM

K
− aMsMI , (1)

dMI

dt
= −cMI −

MIM

K
+ aMsMI . (2)

Here, Ms and MI are the populations of susceptible and infected mice, respectively, and
M(t) = Ms(t) + MI(t) is the total population of mice. Other terms in (1) and (2) are as
follows.

Birth: bM represents birth of mice, all of them born susceptible, at a rate proportional
to the total population of mice.
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Death: c represents the rate of population decay by death, proportional to the corre-
sponding population. Note that the mice are not affected by Hantavirus infection and the
deaths are “natural” deaths.

Competition: −Ms,IM/K represent deaths due to competition for shared resources.
K is the capacity of the system to maintain a population of mice. Higher values of K

represent higher availability of water, food, shelter and other resources that mice can use
to survive [3].

Contagion: aMsMI represents the number of susceptible mice that get infected due to
an encounter with an infected mouse, at a rate a, that Abramson and Kenkre [3] assumed
to be constant.

This ordinary differential equations (ODEs) model is able to reproduce one of the ob-
served features of Hantavirus infection that the infection can completely disappear from
the mice population if environmental conditions are unfavourable and to reappear when
conditions become favourable [3].

3 Biodiversity Model

In this model, Peixoto and Abramson [8] consider a single non-host population, competing
with the host species.

The competitor species does not play a role in transmission of the virus, but it can
influence the environment and ecological pressure on the host species in that they compete
for shared resources.

Identifying the hosts by the variables Ms (for susceptible mice), MI (for infected mice),
and the non-host by Z, the population dynamics model is [8]

dMs

dt
= bM − cMs −

Ms

K
(M + qZ) − aMsMI , (3)

dMI

dt
= −cMI −

MI

K
(M + qZ) + aMsMI , (4)

dZ

dt
= (β − γ)Z −

Z

κ
(Z + εM). (5)

The model corresponds to the basic Abramson Kenkre model mentioned in Section 2
when q = 0. Here, q refers to the influence of the competitor (non-host or alien) population,
K is the carrying capacity in the absence of competitor for the host species, b is the birth
rate and c is the death rate. For the alien species, the corresponding parameters are ε, κ, β
and γ respectively.

The main finding from this model is that the pressure forced by the environment (pres-
ence of non-host species) can drive the infection to extinction. Both subpopulations can
suffer this pressure but the infected, is more vulnerable and becomes extinct at a finite
value of carrying capacity or K [8]. For more complete results, see [8].

4 Introduction to Fractional Differential Equations

This section introduces the fractional differential model with an overview of the concept
of fractional derivative and reasons for applying this type of differential equation in the
present context.
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Given D as a differential operator and n as a positive integer, the n-th derivative of
function y(x), given that y(x) exists, can be written as

Dn
x (y) =

dny

dxn
.

This concept of integer-order derivative is already well known. The concept of derivatives
of non-integer order was developed more than three centuries ago and since then, it has
drawn attention from many famous mathematicians such as Euler, Laplace, Riemann, Li-
ouville, Fourier and Abel [10]. In the last few decades, the theory of fractional derivative
has attracted a significant attention in various areas such as viscoelasticity [11], signal pro-
cessing [10], biology [12,13] and other problems in physical sciences. In biological modelling,
one of its most prominent uses is in diffusion processes [11, 14].

In diffusion process, the fractional model has been used to describe the anomality of dif-
fusion behaviour upon complex environment [12,13]. The suitability of fractional derivative
model for describing the anomalous phenomena has given an opportunity for us to mod-
ify the fractional derivative form in order to suit the problem related to infectious disease
ecology.

In the context of present model, the fractional derivatives are used to describe non-
homogeneous character of the ecosystems, with respect to the presence of competitors.
Therefore we need to consider biodiversity or interacting species. Thus, we need to modify
equations (1) and (2) by including obstacle parameter densities. In doing this, we need to
modify the basic Hantavirus infection model to a fractional form. Before proceeding, we
will introduce the fractional derivative model which will be used throughout our discussion
in this paper for solving the non-homogeneous ecology problem.

Consider the fractional differential equation of the form

dy(t)

dt
= D1−α

t f(y(t)) + g(y(t)), t ∈ [0, T ],

y(0) = y0, y0 ∈ R
m, (6)

where 0 < α < 1. There are FDEs in which both the temporal derivative and spatial
derivative operators are fractional, but in this chapter, we consider only those whose frac-
tional derivative operators are with respect to time. D1−α

t f denotes the Riemann-Liouville
fractional derivative [10] of the function f , defined by

D1−α
t f(t) =

1

Γ(α)

d

dt

∫ t

0

f(s)

(t − s)1−α
ds. (7)

Γ(α) is the Gamma function defined by

Γ(α) =

∫
∞

0

e−ttα−1dt.

The Caputo fractional derivative is given by

D̂1−α
t f(t) =

1

Γ(α)

∫ t

0

f ′(s)

(t − s)1−α
ds. (8)
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If f(t) is continuous and f ′(t) is integrable in the interval [0, T ], then for every 0 <
α < 1 the Riemann-Liouville and the Caputo fractional derivatives satisfy the following
relation [10]

D1−α
t f(t) = D̂1−α

t f(t) +
tα−1

Γ(α)
f(0), t > 0. (9)

A number of authors, for example Diethelm et al. [15, 16], Ford et al. [17], consider the

numerical solution of so-called Caputo FDEs that take the form D̂α
t y(t) = f(y(t)), but

we prefer the form (6), as it is more naturally allied to problems discussed in this paper.
This form also appears in solving problems in systems biology arising from the anomalous
diffusion and chemical kinetics of molecular species in a crowded environment [12, 13].

To solve problem (6), we use Implicit Fractional Trapezoidal method written as

yn+1 = yn +
h

2
(D1−α

t (f(yn) + f(yn+1))) +
h

2
(g(yn) + g(yn+1)), (10)

where h refers to the time stepsize.
In order to implement such method, we need numerical approximations to the frac-

tional derivative operator. Here, we use the approximation by Diethelm et al. [18] when
approximating the Caputo fractional derivative operator

D1−α
t f(yn) ≈

hα−1

Γ(1 + α)

n∑

j=0

cjnf(yj ), (11)

where h = T/n is the integration stepsize, tj = jh, j = 0, 1, 2, · · · , n, yn is an approximation
to exact solution y(tn).

cjn =






αnα−1
− nα + (n − 1)α, if j = 0,

(n − j + 1)α
− 2(n − j)α + (n − j − 1)α, if j = 1, 2, . . . , n − 1,

1, if j = n.
(12)

5 Fractional Abramson-Kenkre Model

This section we present the fractional order derivative analog of the system (1-2) presented
in section 2. Note that the effect of diffusion is not included in the model.

The resulting model can be written as

dMs

dt
= D1−α

t

(
bM − cMs −

MsM

K
− aMsMI

)
, (13)

dMI

dt
= D1−α

t

(
−cMs −

MIM

K
+ aMsMI

)
. (14)

The parameter α characterizes the density of competitor species in the system. Notice that
when the power exponent is α = 1, this corresponds to equations (1) and (2), and varies
the competitor’s populations when 0 < α < 1. As α moves away from 1, the density of
competitor or alien species will increase in the populations.

In the next section, we present the simulation results based on equations (13), (14) and
we also compare with biodiversity equations; (3), (4), (5) introduced in section 3.
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6 Results and Discussion

In this section, we numerically solve the governing equations to study the effects of de-
creasing the value of α, i.e. increasing the number of alien species. For the basic system
of Abramson and Kenkre the critical value of K above which the infection will persist
is given [3] by Kc = b/(a(b − c)). In the presence of alien population this critical value
can be generalized [8] to KA

c = Kc + (q/(b − c))Z. Furthermore, Peixoto and Abram-
son [8] have shown that the minimum initial alien population to inhibit infection is given
by Z(0) = (K(aMs(0) − c) − M(0))/q.

We choose a = 0.1, b = 1, c = 0.5 as this was used by Abramson and Kenkre in their
study [3]. The initial values for the host population were Ms(0) = 40 and MI(0) = 10 to
indicate a mice population where the situation is infected [9].

Figure 1 shows the results of the simulation based on equations (13) and (14) using the
values mentioned above. When α = 1, equations (13), (14) will correspond to equations in
(1) and (2), i.e. there is no alien species in the ecosystem (basic Abramson Kenkre system).
There is an increase in the infection reaching a peak of MI = 20 at two months. It then
falls but there is a persistence in the infection with MI = 10 from 10 months onwards.

Figure 1: Simulation results for fractional Abramson Kenkre model with α = 1.

Figure 2 shows the simulation results across a range of α (α = 0.6, 0.3, 0.25), that is we
simulate the results when the number of alien species increases. In Figure 2, the results
indicate that for α = 0.6 the number of infected mice decreases with MI = 8.7 after 30
months. However after 30 months the number of infected mice is still greater than the
number of susceptible mice.

For α = 0.3 and α = 0.25, it can be seen that the infection decreases even more rapidly
with MI reaching 5.3 and 4.4 respectively after 30 months. For both cases, after 30 months
the number of susceptible mice is greater than the number of infected mice in the ecosystem.
This indicates that there is some correlation between α values and rate of infection upon
the ecosystem in which α acts as reference to the density of alien species. When α is nearly
zero, then there is more ecological pressure on the host, and this eventually affects the
dynamics of infection.

Table 1 shows the results as we vary the α parameters based on equations (13) and (14).
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Figure 2: Simulation Results for Fractional Abramson Kenkre Model with α = 0.6, 0.3, 0.25.

The values given in the table represent the survival number of populations as we conduct
the test for 100 months.

From Table 1, it can be seen that even though the value of carrying capacity, K, is high,
the competitive pressure among host and a high number of non-host species, can result in a
drastic reduction in the number of infected mice (and also reduce the number of susceptible
mice). This result is also consistent with the biodiversity model proposed by Peixoto and
Abramson [8].

Figure 3 illustrates the effect α to the infected and susceptible mice population densities.
The dashed line represents the infected mice population able to survive and the solid line
represents the susceptible mice population. It shows here, as α < 0.5, there is a drop in
the number of survivors for infected and susceptible mice. The infected mice population
densities drops below the susceptible mice population densities, thus emphasize the effect
of α values in controlling the infection.

7 Conclusions

In this paper, we have introduced a fractional ordinary differential equation model to rep-
resent an ecosystem with non-host competitor species and host mice species which are
associated with Hantavirus infection. The model has been investigated using Fractional
Implicit Trapezoidal method. We used fractional model of a host-Hantavirus system to
incorporate the diversity of an ecosystem, where the ecosystem can comprise host and non-
host competitor populations. Here, the model assumes a constant competitor rather than a
dynamically evolving competitor. The competition among host and an increasing non-host
population (represented by a decreasing α) can significantly affect the propagation of Han-
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Table 1: Survivors (or Population Densities) at t = 100 Months for Fractional Model
(Ms(0) = 40, MI(0) = 10, K = 40, K > KA

c )

α Susceptible Infected

1 10.0052 9.998

0.9 10.002 10.0098

0.8 8.8928 10.0935

0.75 8.5026 10.1861

0.7 8.0665 9.7618

0.6 7.2618 7.0663

0.5 6.5468 6.3167

0.45 6.291 5.3981

0.4 6.0845 4.6132

0.3 5.79 3.5451

0.2 5.5609 3.0192

0.15 3.4494 1.4731

Figure 3: Survivors of Susceptible (Solid Line) and Infected (Dashed Line) Mice Populations
Versus α.
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tavirus infection. Our result is consistent with that of Peixoto and Abramson [8]. However,
there are other aspects that need to be explored regarding the stability of the fractional
Abramson Kenkre model. Given their recent arrival to the modeling of population dynam-
ics numerical methods remain primitive (lack of efficiency), we present a new technique
based on fractional differential equation which is a novel approach to model transmission
dynamics of Hantavirus.
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