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Abstract The multiple linear regression (MLR) model is well-known in analyzing
linear model. Whereas, the new technique in clustering data, the fuzzy c-regression
models (FCRM) are being widely used in analyzing the nonlinear model. The FCRM
models are tested on simulated data and the FCRM models can approximate the given
nonlinear system with a higher accuracy. A case study in scale of health at intensive
care unit (ICU) using the two methods of modelling as mentioned above was carried
out. The comparison between the MLR and FCRM models were done to find the better
model by using the mean square error (MSE). After comparing the two models, it was
found that the FCRM models appeared to be the better model, having a lower MSE.
The MSE for MLR model is 498.29 whereas the MSE for FCRM models is 97.366.
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1 Introduction

Regression analysis has become one of the standard tools in data analysis. Its popularity
comes from different disciplines. The mathematical equation from its analysis could explain
the relationship between the dependent and independent variables. It provides much ex-
planatory power, especially due to its multivariate nature. It is widely available in computer
packages, easy to interpret, and there is a widespread belief that it remains a reasonable
procedure even if some of the assumptions underlying it are not met in the data. It has
been widely used in applied sciences, economic, engineering, computer, social sciences and
other fields [1].

The new fuzzy modelling has become popular for the past few years because it explains
and describes complex systems better. The fuzzy c-mean (FCM) model proposed by Bezdek
in 1981 develops hyper-spherical-shaped clusters. In contrast, the fuzzy c-regression models
(FCRM) proposed by Hathaway and Bezdek [2] develop hyper-plane-shaped clusters. The
FCRM models assume that the input–output data are drawn from c different regression
models where c is the number of clusters.

The minimization of the objective function in FCRM models is obtained when the
clustering is done simultaneously which yields a fuzzy c-partitioning matrix of the data and
the c regression models. Kim et al. [3] successfully applied FCRM to construct fuzzy models
into two phases of learning algorithms i.e. coarse learning phase and fine-tuning learning
phase. For a known system, the number of clusters (rules), c, is fixed and assigned by the
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user. For an unknown system, the appropriate number of clusters (rules) is supposed to be
unknown and could be estimated by using formula in Chuang et al. [4].

An essential component of acute hospital care is intensive care for the critically ill
patients. The intensive care unit (ICU) plays an important role in the medical care sector
not only for the critically ill who makes up 5% of inpatients, but also in terms of generating
a major contribution of health care funds. The United States health care industry makes
up 1% of the GNP and 15-20% total hospital cost, while in the United Kingdom (UK), the
National Health Services (NHS) used up £700 annually on critical care. These facts have
created the awareness of outcome evaluation and quality assurance by having clear objective
on the assessment of performance, effectiveness of therapy and utilization of resources in
clinical audits.

In 1968, the first ICU in Malaysia was established. Since then, intensive care has devel-
oped rapidly and it is now available in all tertiary care hospitals and selected secondary care
hospitals in the Ministry of Health. Rapid expansion of medical and surgical subspecialties
in the last decade results in increasing demands for more ICU beds and provides impetus
for its development. There is a scarcity of information on its clinical practice, performance
and outcome even though intensive care practice is well established in Malaysia. Clinical
audits of individual units have been published, however, to date, no clinical audits have
been done on a national scale. The situation in the UK in the early 1980s was similar to
what we are currently experiencing in Malaysia. More ICU beds were open up and high
dependency units mushroomed without proper assessment for their needs.

The Intensive Care National Audit & Research Centre (ICNARC) was established in UK
in 1994. It was co-funded by the Intensive Care Society and the Department of Health to
conduct a review on intensive care practice. The £142.5 million in year 2000 was used to fur-
ther improve intensive care unit and established a national database for clinical review and
planning purposes. The National Audit on Adult Intensive Care Units in Malaysia is mod-
eled on the UK experience. It is coordinated by a national committee comprising of senior
intensive care specialists in the Ministry of Health. This audit develops a national database
and to assess three fundamental aspects of intensive care functions within a hospital. The
clinical indicators developed by ACHS (The Australian Council on Healthcare Standard)
are useful tools for clinicians to flag potential problems and areas for improvement [5].

The fuzzy models are still not a common method used in ICU since many method used
in ICU involves logistic regression [6–11]. Only Pilz and Engelmann [12] did a basic fuzzy
rule to determine the medical decision in ICU. For example, the five condition of mean
arterial pressure (MAP) were determined by 25 fuzzy rules of heart rate (very high, high,
normal, low and very low) and blood pressure (very high, high, normal, low and very low)
which could give a confusing decision. However they did not use FCM and FCRM models
to analyze their data. In addition FCRM models did not give too many rules in medical
decision. By inspiring their work in fuzzy model into ICU area could give a challenge to
this study.

Takrouri [13] made a medical decision in ICU. He organized ICUs that made the care
for more seriously sick patients and raised ethical and professional issues related to some
patients who had untreatable medical conditions or those who sustained unsalvageable
damage to their vital organs. However, he did not use any logistic regression or fuzzy
model in his research. The problem exists if there are too many patients who want to be
admitted to ICU and there are no available vacancies in the ICU. In fact the calculations
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of certain method are still needed in ICU’s management.

The first research on mortality rates in Malaysia ICU has been done at a general hospital
in Ipoh, involving only a logit model [5]. The second research is continued by Mohd Saifullah
Rusiman et al. [14] on the analysis of logit, probit and linear probability models. As a
comparison among the three models, logit model has been appeared to be the best model
with 91.91% accuracy of prediction. These results achieve the conclusion that logit model
is one of the famous modelling if the dependent variable is in the categorical form.

This research is an attempt to present a proper methodology and analysis of modelling
in ICU. The objectives of this study are to explore the multiple linear regression model
(MLR) and fuzzy c-regression models (FCRM) for the scale of health in ICU. The other
objectives are to make a comparison between the MLR and FCRM models in order to
find a better model and to make recommendation based on the better model in achieving
improved services in hospitals.

2 Material

For this research, the data were obtained from the intensive care unit (ICU), general hospital
in Johor. The data obtained were classified as a cluster sampling. It involves 1311 patients
in ICU within the interval 1st January, 2001 to 25th August, 2002. The dependent variable
is refers to a patient status with code 0 and 1. Status 0 is coded when patient is still
alive in hospital or ICU, whereas 1 is coded when patient died in hospital or ICU. There
are seven independent variables considered in this study which are sex, race, organ failure
(orgfail), comorbid diseases (comorbid), mechanical ventilator (mecvent), score of SAPS II
admit (s2sadm) and score of SAPS II discharge from hospital (s2sdisc).

In this research, we excluded the patient status as dependent variable since the fuzzy
clustering for binary data is less suitable. The s2sdisc and s2sadm score are 15 accumulated
values for heart rate, blood pressure, age, body temperature, oxygen pressure, urine result,
urea serum level, white blood count, potassium serum level, sodium serum level, bicarbonate
serum level, bilirubin level, glasgow coma score, chronic illness and type of admittance that
have been proposed by Le Gall et al. [15]. The scales of health in hospital are measured
by the score of s2sdisc. Then, s2sdisc variable is taken as the dependent variable since the
s2sdisc and patient’s status are determined at the same time. In fact, the highest correlation
among patient’s status and independent variables is between the patient’s status and s2sdisc
with r = 0.87.

3 The Basic Theory of Multiple Linear Regression Model

Firstly, the analysis of influential and outlier data should be done to the data in order to
discard the data which is not relevant due to human error, machine error or environment
error. The analysis used are Pearson standardized residual (outliers in Y ) ( [1,16]), Leverage
(outliers in X) and DFBETA (influential) ( [16]). Then, multicollinearity diagnostic should
be done to the data to avoid dependency among X variables. The tests used are correlation
matrix and Variation Inflation Factor (VIF) as in Neter et al. [17] and Weisberg [18].

The residual analysis was used to ensure that the data are normally distributed. The
plot used is residual versus predicted value or X variables as in Draper and Smith [19] and
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Montgomery and Peck [20]. The influential variables are selected using backward stepwise
method.

For multiple linear regression model, the function of distribution is,

Yi = β0 + β1Xi1 + β2Xi2 + . . . + βkXik + εi(β), i = 1, . . . , N

or Y = Xβ + ε.
(1)

The function for least squares method is,

S(β0 , β1, β2, . . . , βk) = S(β) =

d
∑

j=1

ε2
j

or εT ε.

(2)

From equation (1), ε(β) = Y− Xβ. Then,

S(β) = (Y −Xβ)T (Y− Xβ) = Y
T
Y − 2β

T
X

T
Y + β

T
X

T
Xβ (3)

To minimize S(β), we have to differentiate S(β) with respect to β where δS
δβ

∣

∣

∣

β̂
is equal

to 0, i.e.,
δS

δβ

∣

∣

∣

∣

β̂

= −2XTY + 2XTXβ = 0

Hence, the least squares estimator is,

β̂ = (XTX)−1XTY (4)

The detailed explanation of this estimator is shown in Norusis [16], Neter et al. [17], Weis-
berg [18], Draper and Smith [19], Montgomery and Peck [20] and Seber [21].

4 The Basic Theory of Fuzzy C-Regression Models

The analysis of influential and outlier data should be done to the data when using MLR
model. However, there are no conditions needed in FCRM models. A switching regression
model is specified by

Yi = fi(X; θi) + εi, 1 ≤ i ≤ c (5)

The optimal estimate of θ depends on assumptions made about the distribution of random
vectors εi. Generally, the εiare assumed to be independently generated from some pdf
p(ε; η, σ) such as the Gaussian distribution with mean 0 and unknown standard deviation
σi with pdf given by

p(ε; η, σ) =
1

σ
√

2π
e−

(ε−η)2

2σ2 (6)

Based on the algorithm in Hathaway and Bezdek [2] and Abonyi and Feil [22] we have to

(a) Fix the number of cluster c, c ≥ 2. Choose the termination tolerance δ >0. Fix the
weight, w, w >1 (a common choice in practice is to set w = 2) and initialise the initial

value for membership function matrix, U(0)satisfying equation (8)
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(b) Estimate θ1, ..., θc simultaneously by modifying the fuzzy c means algorithm (FCM).
If the regression functions fi(x; θi) are linear in the parameters θi, the parameters can
be obtained as a solution of the weighted least squares:

θi = [XT
b WiXb]

−1XT
b WiY (7)

where Xb = [X, 1]

(c) Calculate the objective function:

Ew[U, {θi}] =
c
∑

i=1

d
∑

j=1

uw
ijEij[θi] (8)

where

(i) uijis membership degree (i = 1,. . . , c ; j = 1,. . . , N).

(ii) Eij[θi] is the measure of error with Eij[θi] = ||Yj − fi(Xj ; θi)||2. The most
commonly used is the squared vector Euclidean norm for Yj − fi(Xj ; θi). yj is
the real data for dependent variable and fi(Xj ; θi) is predicted value for Yj based
on the cluster.

(d) Do iterations in order to minimize the objective function in equation (8). Repeat for
l = 1,2. . . , ∞ until ||U(l) −U(l−1)|| < δ. Next, follow the steps below:

Step 1 : Calculate model parameters θ
(l)
i to globally minimize equation (8).

Step 2 : Update U with Eij = Eij[θ
(l−1)
i ], to satisfy:

u
(l)
ij =



















1
c
∑

k=1

(

Eij

Ekj

)2/(w−1)
, for Ij = φ

0 , for Ij 6= φ and i /∈ Ij

(9)

where
Ij = { i| 1 ≤ i ≤ c and Eij = 0}

until ||U(l) −U(l−1)|| < δ

In the FCRM clustering algorithm, the number of clusters, c is assigned by the user. In
practice, the appropriate number of clusters is usually decided with the aid of the cluster
validity criterion like the proposed new cluster validity criterion or the compactness-to-
separation ratio defined as follows,

FNEW ≡ fcom

fsep
=

∑N
k=1

c
∑

i=1

(µik)w|[XT
k 1]θi − Yk|2

N



















min
i 6= j

i = 1, ..., c
j = 1, ..., c

bij + k2

|〈vi, vj〉| + k1



















(10)
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where

N is the number of observations

c is the number of clusters

µik is the membership function

Xk is the independent variable

θi is the estimated parameter

Yk is the dependent variable

bij =
|bi

0 − bj
0|

∆bmax
for i, j = 1, ..., c i 6= j and ∆bmax = max

i = 1, ..., c
j = 1, ..., c

|bi
0 − bj

0 |

vi is the center of the ith cluster

vj is the center of the jth cluster

|〈vi, vj〉| is the absolute value of the standard inner-product of their unit normal vectors

for i and j where ui =
ni

‖ni‖
and ‖.‖ denotes the Euclidean norm

k1, k2 are small real positive constants that prevents the function from being zero or being
divided by zero

The numerator reflects the compactness of hyper-plane-shaped clusters, and the denom-
inator indicates the separation of hyper-plane-shaped clusters. The optimal number c is
chosen when FNEW reaches its minimum [23–25].

In describing a large class of nonlinear system, Takagi and Sugeno [26] and Sugeno
and Kang [27] has introduced a fuzzy rule-based model. This affine T-S fuzzy model with
IF-THEN rules is developed systematically and describes the unknown systems with given
input-output data. This model is also called an affine T-S fuzzy models [23], described as
follows,

Ri: IFX1 isAi
1 and · · · Xn isAi

n

THEN Y i = ai
1X1 + · · ·+ ai

nXn + ai
0

(11)

where Ri denotes the ith IF-THEN rule

i = 1, 2, . . . , c

c is the numbers of rules based on the number of clusters

Xq , q = 1, ..., n, are individual input variables

Ai
q are individual antecedent fuzzy sets

ai
k, k = 1, ..., n are consequent parameters

ai
0 denotes a constant
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Y i ∈ < is the output of each rule

This linear functions in the consequent part are hyper-planes (n-dimensional linear sub-
spaces) in <n+1.

For any input vector, X = [X1, ..., Xn]T, if the singleton fuzzifier, the product fuzzy
inference and the centre average defuzzifier are applied, the output of the fuzzy model Ŷ is
deduced as follows [25, 28, 29];

Ŷ =

c
∑

i=1

wi(X) Y i

c
∑

i=1

wi(X)
(12)

where

wi(X) = Ai
1(X1) × Ai

2(X2) × ...Ai
n(Xn) =

n
∏

q=1

Ai
q(Xq) (13)

denotes the degree of fulfillment of the antecedent, that is, the level of firing of the ith rule.
The consequent parameters can be found directly from the FCRM program output.

However, some additional manipulations are needed for the antecedent fuzzy sets Ai
q . The

antecedent fuzzy sets are usually achieved by projecting the membership degrees in the fuzzy
partitions matrix U onto the axes of individual antecedent variable xqto obtain a point-
wise defined antecedent fuzzy set Ai

q and then approximate it by a normal bell-shaped
membership function [23, 29].

Hence, each antecedent fuzzy set Ai
q is calculated from the sampled input data xh =

[x1h, ..., xnh]
T and the fuzzy partition matrix U = [µih] as follows [3, 30],

Ai
q(z) = exp







−1

2

(

z − vi
q

σi
q

)2






(14)

where

mean,vi
q =

N
P

h=1

µihXqh

N
P

h=1

µih

and standard deviation, σi
q =

√

√

√

√

√

N
P

h=1

µih(Xqh−αi
q)2

N
P

h=1

µih

.

In finding the better model, mean square error (MSE) is used as follows;

(a) For Multiple Linear Regression Model

MSE =
1

N − p

∑

(

Yi − Ŷ1

)2

(b) For FCRM models

MSE =
1

N

∑

(

Yi − Ŷi

)2

where Yi denotes the real data,

Ŷ represents the predicted value of Yi,

N is the number of data and

p is the number of parameters.
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5 Results and Discussions

5.1 Simulation Data

Consider simulation data which are generated using S-Plus program. The number of suitable
data chosen is 1000 since the data are normally distributed and the data are more stable
against outliers. The data are generated with a certain limit interval where Y ∈ [0, 1008].
There are 4 independent variables, X1, X2, X3 and X4 ∈ [0, 10]. We restricted the data
within a certain limit to avoid any outliers and influential data that can affect the results.
By applying equation (10), the plot of cluster criterion FNEW against number of clusters
c is depicted in Figure 1. It can be observed that the proposed cluster criterion FNEW

indicates the correct number of clusters c = 2.

Figure 1: Plot for FNEW versus the Number of Clusters (c)

The affine T-S fuzzy models with the optimal of two clusters are described as follows.
The antecedent parameters are described in detail in Table 1 involving their mean and
standard deviation for each cluster.

Cluster 1

R1: IFX1 isA1
1 andX2 isA1

2 andX3 isA1
3 andX4 isA1

4

THEN Y 1 = 5.8558X1 + 2.7853X2 + 4.4376X3 − 5.3082X4 + 694.2758

Cluster 2

R2: IFX1 isA2
1 andX2 isA2

2 andX3 isA2
3 andX4 isA2

4

THEN Y 2 = 13.3936X1 + 1.094X2 + 0.2287X3 − 3.1357X4 + 134.0393

The mean square error (MSE) for the MLR model is 64,565.9, whereas the MSE for
FCRM models is 5794.25. It means that the FCRM models can approximate the given
nonlinear system with a higher accuracy than the MLR model can. This simulation data
shows the potential of the proposed FCRM models.
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Table 1: Details of the Antecedent Parameters

Ri i = 1 i = 2

Ai
1 in X1

: µ 1.6070 1.3115
: σ 2.0916 1.9576

Ai
2 in X2

: µ 4.9598 4.5568
: σ 4.1139 3.7143

Ai
3 in X3

: µ 5.0712 4.7834
: σ 3.8915 3.7047

Ai
4 in X4

: µ 6.2185 5.9534
: σ 6.0795 6.1004

5.2 Multiple Linear Regression Model

From the analysis of influential and outlier data, it was found that eight data should be
discarded due to the human error (s2sdisc value is not recorded) and insufficiency of ven-
tilation machine. Before estimating the parameters, multicollinearity diagnostic should be
done to the data. From the correlation analysis, no value of correlation exceeds 0.99 among
Xi’s variable. The largest value of VIF is 1.604 which is less than 10. This indicates that
multicollinearity does not exist among the X variables.

The assumption that the residual is normally distributed must also be checked. From
Figure 2, the normal quantile-quantile (Q-Q) plot for unstandardized residual has shown
that the points in the Q-Q plot lie approximately in a straight line. Hence, the data is
approximately normal distributed.

Figure 2: Normal Q-Q Plot for Unstandardized Residual

The analysis of data in Table 2 has shown that five variables of X are significant which
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are sex, orgfail, comorbid, mecvent and s2sadm. The backward stepwise is used in choosing
the influential variable with r2 =0.515. The multiple linear model can be stated as,

Y = − 20.762 + 3.159 sex + 8.157 orgfail + 4.542 comorbid

− 4.333 mecvent + 0.987V s2sadm

Table 2: Analysis of Variance (ANOVA) and Coefficients for MLR Model

ANOVA

Model Sum of Squares Df Mean Square F Sig.

Regression 685,265.639 5 137,053.128 275.047 0.000
Residual 646,281.720 1,297 498.290
Total 1,331,547.359 1,302

Predictors: (Constant), s2sadm, sex, comorbid, mecvent, orgfail
Dependent Variable: s2sdisc

Coefficients

Standardized
Unstandardized Coefficients Coefficients

Model B Std. Error Beta t Sig.

(Constant) −20.762 4.142 −5.012 0.000
Sex (X1) 3.159 1.264 0.049 2.499 0.013
Orgfail (X2) 8.157 1.589 0.126 5.133 0.000
Comorbid (X3) 4.542 1.269 0.071 3.578 0.000
Mecvent (X4) −4.333 1.723 −0.057 −2.515 0.012
S2sadm (X5) 0.987 0.037 0.650 26.676 0.000

5.3 FCRM Models

The FCRM clustering for the data were analysed using Matlab program. Figure 3 shows the
FCRM clustering for s2sdisc (Y ) versus sex (X1), s2sdisc (Y ) versus orgfail (X2), s2sdisc
(Y ) versus comorbid (X3), s2sdisc (Y ) versus mecvent (X4) and s2sdisc (Y ) versus s2sadm
(X5) where the number of clusters is 2. Two linear straight line graphs show two different
MLR equations for the two clusters where the below line is for cluster 1 and the above line
represents the cluster 2. Though, a thicker straight line graph shows the MLR equation for
all data.

Next, the FCRM clustering involving s2sdisc with the significant of independent variables
such as sex, orgfail, comorbid, mecvent and s2sadm should be done as described in MLR
model. By using formula FNEW in equation (10), the number of clusters chosen is two since
the FNEW reaches minimum value as summarized in Table 3.

An affine T-S fuzzy model with the optimal of two clusters described as follows. The
antecedent parameters are described in detail in Table 4 involving their mean and standard
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Figure 3: Plot for Individual Clusterin

Table 3: The Value of c and FNEW

Number of Clusters, c 2 3 4 5

FNEW 43.73 133.92 2755.03 11355.43
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deviation for each cluster. For instance, the antecedent Ai
1 in X has a mean of 1.6247 and

standard deviation of 0.4842 for cluster 1. In fact, the antecedent Ai
1 in X for cluster 2 has

a mean of 1.5805 and standard deviation of 0.4935.

Cluster 1

R1: IFX1 isA1
1 andX2 isA1

2 andX3 isA1
3 andX4 isA1

4 andX5 isA1
5

THEN Y 1 = 3.82X1 + 32.239X2 + 4.289X3 + 32.839X4 + 0.293X5 − 71.268

Cluster 2

R2: IFX1 isA2
1 andX2 isA2

2 andX3 isA2
3 andX4 isA2

4 andX5 isA2
5

THEN Y 2 = 1.558X1 − 1.509X2 + 3.381X3 − 7.236X4 + 0.561X5 + 8.12

Table 4: Details of the Antecedent Parameters

Ri i = 1 i = 2

Ai
1 in X1

: µ 1.6247 1.5805
: σ 0.4842 0.4935

Ai
2 in X2

: µ 1.6724 1.5399
: σ 0.4693 0.4984

Ai
3 in X3

: µ 1.5468 1.4541
: σ 0.4978 0.4979

Ai
4 in X4

: µ 1.9577 1.7184
: σ 0.2013 0.4498

Ai
5 in X5

: µ 60.3827 31.5439
: σ 21.9781 15.6459

Figure 4 represents the membership function graph for Y versus X1, X2, X3, X4 and
X5 with the optimal two clusters.

5.4 Comparison between MLR and FCRM Models

In order to find the better model, mean square error (MSE) is used. The comparison
between these two models can be summarized in Table 5 below;

According to Table 5, the comparison between FCRM models and MLR model indicates
that the FCRM models appeared to be a better model in analyzing continuous data since
the MSE is 1/5 of the MSE for the MLR model. The MSE for MLR model is 498.29
whereas the MSE for FCRM models is 97.366. Hence, the FCRM approach is implemented
and performs satisfactorily if compared to the MLR model.
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Figure 4: Plot for Membership for Y vs X1, X2, X3, X4 and X5 Versus Data

Table 5: The Comparisons between Two Models

Method MLR Model FCRM models

Assumption Multicollinearity and
normality test should be
fulfilled

Not needed

Model Y = 3.159X1 + 8.157X2 + 4.542X3
− 4.333X4 + 0.987X5 − 20.762

R1 : IF X1 is A1
1 and X2 is A1

2 and X3 is A1
3

and X4 is A1
4 and X5 is A1

5
THEN Y1 = 3.82X1 + 32.239X2 + 4.289X3

+ 32.839X4 + 0.293X5 − 71.268

R1 : IF X1 is A1
1 and X2 is A1

2 and X3 is A1
3

and X4 is A1
4 and X5 is A1

5
THEN Y2 = 1.558X1 − 1.509X2 + 3.381X3

− 7.2336X4 + 0.561X5 + 8.12

Pattern of model Linear function Nonlinear function

MSE 498.29 97.366
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6 Conclusion

The FCRM models introduced by Harthway and Bezdek are one of the great methods in
analyzing a continuous and categorical data. In addition, there are no assumptions needed
in this analysis. This model is effective especially for a given nonlinear system from its
input-output data. The FCRM models are tested on the simulated data. It shows that
the FCRM models can approximate the given simulated data with a higher accuracy than
the MLR model. The comparison between FCRM models and MLR model indicates that
the FCRM models appeared to be a better model in analyzing continuous data. This new
modelling technique could be proposed as one of the best models in analyzing a complex
system. Hence, the scale of health or s2sdisc at ICU could be predicted based on the
independent variables which are sex, orgfail, comorbid, mecvent and s2sadm. The scales of
health in ICU hospital could be monitored by managing the independent variables and also
the other qualities in the hospital management.
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