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Abstract The purpose of this paper is to scrutinize the application of the Quarter-
Sweep Gauss-Seidel (QSGS) method by using the quarter-sweep approximation equa-
tion based on backward difference (BD) and repeated trapezoidal (RT) formulas to
solve first order linear Fredholm integro-differential equations. The formulation and
implementation of the Full-Sweep Gauss-Seidel (FSGS) and Half-Sweep Gauss-Seidel
(HSGS) iterative methods are also presented. Then some numerical tests are illus-
trated to show the effectiveness of QSGS method as compared to the FSGS and HSGS
methods.
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1 Introduction

Consider the first order linear Fredholm integro-differential equation (FOLFIDE) as given
in the general form of

y ′(x) = p(x)y(x) + f(x) +

∫ b

a

K(x, t)y(t) dt , a ≤ x ≤ b ,

y (a) = ya, (1)

where the functions f(x), p(x) and the kernel K(x, t) are known and y(x) is the solution to
be determined. In the engineering field, numerical methods for solution of linear Fredholm
integro-differential equations (LFIDE) have been studied by authors such as compact finite
difference method [1], Wavelet-Galerkin method [2], Lagrange interpolation method [3], Tau
method [4], quadrature-difference method [5], variational method [6], collocation method
[7], homotopy perturbation method [8], Euler-Chebyshev method [9] and GMRES method
[10]. LFIDE are usually difficult to solve analytically so numerical approaches are applied to
obtain an approximation solution for problem (1). To solve a LFIDE equation numerically,
discretization of differential part and integral part is used to construct a system of linear
algebraic equations. By considering numerical techniques, actually, there are many schemes
that can be used to discretize problem (1) independently for linear differential and integral
terms. Many researchers have implemented discretization schemes for linear differential
term such as finite difference scheme [11, 12], Taylor polynomial scheme [13], Chebyshev
polynomial method [14], Runge-Kutta scheme [15] and Euler implicit schemes [16]. Again
in discretizing linear integral term numerically, many discretization schemes can be used
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for approximation such as quadrature [17, 18], projection method [19, 20], least squares [21]
and Cleanshaw-Curtis quadrature formula [22].

The concept of half-sweep iterative method was introduced by Abdullah [23] by employ-
ing the Explicit Decoupled Group (EDG) iterative method to solve two-dimensional Poisson
equations. In addition, further explorations for application of this concept have been widely
used to solve multi-dimensional partial differential equations [24-28]. Othman and Abdul-
lah [29] then extended the concept of quarter-sweep iteration via the Modified Explicit
Group (MEG) iterative methods to solve two-dimensional Poisson equations. Again, appli-
cations of this concept have been intensively discussed in [30-33]. These two concepts are
essential to reduce the computational complexities during the iterative process, whereas the
implementation of the half- and quarter-sweep iterations will only consider nearly half and
quarter of all node points in a solution domain respectively. In this paper, we investigate
the application of the FSGS, HSGS, and QSGS iterative methods by using approximation
equation based on finite difference and quadrature schemes for solving first order linear
Fredholm integro-differential equations. In point of fact, the standard GS iterative method
also called as the Full-Sweep Gauss-Seidel iterative method is implemented to be a control
method in order to examine the performance of HSGS and QSGS iterative methods.

The organization of this paper is as follows: In Section 2, the formulation of the full-,
half-, and quarter-sweep finite difference and quadrature approximation equations will be
elaborated. In Section 3, formulation of the FSGS, HSGS and QSGS methods will be
demonstrated. Some numerical results will be illustrated to emphasize the effectiveness of
proposed methods in Section 4 and in Section 5 conclusion is given.

2 Formulation of the Quarter-Sweep Approximation Equation

Based on Figure 1, the full-, half- and quarter-sweep iterative methods will compute approx-
imate values at solid node points only until the convergence criterion is reached. It seems
that the implementation of the quarter-sweep iterative method just involves by nearly one-
quarter of whole inner points as shown in Figure 1(c) compared with the full-sweep iterative
method. Then other approximation solutions for the remaining points are calculated by us-
ing direct methods [23-33]. Actually there are many direct methods that can be considered.
In this paper, however, we propose the linear interpolation to compute approximate values
of remaining points for both half and quarter-sweep cases.

2.1 Derivation of Quarter-Sweep Backward Difference Scheme

As mentioned in Section 1 in discretizing differential term, the first order Backward Dif-
ference (BD) scheme based on finite difference method is used to form an approximation
equation for differential term. In solving of FOLFIDE, the first order BD scheme is used
to approximate any differential term in problem (1). In general, first order BD scheme can
be derived from the Taylor series expansion as given by

y ′ (xi) =
y (xi)− y (xi−1)

h
+O (h) . (2)

Eq. (2) is called as the first BD scheme because it involves the values at xi and xi−1, where
h is the size interval between nodes. The notation O (h) is known as truncations error which
will not be considered in this paper.
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Figure 1: Diagrams a), b) and c) Show Distribution of Uniform Node Points for the Full-,
Half- and Quarter-Sweep Cases, Respectively

In order to construct the finite grid networks for formulation of the full-, half- and
quarter-sweep finite difference approximation equations over problem (1), further discus-
sions will be restricted onto first-order BD scheme which is as follows

y ′ (xi) ≈
y (xi)− y (xi−p)

ph
, (3)

where the value of p, which corresponds to 1, 2 and 4, represents the full-, half- and quarter-
sweep respectively.

2.2 Derivation of Quarter-Sweep Repeated Trapezoidal Rule

For the integral term, the Repeated Trapezoidal (RT) discretization scheme based on
quadrature method is used to construct an approximation equation. In general quadra-
ture formula can be defined as follows∫ b

a

y(t)dt =

n∑
j=0

Ajy(tj) + εn(y) , (4)

where tj (j = 0, 1, . . . , n) are the abscissas of the partition points of the integration interval
[a,b] or quadrature (interpolation) nodes, Aj(j = 0, 1, . . . , n) are numerical coefficients that
do not depend on the function y(t) and εn(y) is the truncation error of Eq. (2). Based on



202 E. Aruchunan and J. Sulaiman

RT scheme, numerical coefficients Aj satisfy the following relation

Aj =

{
1
2ph, j = 0, n
ph, otherwise

(5)

where the constant step size, h is defined by

h =
b− a

n
(6)

and n is the number of subintervals in the interval [a,b]. Meanwhile, the value of p, which
corresponds to 1, 2 and 4, represents the full-, half- and quarter-sweep respectively.

By substituting Eqs. (3) and (4) into Eq. (1), a general linear approximation equation
for full-, half-, and quarter-sweep cases can be constructed as

yi − yi−p

ph
= Piyi + fi +

n∑
j=0, p, 2p

AjKi,jyj . (7)

This approximation equation will be used to create the corresponding linear system, which
can be easily shown as

M y
∼
= f

∼
(8)

where

M =


1− hPpApKp,p −hA2pKp,2p · · · −hAnKp,n

−hApK2p,p 1− hPpA2pK2p,2p · · · −hApK2p,n

...
...

. . .
...

−hApKn,p −hA2pKn,2p · · · 1− hPnAnKn,n


(n

p ×n
p )

y
∼
=


yp
y2p
...
yn−p

yn

 and f
∼
=


(1 + hA0Kp,0) + hf
hA0K2p,0 + hfp
...
hA0Kn−p,0 + hfn−p

hA0Kn,0 + hfn

 .

3 Formulation of Family of Gauss-Seidel Iterative Methods

In this paper, FSGS, HSGS and QSGS iterative methods will be applied to solve linear
systems (8) generated from the approximation equation (7) through the discretization of
problem (1). Let the matrix M be articulated into

M = D − L− U, (9)

where D, L and U are diagonal, strictly lower triangular and strictly upper triangular
matrices respectively. Thus, the general scheme for FSGS, HSGS and QSGS iterative
methods can be written as

y
∼

(k+1) = (D − L)
−1

(
Uy

∼

(k) + f
∼

)
. (10)
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Actually, the iterative methods attempt to find a solution to the system of linear equations
by repeatedly solving the linear system using approximations to the initial vector, y(0)∼ .
Basically FSGS, HSGS and QSGS iterative methods will be performed until the solution is
within a predetermined acceptable bound on the error. Based on [1] and [31], the general
algorithm for FSGS, HSGS and QSGS iterative methods to solve problem (1) would be
generally described in Algorithm 1.

Algorithm 1: FSGS, HSGS and QSGS Methods

(i) Initializing all the parameters. Set k = 0.

(ii) For i = p, 2p, · · · , n− 2p, n− p, n and j = 0, p, 2p, · · · , n− 2p, n− p, n

(iii) Calculate

y
(k+1)
i =

1

1− hPi − hAiKi,i

hfi + yi−1 − h
i−1∑
j=0

AjKi,jy
(k+1)
j − h

n∑
j=i+1

AjKi,jy
(k)
j


(iv) Convergence test

(a) If the error of tolerance
∣∣∣y(k+1)

i − y
(k)
i

∣∣∣ < ε = 10−10 is satisfied, iteration will be

terminated.

(v) Else, set k = k+1 and go to step (ii).

4 Illustrative examples

In this section, several numerical examples are given to illustrate the accuracy and effec-
tiveness properties of the FSGS, HSGS, and QSGS iterative methods. These three methods
were executed on the computer using a program written in C language. For comparison
purpose, three criteria will be considered such as number of iterations, execution time and
maximum absolute error.

Example 1 (Darania [34])

y ′(x) = 1− 1

3
x+

∫ 1

0

xty(t) dt 0 ≤ x ≤ 1

with the condition

y(0) = 0.

The exact solution of the problem is y(x) = x.

Example 2 (Darania [34])

y ′(x) = xex + ex − x+

∫ 1

0

y(t) dt, 0 ≤ x ≤ 1
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with the condition
y(0) = 0.

The exact solution of the problem is y(x) = xex.
Throughout the numerical experiments, the convergence test considered the tolerance

error, ε = 10−10. The experiments were carried out on several different mesh sizes such
as 960, 1920, 3840, 7680, 15360 and 30720. Results of numerical simulations, which were
obtained from implementations of the FSGS, HSGS and QSGS iterative methods for Ex-
ample 1 and Example 2, have been recorded in Table 1 and Table 2, respectively.

Table 1: Comparison of a Number of Iterations, Execution Time (Seconds) and Maximum
Absolute Error for the Iterative Methods (Example 1)

Methods

Number of iterations
Mesh size

960 1920 3840 7680 15360 30720

FSGS+BD+RT 12 12 12 12 12 12

HSGS+BD+RT 12 12 12 12 12 12

QSGS+BD+RT 12 12 12 12 12 12

Methods

Execution time (seconds)
Mesh size

960 1920 3840 7680 15360 30720

FSGS+BD+RT 0.38 1.52 5.99 23.73 136.66 563.21

HSGS+BD+RT 0.07 0.27 1.09 4.26 17.61 69.81

QSGS+BD+RT 0.02 0.08 0.28 1.05 4.58 18.02

Methods

Maximum absolute error
Mesh size

960 1920 3840 7680 15360 30720

FSGS+BD+RT 1.0347 E-7 2.5849 E-8 6.4591 E-9 1.6133 E-9 1.6671 E-12 1.6561 E-12

HSGS+BD+RT 4.1438 E-7 1.0347 E-7 2.5849 E-8 6.4591 E-9 1.6132 E-9 4.0203 E-10

QSGS+BD+RT 1.6617 E-6 4.1438 E-7 1.0347 E-7 2.5849 E-8 6.4591 E-9 1.6133 E-9

5 Conclusion

In this paper, the effectiveness for the family of Gauss-Seidel (GS) iterative methods namely
FSGS, HSGS and QSGS was investigated to solve LFIDE for first-order integro-differential
equations. As mentioned in Section 2, the formulation and implementation of these three
methods have been constructed based on combination of first-order BD and first quadra-
ture schemes. Based on these discretization schemes, numerical results tabulated in Tables
1 and 2 show that the application of the half- and quarter-sweep iterative concepts re-
duces tremendously computational time (refer Table 3) with the acceptable accuracy. For
the three iterative methods tested, QSGS iterative method is faster for the computational
works compared to HSGS and FSGS iterative methods. This is due to the computational
complexity of the QSGS is approximately 75% less than FSGS method. In order to mea-
sure the accuracy, these three methods were run with increasing mesh sizes n = 960, 1920,
3840, 15360 and 30720. It can be seen clearly from Example 1 and Example 2 in Tables
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Table 2: Comparison of a Number of Iterations, Execution Time (Seconds) and Maximum
Absolute Error for the Iterative Methods (Example 2)

Methods

Number of Iterations
Mesh Size

960 1920 3840 7680 15360 30720

FSGS+BD+RT 13 13 13 13 13 13

HSGS+BD+RT 13 13 13 13 13 13

QSGS+BD+RT 13 13 13 13 13 13

Methods

Execution Time (Seconds)
Mesh Size

960 1920 3840 7680 15360 30720

FSGS+BD+RT 0.39 1.50 6.01 23.83 78.82 326.97

HSGS+BD+RT 0.09 0.30 0.95 4.65 19.49 76.60

QSGS+BD+RT 0.03 0.08 0.29 1.16 5.02 19.78

Methods

Maximum Absolute Error
Mesh Size

960 1920 3840 7680 15360 30720

FSGS+BD+RT 2.8493 E-3 1.4242 E-3 7.1202 E-4 3.5598 E-4 1.7799 E-4 8.8891 E-5

HSGS+BD+RT 5.7019 E-3 2.8493 E-3 1.4242 E-3 7.1202 E-4 3.5598 E-4 1.7798 E-4

QSGS+BD+RT 1.1417 E-3 5.7020 E-3 2.8493 E-3 1.4242 E-3 7.1202 E-4 3.5598 E-4

Table 3: Percentages of Reduction of the Execution Time for HSGS and QSGS Iterative
Methods Compared with FSGS Method

Methods
Execution Time

Example 1 Example 2

HSGS+BD+RT 81.57%-87.61% 75.27%-84.19%

QSGS+BD+RT 94.73%-96.80% 93.11%-95.17%
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1 and 2 that the use of the largest mesh size n = 30720 has shown improvements slightly
in the accuracy of the three methods. For future studies, quarter-sweep concept will be
applied to other iterative methods for LFIDE problem in order to examine the effective-
ness of their combination. Apart from that, the investigation of the high-order quadrature
schemes should be carried out to derive high-order approximation equations in order to get
high accuracy of numerical solutions.
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