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Abstract Construction of smooth or more technically fair interpolating curve has

been of great interest among researchers. The concept of smoothness involves more

than tangent and curvature continuity. One plausible suggestion for smoothness is

that the strain energy should attain minimum value. In this paper, planar minimum

energy curve is constructed using numerical optimization technique. Magnitude of

tangent and second derivatives vector are varied to find the curve that minimizes

the curvature functional measuring the strain energy. The resulting curve is free of

undesirable shape and exhibited local control.
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1 Introduction

Minimum energy curve (MEC) has it root in the draftsman’s spline. Draftsman’s spline
is a flexible piece of thin wooden or metal strip used to smoothly connect a number of
points in drawing curves. When the thin strip is bent there will be an internal strain energy
created in the cross section area of the strip. Malcom [1] defined that the simplest way
to characterize a spline mathematically is with the fact that a spline assumes shape which
minimizes its strain energy. Levein [2,3] had described the history of elastica and stated
the minimum energy curve (MEC) as one of the classic curve. The study of elastic strain
energy was started by Bernoulli in 1691 and followed by a number of researchers. At the
early stage, the studies of elastic concentrate on the physic aspects. More recent, numerical
technique is applied.

Glass [4] had published the first paper on construction of discrete MEC. The method
is time consuming because it involved solving multipoint-boundary value problem. Wood-
ford [5] had further improved Glass’s method through solving linear multi-boundary value
problem. Jerome [6] discussed the existence of MEC. Lee and Forsythe [7] had defined
a nonlinear spline as those curves whose energy is local minimum among all curves with
continuous tangent and curvature continuity on a finite set of points. They derived alge-
braic and differential equation relating curvature, angle, arc length and tangent force for
both open and closed nonlinear spline. Malcom [1] had computed the MEC by using finite
difference method. In the more recent literatures, Moreton [8] had constructed the mini-
mum energy networks by varying the free parameter at the end point but there is lack of
discussion on method used to control the curve such that it is free of undesirable curve
shape. Yong [9] had defined that an optimum curve should be mathematically smooth, that
is of minimum strain energy and geometrically smooth if free from loops, cusps or folds. He
derived a new class of curves called optimal geometric hermite curves. Yong adopted the
cubic Hermite curve which only interpolates the point position and first derivatives.
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Here we described a method for computation of optimum curve using the quintic Hermite
curve which interpolates the point position, first and second derivatives in an addition it is
free of loops, cups and folds.

2 Quintic Hermite

A quintic Hermite curve r(t),t ∈ [t0, t1] (where t0, t1 ∈ R and t0 < t1) is a parametric
curve satisfying end point position, first derivatives and second derivatives(P, P ′, P ′′). The
quintic Hermite curve can be expressed as:

r(t) = P0H0 + P ′

0H1 + P ′′

0 H2 + P ′′

1 H3 + P ′

1H4 + P1H5

Hi are quintic blending function as described in [10].
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Refer [6] the first and second derivatives are defined as:

P ′ = mt̂ (1)

P ′′ = m2n̂k + αmt̂ (2)

where

t̂ = unit tangent vector

n̂ = unit normal vector

k = curvature

m = magnitude of tangent vector

α = parameter that completes the relation between curvature and the second derivatives

The derivatives are definite in this way, in order that the resulting curves interpolation
satisfies second order geometric continuity G2.
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3 Strain Energy

The curvature functional measuring strain energy of a curve is defined as the integral of
curvature square over arc length.

∫ l

0

k(s)2ds

It is converted into integral function of parameter t in r(t)form as follow:

∫ l

0

k(s)2ds =

∫ t

0

(

ṙ(t) × r̈(t)

‖ṙ(t)‖

)2

‖ṙ(t)‖dt =

∫ t

0

(ṙ(t) × r̈(t))2

(ṙ(t) · ṙ(t))5/2
dt (3)

where ṙ(t) and r̈(t) are the first and second derivatives of r(t) with respect to t.

4 Optimization

In the optimization process, the strain energy is minimized by varying the magnitude of
the tangent and second derivatives vectors. Curvature functional (3) measuring the strain
energy is considered as the objective function f(X) in the optimization process. Conjugate
gradient descent method is used to optimize the objective function. In general, the idea
of this optimization method is to search for the suitable direction in order to locate the
minimum of f(X).

The conjugate gradient descent method performs well for any continuous objective func-
tion provided the gradient can be computed. The gradient is set as the first partial deriva-
tives of the objective function with respect to the free parameter measuring the magnitude
of the tangent vector and the second derivatives at the end points. The next step follows
up after computation of gradient is the computation of direction. There are several meth-
ods available for computation of the direction; here the Polak-Ribiere method because it is
known to perform better for non quadratic function. For each direction a one dimensional
optimization process is performed to determine the step length.

Since the objective function in this study is a non-quadratic function, the optimization
is operated in cycle. The function is said to be converge when the gradient approach to
zero. The algorithm is showed in appendix A.

During the optimization process, the magnitude of the tangent vector in (1) and (2)

must be constrained to be positive such that the tangent of
⇀

H(t) at t0 and t1 would have
the same direction as t̂0and t̂1 respectively. We impose this constraint by controlling the
range of step lengths search.

4.1 Initialization

The optimization process described in the previous section starts with an initial curve.
Referring to [6], the magnitude of the tangent and second derivatives is initialized to the
incident chord length ‖Pi − Pi+1‖. The other parameters are set as follow

• Free parameter αi0and αi1 are set to be zero such that the curve is arc length param-
eterized to its end point.
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• Tangents vector are set to the average of the incident cord direction.

ti =
Pi−1 − Pi

‖Pi−1 − Pi‖
+

Pi − Pi+1

‖Pi − Pi+1‖
, t̂i =

ti

‖ti‖

• Curvature are set to be curvature of circle passing through Pi−1, Pi and Pi+1.

ki =
2 (Pi − Pi−1) × (Pi+1 − Pi)

‖Pi − Pi−1‖ ‖Pi+1 − P1‖ ‖Pi+1 − Pi−1‖

In the case where the end point does not have two neighbors, tangent direction are set to be
the image of inverse direction of neighbor’s tangent reflecting from the line passing through
midpoint and is perpendicular to the intervening cord (See Figure 1). Curvatures are set
to be zero.

Figure 1: Tangent Direction at the End Point of the Curve

4.2 Range of Step Length Search

In the optimization process, the refined magnitude of tangent vector and second derivatives
vector is expressed as follows

Xk+1 = Xk + λdk

where Xk+1 is the refine magnitude Xk and dk is the magnitude and direction of the previous
iteration. λ is the step length.

Since the magnitude must be positive, the refined magnitude is constrained to be greater
than zero. In addition, to avoid undesirable shape that is loop; cusps and folds in the result-
ing curve, the refined magnitude is constrained to be smaller then twice the incident chord
length. Other then these two constrains, the sign of the direction shall also be considered.
The range for step length search is considered using the direction of first iteration.

When the direction of first iteration is positive, d1 > 0, the range is set as follows,

−X1

d1
< λ <

2 ‖P0 − P1‖ − X1

d1

When the direction of first iteration is negative, d1 < 0, the range is set as follows,

2 ‖P0 − P1‖ − X1

d1
< λ <

−X1

d1
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5 Numerical Integration

In the optimization process, we need to compute the strain energy and their partial deriva-
tives with respect to the magnitude. Gauss Legendre integration is used to perform this
computation.

∫ 1

0

f(t)dt ≈
1

2

∑

k

w(ξk)f(
1

2
ξk +

1

2
)

where ξk and w(ξk) are abscissas and weights of the Gauss Legendre integration. The
advantage of using Gauss Legendre integration is it has high precision.

6 Result and Discussion

This section shows a sample of MEC computed using six data points

[1.2, 1.85], [2.7, 0.85] [4.45, 2.3] [1.85, 5] [3, 6.15] and [4.5, 5.5].

The magnitude of tangent vector and second derivatives vector is refined until it falls below
the gradient tolerance of 1 × 10−6. The energy and arc length is evaluated by using 20
integration points. The sample curve is illustrated in Figure 2 and the iteration proceeded
for the first piece is showed separately in Table 1 in Appendix B. In Figure 2, the dash
line represents the initial curve and the dark line represents the optimized curve. Figure 3
compared the resulting optimized curve (dark line) with the cubic Bezier curve (dash line),
both satisfying the same end point constrains and second order geometric continuity.

Figure 4 showed sample curves computed using eight data points [2, 2.4],[2, 3.8],[3.4, 3.6],
[3.9, 2.3],[2.6, 1],[1, 2],[1.3, 4.5] and [3.9, 4]. The magnitude of tangent vector and second
derivatives vector of optimum curve is refined until it fall below the gradient tolerance of
1×10−4. Sample curve (a) is the optimized quintic hermite interpolation and sample curve
(b) is the cubic Bezier interpolation. Figure 4 shows that the optimized curve has better
local control compared to the cubic Bezier curve. In Figure 4(a), when a point is moved,
only the shape near to the moved point changed while in Figure 4(b), a moved point causes
more effect to the curve shape of neighboring pieces.

7 Conclusion

We have presented the technique for computing minimum energy curves using piece wise
interpolation. The resulting curve is free of undesirable shape such as loops, cusps and
folds. In an addition the resulting curve exhibited better local control compare to the cubic
Bezier interpolation.
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Figure 2: Interpolation of Initial and Optimized Curve in Font’s Design

Figure 3: Comparison of Cubic Bezier Interpolation and MEC Interpolation
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(a) (b)

Figure 4: (a) Optimum Curve with Better Local Control and (b) Cubic Bezier Curve with
Less Local Control
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Appendix A

Algorithm 1: Conjugate gradients descent method for non-quadratic function using the
Polak-Ribiére formula.

Consider the objective function as f(X) where X =

[

m0

m1

]

and gradient

∇f(X) =

[

∂f(X)
m0

∂f(X)
m1

]

.

INPUT initializes magnitude m0,m1

OUTPUT Optimum magnitude m0,m1

Initializing i = 1

Step 1 Set gradient gi = ∇f(Xi);

Direction di = −gi.

Step 2 Determine the step length λi = minf(Xi + λidi);

Step 3 Calculate the new magnitudes Xi+1 = Xi + λidi;

If gi > TOL then

Continue with step 4

else STOP.

Step 4 Calculate the gradient gi+1 = ∇f(Xi+1);

Calculate the direction di+1 = −gi+1 + βidi;

βi =
gT

i+1 · (gi+1 − gi)

gT
i · gi

.

Step 6 Determine the step length λi = minf(Xi + λidi);

Step 7 Calculate the new magnitudesXi+1 = Xi + λidi;

If gi+1 > TOL then

i = i + 1, repeat with step 1

else STOP.
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Appendix B

Table 1: Iteration Procedure for C1 in Figure 2

Iteration Magnitude

[

m0

m1

]

Energy Arc length Gradientd =

[

x

y

]

Step length

1

[

1.802776
1.802776

]

0.884701 1.944961

[

0.038063
−0.000782

]

2.653469

2

[

1.701775
1.804850

]

0.882785 1.938850

[

−0.0006584
−0.032051

]

27.639370

3

[

0.974015
2.706054

]

0.862407 1.942035

[

0.044940
0.036291

]

1.285383

4

[

0.916251
2.659407

]

0.860235 1.937135

[

0.007969
−0.009868

]

33.392902

5

[

0.577801
2.930491

]

0.856723 1.937353

[

0.013633
0.017021

]

0.809609

6

[

0.566764
2.916711

]

0.856529 1.936171

[

0.002269
-0.001817

]

20.475822

7

[

0.515348
2.947728

]

0.856438 1.93589

[

0.000076
0.000126

]

0.713392

8

[

0.515294
2.947638

]

0.856438 1.935887

[

0.2619e-5
-0.1578e-5

]

17.882610

9

[

0.515247
2.947665

]

0.856438 1.935887

[

-0.3160e-8
-0.4780e-8

]

-1.329784

10

[

0.515247
2.947665

]

0.856438 1.935887


